JPH0159804B2 - - Google Patents
Info
- Publication number
- JPH0159804B2 JPH0159804B2 JP57148264A JP14826482A JPH0159804B2 JP H0159804 B2 JPH0159804 B2 JP H0159804B2 JP 57148264 A JP57148264 A JP 57148264A JP 14826482 A JP14826482 A JP 14826482A JP H0159804 B2 JPH0159804 B2 JP H0159804B2
- Authority
- JP
- Japan
- Prior art keywords
- tank
- wire
- grounding
- main
- grounding wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000013021 overheating Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
Landscapes
- Gas-Insulated Switchgears (AREA)
Description
【発明の詳細な説明】
本発明はガス絶縁電気装置、特に、その接地線
の構成に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to gas insulated electrical equipment and, more particularly, to the construction of its ground conductor.
従来のガス絶縁電気装置の一例を示すと添付図
面第1図のとおりであつて、符号1は断路器タン
ク、2はブツシングタンク、3は断路器タンク、
4は変流器タンク、5は遮断器タンクであり、断
路器タンク1、ブツシングタンク2及び断路器タ
ンク3は電気的に接続していて、それぞれ、接地
線6,7により、また、遮断器タンク5からは接
地線8,9により、各接地線を真下に下ろした
後、接地網を構成している主接地線10に接続し
ている。また、遮断器タンク5と変流器タンク4
とは、断路器タンクと絶縁している。 An example of a conventional gas-insulated electric device is shown in FIG. 1 of the accompanying drawings, where 1 is a disconnector tank, 2 is a bushing tank, 3 is a disconnector tank,
4 is a current transformer tank, 5 is a circuit breaker tank, and the disconnector tank 1, bushing tank 2, and disconnector tank 3 are electrically connected, and are connected to each other by grounding wires 6 and 7, and The grounding lines 8 and 9 are connected to the main grounding line 10 constituting a grounding network from the tank 5 through grounding lines 8 and 9. In addition, the circuit breaker tank 5 and the current transformer tank 4
The disconnect switch is insulated from the tank.
なお、符号11は隣接タンクの接地線である。 Note that the reference numeral 11 is a grounding wire of an adjacent tank.
このような従来構造においては、200mm2銅より
線(外径18.2mm)を接地線に用いた場合、接地線
長さ5mで、抵抗0.55mΩ、誘導リアクタンス
(60Hz)2.4mΩ、インピーダンス2.46mΩとな
る。 In such a conventional structure, when a 200 mm 2 copper stranded wire (outside diameter 18.2 mm) is used as the ground wire, the ground wire length is 5 m, the resistance is 0.55 mΩ, the inductive reactance (60Hz) is 2.4 mΩ, and the impedance is 2.46 mΩ. Become.
一方、タンクは外径が1000mmと大きいことか
ら、抵抗0.1mΩ、誘導リアクタンス(60Hz)
0.75mΩ、インピーダンス0.76mΩとなり、銅よ
り線より少ない値となり、主接地線10に流れる
誘導電流はタンクに分流しやすくなる。 On the other hand, since the tank has a large outer diameter of 1000mm, the resistance is 0.1mΩ and the inductive reactance (60Hz)
The impedance is 0.75 mΩ and the impedance is 0.76 mΩ, which is smaller than that of a copper stranded wire, and the induced current flowing in the main grounding wire 10 is easily shunted to the tank.
更に相互インダクタンスはタンクと主回路との
間で最も大きく、従つて、タンクには誘導電流i1
の方向に誘起電圧が最も大きく発生し、断路器タ
ンク1→ブツシングタンク2→断路器タンク3→
接地線7→主接地線10→接地線6の閉ループに
誘導電流が発生する。 Furthermore, the mutual inductance is greatest between the tank and the main circuit, so the tank has an induced current i 1
The largest induced voltage is generated in the direction of disconnector tank 1 → bushing tank 2 → disconnector tank 3 →
An induced current is generated in the closed loop of grounding wire 7 → main grounding wire 10 → grounding wire 6.
タンクに流れる誘導電流は、主接地線10に流
れる誘導電流i1のタンクへの分流分と、上記閉ル
ープに発生の誘導電流とが同一方向であるために
加算され、一方、接地線7と接地線6とが繋がつ
ている間の主接地線10では、誘導電流i1のこの
主接地線10に分流する電流と、閉ループに発生
の誘導電流分とは、方向が反対であるために減算
され、この部分では少ない電流となる。遮断器タ
ンク5を含む閉ループも同様である。従つて、誘
導電流i1は、図に示すように、主接地線10→接
地線6→断路器タンク→ブツシングタンク2→断
路器タンク3→接地線7→主接地線10→接地線
8→遮断器タンク5→接地線9→主接地線10→
接地線11→別の断路器タンクへという回路を通
つて流れる。また、主接地線10及び接地線6,
7、並びに、断路器タンク1,3、ブツシングタ
ンク2が作る閉ループと、主接地線10、接地線
8,9、及び、遮断器タンク5が作る閉ループと
にもそれぞれ誘導電流が流れる。従つて、主接地
線の過熱及び溶断の原因ともなり、また、露出接
地線の過熱によつて、安全上からも危険であると
いう欠点が従来の接地線構成を有するガス絶縁電
気装置にはあつた。更に又、タンクに誘導電流が
流れるために、タンク及び母線の温度上昇の程度
も高くなるという欠点も合わせ有していた。 The induced current flowing in the tank is added because the shunted portion of the induced current i1 flowing in the main grounding wire 10 to the tank and the induced current generated in the closed loop are in the same direction. In the main grounding wire 10 while the wire 6 is connected, the induced current i 1 that flows into the main grounding wire 10 and the induced current generated in the closed loop are subtracted because their directions are opposite. , the current will be small in this part. The same applies to the closed loop including the circuit breaker tank 5. Therefore, the induced current i 1 is as shown in the figure, main grounding wire 10→grounding wire 6→disconnector tank→butting tank 2→disconnector tank 3→grounding wire 7→main grounding wire 10→grounding wire 8 → Breaker tank 5 → Ground wire 9 → Main ground wire 10 →
It flows through the circuit from ground wire 11 to another disconnector tank. In addition, the main grounding wire 10 and the grounding wire 6,
7, and also in the closed loop formed by the disconnector tanks 1 and 3 and the bushing tank 2, and in the closed loop formed by the main ground wire 10, the ground wires 8 and 9, and the circuit breaker tank 5, respectively. Therefore, gas-insulated electrical equipment with a conventional grounding wire configuration has the disadvantage that it can cause overheating and melting of the main grounding wire, and that overheating of the exposed grounding wire can be dangerous from a safety standpoint. Ta. Furthermore, since an induced current flows through the tank, the temperature of the tank and the bus bar increases to a high degree.
本発明は、このような従来の接地線構成におけ
る欠点を解消し、主接地線に流れる誘導電流がタ
ンクを通らないようにすると共に、接地線に流れ
る誘導電流と、主接地線に流れる誘導電流とをそ
れぞれ減少させた接地線構成を有するガス絶縁電
気装置を得ることをその目的とするものである。 The present invention eliminates the drawbacks of the conventional grounding wire configuration, prevents the induced current flowing in the main grounding wire from passing through the tank, and prevents the induced current flowing in the grounding wire and the induced current flowing in the main grounding wire from passing through the tank. The object is to obtain a gas insulated electrical device having a ground conductor configuration with reduced and, respectively.
本発明はこの目的を達成するために、1個ある
いは電気的に接続している複数個のタンクの2箇
所以上に接地線を設け、上記接地線が接続される
上記接地網を構成している主接地線の埋設方向を
各相のブツシングが連なる方向に対して直角とな
るように設置し、上記複数の接地線を埋設された
上記主接地線に接続したことを特徴とするもので
ある。 In order to achieve this object, the present invention provides grounding wires at two or more locations of one or a plurality of electrically connected tanks, and constitutes the above-mentioned grounding network to which the above-mentioned grounding wires are connected. It is characterized in that the buried direction of the main grounding wire is perpendicular to the direction in which the bushings of each phase are connected, and the plurality of grounding wires are connected to the buried main grounding wire.
以下、本発明はその一実施例であるガス絶縁電
気装置を示す添付図面第2図に基づいて説明す
る。なお、第2図は、第1図と同一機器配置のも
のであり、接地線の構成のみが異なるものであ
る。 Hereinafter, the present invention will be explained based on FIG. 2 of the accompanying drawings, which shows a gas insulated electrical device as an embodiment thereof. Note that FIG. 2 shows the same equipment arrangement as FIG. 1, and only the configuration of the grounding wire is different.
図において、断路器タンク1,3、ブツシング
タンク2、変流器タンク4、遮断器タンク5及び
隣接タンクの接地線11は、それぞれ、従来装置
と同様に配置されているものであり、また、主接
地線21はその埋設方向が、各相のブツシングが
連なる方向、すなわち、断路器タンク1,3の軸
方向に対して、直角となるように配置されてお
り、この主接地線21に、断路器タンク1,3か
ら導出の接地線6′,7′としや断器タンク5から
導出の接地線8′,9′を、第2図に示すように、
接続している。 In the figure, the disconnector tanks 1 and 3, the bushing tank 2, the current transformer tank 4, the circuit breaker tank 5, and the grounding wire 11 of the adjacent tank are arranged in the same way as in the conventional device, and The main grounding wire 21 is arranged so that its buried direction is perpendicular to the direction in which the bushings of each phase are connected, that is, the axial direction of the disconnector tanks 1 and 3. As shown in FIG.
Connected.
本発明装置の接地線は、このように構成されて
いるために、接地線に流れる誘導電流は、断路器
タンク1→ブツシングタンク2→断路器タンク3
→接地線7′→主接地線21→接地線6′→断路器
タンク1という閉回路に誘導電流i2が流れ、ま
た、遮断器タンク5→接地線9′→接地線8′→遮
断器タンク5という閉回路に誘導電流i3が流れ、
更に、主接地線21には誘導電流i4が流れる。 Since the grounding wire of the device of the present invention is configured in this way, the induced current flowing through the grounding wire is from disconnector tank 1 → bushing tank 2 → disconnector tank 3.
→ Earthing wire 7' → Main earthing wire 21 → Earthing wire 6' → Induced current i 2 flows in the closed circuit called circuit breaker tank 1, and circuit breaker tank 5 → Earthing wire 9' → Earthing wire 8' → Circuit breaker An induced current i3 flows in a closed circuit called tank 5,
Furthermore, an induced current i 4 flows through the main grounding line 21 .
このように接地線及び主接地線が構成され、そ
れぞれの誘導電流が流れることにより、主接地線
に流れる誘導電流i4はタンクを流れず、従つて、
誘導回路はインピーダンスの高い主接地線のみと
なり、インピーダンスが大きくなる。そして、主
回路と離れ、さらに主回路と主接地線とが直角の
関係となつている部分が多い(直角の関係の場
合、相互インダクタンスは零)。また、主接地線
の埋設方向をブツシングの連なる方向と直角方向
に設置しているため、主接地線と平行な主回路
(変流器タンク部)に流れる電流の方向は交互に
変わるため、相互インダクタンスが相殺され、少
なくなり、主回路電流による主接地線への誘起電
圧は減少し、主接地線に流れる誘導電流は減少す
る。 Since the grounding wire and the main grounding wire are configured in this way, and the induced current flows in each of them, the induced current i4 flowing in the main grounding wire does not flow through the tank, and therefore,
The induction circuit consists only of the main grounding wire, which has a high impedance, and the impedance becomes large. There are many parts that are separated from the main circuit, and furthermore, the main circuit and the main ground wire are in a right-angled relationship (in the case of a right-angled relationship, the mutual inductance is zero). In addition, because the main grounding wire is buried in a direction perpendicular to the direction in which the bushings run, the direction of the current flowing in the main circuit (current transformer tank) that is parallel to the main grounding wire changes alternately. The inductance is canceled out and reduced, the induced voltage in the main ground line due to the main circuit current is reduced, and the induced current flowing in the main ground line is reduced.
一方、断路器タンク1→ブツシングタンク2→
断路器タンク3→接地線7′→主接地線21→接
地線6′の閉ループに流れる誘導電流は、主接地
線に流れる電流のこの閉ループへの分流が接地線
6′と接地線7′とが結ばれている主接地線長さが
短いことから、少なく、また、主接地線に流れて
いる電流そのものが少なくなつていることから、
閉ループの誘導電流が従来のように主接地線電流
の分流分と加算されないため少なくなつている。 On the other hand, disconnector tank 1 → bushing tank 2 →
The induced current flowing in the closed loop of disconnector tank 3→ground wire 7′→main ground wire 21→ground wire 6′ is caused by the branching of the current flowing through the main ground wire into this closed loop between the ground wire 6′ and the ground wire 7′. Because the length of the main grounding wire connected to it is short, the current flowing through the main grounding wire itself is small.
The induced current in the closed loop is reduced because it is not added to the shunt of the main ground line current as in the conventional case.
その結果、インピーダンスは大きくなり、従来
よりも主接地線21に流れる誘導電流i4は減少
し、しかも、この主接地線21に流れる誘導電流
は各接地線6′〜9′へ流れ込まないので、接地線
6′〜9′の誘導電流も減少する。 As a result, the impedance increases, and the induced current i 4 flowing through the main grounding wire 21 is reduced compared to the conventional case.Moreover, the induced current flowing through the main grounding wire 21 does not flow into each of the grounding wires 6' to 9'. The induced current in the ground wires 6'-9' is also reduced.
次に添付図面第3図は、本発明を適用した三相
分離形π形ガス絶縁電気装置の一実施例であつ
て、この主接地線21は、その各相におけるブツ
シングが連なる方向に対して直角方向に設置され
ており、各タンクの接地線をこの主接地線21′
に接続することによつて、主接地線に流れる誘導
電流はタンクを流れず、従つて、接地線6′〜
9′に流れる誘導電流も減少する。 Next, FIG. 3 of the accompanying drawings shows an embodiment of a three-phase separated type π-type gas insulated electric device to which the present invention is applied, and this main grounding wire 21 is connected in the direction in which the bushings in each phase are connected. It is installed in a right angle direction, and the grounding wire of each tank is connected to this main grounding wire 21'.
By connecting the ground wires 6' to
The induced current flowing through 9' also decreases.
以上説明したように構成された接地線を有する
本発明のガス絶縁電気装置においては、接地線及
び主接地線に誘起する電流を低減することがで
き、従つて、接地線の過熱や溶断を防止し得ると
共に、露出接地線の過熱も防止することができ
て、安全上からもきわめて良好となるという効果
を有している。また、タンクに流れる誘導電流が
少なくなり従つて、タンクや母線の温度上昇も低
減することができ、その結果、各タンクも小形化
が可能となるという効果も合わせ有している。 In the gas-insulated electrical device of the present invention having a grounding wire configured as described above, it is possible to reduce the current induced in the grounding wire and the main grounding wire, thereby preventing overheating and fusing of the grounding wire. At the same time, overheating of the exposed ground wire can also be prevented, which has the effect of being extremely favorable from a safety standpoint. In addition, the induced current flowing through the tank is reduced, and therefore the temperature rise of the tank and the bus bar can be reduced, and as a result, each tank also has the effect of being able to be made smaller.
なお、以上の説明は遮断器タンク、断路器タン
ク等を有するガス絶縁電気装置について説明した
が、本発明は、これに限るものではなく、ガス絶
縁母線にも適用できるものである。 Although the above description has been made regarding a gas insulated electrical device having a circuit breaker tank, a disconnector tank, etc., the present invention is not limited thereto, and can also be applied to a gas insulated bus bar.
第1図は従来のガス絶縁電気装置の一例の斜視
図、第2図は本発明のガス絶縁電気装置の一実施
例を示す斜視図、第3図は本発明を適用した三相
分離形π形ガス絶縁電気装置の一実施例の外観斜
視図である。
1…断路器タンク、2…ブツシングタンク、3
…断路器タンク、4…変流器タンク、5…遮断器
タンク、6〜9,6′〜9′,11…接地線、1
0,21,21′…主接地線、i1〜i4…誘導電流。
FIG. 1 is a perspective view of an example of a conventional gas-insulated electrical device, FIG. 2 is a perspective view of an embodiment of the gas-insulated electrical device of the present invention, and FIG. 3 is a three-phase separation type π to which the present invention is applied. 1 is an external perspective view of an embodiment of a gas-insulated electrical device; FIG. 1...Disconnector tank, 2...Butching tank, 3
... Disconnector tank, 4... Current transformer tank, 5... Breaker tank, 6-9, 6'-9', 11... Ground wire, 1
0, 21, 21'...Main grounding wire, i1 to i4 ...Induced current.
Claims (1)
ているタンクと、上記タンクを設置している敷地
に埋設している接地網とが接地線によつて電気的
に接続されているガス絶縁電気装置において、1
個あるいは電気的に接続している複数個のタンク
の2箇所以上に接地線を設け、上記接地線が接続
される上記接地網を構成している主接地線の埋設
方向を各相のブツシングが連なる方向に対して直
角になるように設置し、上記複数の接地線を埋設
された上記主接地線に接続したことを特徴とする
ガス絶縁電気装置。1 Gas-insulated electrical equipment in which a tank filled with insulating gas and housing electrical equipment is electrically connected to a grounding network buried on the site where the tank is installed by a grounding wire. In, 1
Grounding wires are installed at two or more locations in each or a plurality of tanks that are electrically connected, and the bushing of each phase is connected to the buried direction of the main grounding wire constituting the grounding network to which the grounding wire is connected. A gas-insulated electrical device, characterized in that the plurality of grounding wires are installed perpendicular to the direction in which the grounding wires are connected, and the plurality of grounding wires are connected to the buried main grounding wire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57148264A JPS5937815A (en) | 1982-08-26 | 1982-08-26 | Gas insulated electric device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57148264A JPS5937815A (en) | 1982-08-26 | 1982-08-26 | Gas insulated electric device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5937815A JPS5937815A (en) | 1984-03-01 |
JPH0159804B2 true JPH0159804B2 (en) | 1989-12-19 |
Family
ID=15448876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57148264A Granted JPS5937815A (en) | 1982-08-26 | 1982-08-26 | Gas insulated electric device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5937815A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4959300A (en) * | 1987-04-15 | 1990-09-25 | Konica Corporation | Silver halide photographic light-sensitive material with improved gradation balance |
-
1982
- 1982-08-26 JP JP57148264A patent/JPS5937815A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5937815A (en) | 1984-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0159804B2 (en) | ||
JPH0159805B2 (en) | ||
US1735179A (en) | Electrical apparatus | |
JPH0159803B2 (en) | ||
JPH023365B2 (en) | ||
JPS6235327B2 (en) | ||
JPS6235329B2 (en) | ||
US4742423A (en) | Gas insulated apparatus | |
JPS6233469Y2 (en) | ||
JP3767227B2 (en) | Gas insulated electrical equipment | |
JPS60233574A (en) | Accident point detecting device of single core metallic sheath cable | |
JPS6233468Y2 (en) | ||
JPS6223207Y2 (en) | ||
JP2800441B2 (en) | Insulated case with grounding part between phases | |
US2501963A (en) | Circuit-faulting fuse construction | |
JPS6233470Y2 (en) | ||
JPS6111042B2 (en) | ||
JPS6330171Y2 (en) | ||
JP2748711B2 (en) | Insulation case using insulated conductor unit with conductive layer on conductor insulation | |
JPS6259524B2 (en) | ||
RU1774421C (en) | Electrical network | |
JP2554532Y2 (en) | Distribution substation equipment | |
JPS601495Y2 (en) | Connecting conductor device | |
JPS6111946Y2 (en) | ||
JPS6334687B2 (en) |