JPH0159753B2 - - Google Patents

Info

Publication number
JPH0159753B2
JPH0159753B2 JP7757383A JP7757383A JPH0159753B2 JP H0159753 B2 JPH0159753 B2 JP H0159753B2 JP 7757383 A JP7757383 A JP 7757383A JP 7757383 A JP7757383 A JP 7757383A JP H0159753 B2 JPH0159753 B2 JP H0159753B2
Authority
JP
Japan
Prior art keywords
active layer
region
oscillation
semiconductor laser
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7757383A
Other languages
Japanese (ja)
Other versions
JPS59202677A (en
Inventor
Tsunao Yuasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7757383A priority Critical patent/JPS59202677A/en
Publication of JPS59202677A publication Critical patent/JPS59202677A/en
Publication of JPH0159753B2 publication Critical patent/JPH0159753B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 この発明は量子井戸型構造を活性層とした半導
体レーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser device having a quantum well structure as an active layer.

半導体レーザ装置は活性層の上下より活性層よ
りも禁制帯幅が大きく、屈折率の小さい半導体層
で挟んだ二重ヘテロ接合型が基本的な素子構造と
して知られているが、近年、分子線エピタキシヤ
ル法或るいは有機金属熱分解気相成長法の発達に
より薄膜の膜厚をÅのオーダーで制御が可能にな
るに及んで、活性層を半導体の単一層ではなく、
超薄膜半導体の上下を超薄膜半導体よりも禁制帯
幅の大きな超薄膜半導体で挟んで、超薄膜半導体
中の電子が離散的なエネルギーを持つようにした
量子井戸型構造とする半導体レーザ装置が提案さ
れた。この量子井戸型構造を活性層とする半導体
レーザ装置は活性層を構成する超薄膜半導体の厚
さを変えることによつて、発振するレーザ光の波
長を変えることができ、また発振閾値電流密度の
温度変化が少ないという特徴を有している。しか
し、この量子井戸が一つのみでは注入キヤリアの
閉じ込め効果が充分ではない。このため、二種の
超薄膜半導体を交互に多数積み重ねた多重量子井
戸型構造を活性層として、注入キヤリアの閉じ込
め効果の向上を図つた。この半導体レーザ装置を
第1図により説明すると、GaAsなどの導電性基
板結晶1上に下部クラツド層としてAlGaAsヘテ
ロ接合層2が形成している。この下部クラツド層
2の上にはGaAs薄膜6とGaAlAs薄膜7が交互
に三層以上積み重ねて多重量子井戸型構造とし、
活性層3を構成する。このGaAs膜6の厚さは50
〜100Å、GaAlAs膜の厚さは20〜100Å程度であ
り、構成する膜の層数は10〜20程度である。第1
図の半導体レーザ装置のエネルギーバンド構造の
概略は第2図の如くである。活性層3の上部には
上部クラツド層としてAlGaAsヘテロ接合層4が
形成し、その上にオーミツク電極を設け易くする
ためにGaAs層5を形成する。
The basic device structure of semiconductor laser devices is known to be a double heterojunction type in which the active layer is sandwiched between semiconductor layers with a larger forbidden band width and a lower refractive index than the active layer above and below, but in recent years, molecular beam With the development of the epitaxial method or the metal-organic pyrolysis vapor phase growth method, it has become possible to control the thickness of thin films on the order of Å, and the active layer is no longer a single layer of semiconductor.
A semiconductor laser device has been proposed that has a quantum well structure in which an ultra-thin film semiconductor is sandwiched above and below by two ultra-thin film semiconductors with a wider forbidden band than the ultra-thin film semiconductor, so that electrons in the ultra-thin film semiconductor have discrete energy. It was done. A semiconductor laser device with this quantum well structure as an active layer can change the wavelength of the emitted laser light by changing the thickness of the ultra-thin film semiconductor that makes up the active layer, and can also change the oscillation threshold current density. It is characterized by little temperature change. However, with only one quantum well, the effect of confining the injected carriers is not sufficient. For this reason, a multi-quantum well structure in which two types of ultra-thin film semiconductors are stacked alternately is used as the active layer to improve the confinement effect of the injected carriers. To explain this semiconductor laser device with reference to FIG. 1, an AlGaAs heterojunction layer 2 is formed as a lower cladding layer on a conductive substrate crystal 1 such as GaAs. On this lower cladding layer 2, GaAs thin films 6 and GaAlAs thin films 7 are alternately stacked in three or more layers to form a multiple quantum well structure.
This constitutes the active layer 3. The thickness of this GaAs film 6 is 50
The thickness of the GaAlAs film is about 20 to 100 Å, and the number of layers of the film is about 10 to 20. 1st
The energy band structure of the semiconductor laser device shown in the figure is schematically shown in FIG. 2. An AlGaAs heterojunction layer 4 is formed as an upper cladding layer on the active layer 3, and a GaAs layer 5 is formed thereon to facilitate the provision of an ohmic electrode.

上述の如き構成の半導体レーザ装置において、
活性層3に注入された電子及び正孔はGaAs膜6
が極めて薄いために離散的なエネルギーを持つて
GaAs膜のポテンシヤルの井戸の中に存在する。
ポテンシヤルが上述の如く井戸型であるため伝導
帯の電子の状態密度は従来の構造よりも大きくな
り、注入キヤリアによる利得が大きくなる。また
活性層3の上下にはGaAs膜6よりも禁制帯幅の
大きいAlGaAsクラツド層2,4が設けられてい
るためキヤリアの閉じ込めが良い。このためこの
ような量子井戸型構造を活性層とする半導体レー
ザ装置は従来の単一半導体を活性層とする二重ヘ
テロ接合型半導体レーザ装置に較べて低い発振閾
値電流密度を持ち、例えば、200×380μmの大き
さの多重量子井戸型構造を活性層とした半導体レ
ーザ装置において、250A/cm2という非常に低い
閾値電流密度が報告されている。
In the semiconductor laser device configured as described above,
The electrons and holes injected into the active layer 3 are transferred to the GaAs film 6.
Because it is extremely thin, it has discrete energy.
It exists within the potential well of the GaAs film.
Since the potential is well-shaped as described above, the density of states of electrons in the conduction band is larger than in the conventional structure, and the gain due to the injection carriers is large. Further, since the AlGaAs cladding layers 2 and 4 having a wider forbidden band width than the GaAs film 6 are provided above and below the active layer 3, carrier confinement is good. Therefore, a semiconductor laser device with such a quantum well structure as an active layer has a lower oscillation threshold current density than a conventional double heterojunction semiconductor laser device with a single semiconductor as an active layer. A very low threshold current density of 250 A/cm 2 has been reported in a semiconductor laser device whose active layer is a multi-quantum well structure with a size of 380 μm.

上述のように量子井戸型構造を活性層とした半
導体レーザ装置は大きな利点を持つているが、半
導体レーザ装置を光通信、情報処理、その他実用
に供する場合、発振閾値電流密度が低いことのみ
ならず、発振モードが非常に重要であり、横モー
ド、縦モード共に単一であることが望ましい。活
性層に垂直な方向の垂直横モードは活性層が薄い
ため単一であるが、活性層に平行な方向の水平横
モードは第1図に示すような活性層の構成では横
方向に光の閉じ込めを行つていないため、制限す
ることができず、水平横モードを単一にするため
には活性層の横方向に実効的に屈折率差を設け
て、発振光を高屈折領域に閉じ込める必要があ
る。
As mentioned above, semiconductor laser devices with a quantum well structure as an active layer have great advantages, but when semiconductor laser devices are used in optical communications, information processing, and other practical applications, it is important to have only a low oscillation threshold current density. First, the oscillation mode is very important, and it is desirable that both the transverse mode and the longitudinal mode be single. The vertical transverse mode in the direction perpendicular to the active layer is single because the active layer is thin, but the horizontal transverse mode in the direction parallel to the active layer is caused by the fact that light is transmitted laterally in the active layer configuration shown in Figure 1. Since no confinement is performed, it cannot be restricted, and in order to make the horizontal transverse mode single, an effective refractive index difference is created in the lateral direction of the active layer to confine the oscillated light to a high refraction region. There is a need.

この発明の目的は活性層を量子井戸型構造とし
た特徴を備え、且つ、水平横モードが単一で安定
に発振する半導体レーザ装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor laser device which has the feature that the active layer has a quantum well structure and which stably oscillates in a single horizontal transverse mode.

このため、この発明による半導体レーザ装置は
量子井戸型活性層の発振領域の両側には不純物拡
散領域を構成し、上記発振領域と不純物拡散領域
の間には低不純物濃度領域を介在させるようにす
る。このため発振領域は禁制帯幅の大きい、屈折
率の低い半導体で囲まれたこととなり、水平横モ
ードが単一で安定して発振することとなる。
Therefore, in the semiconductor laser device according to the present invention, impurity diffusion regions are formed on both sides of the oscillation region of the quantum well type active layer, and a low impurity concentration region is interposed between the oscillation region and the impurity diffusion region. . For this reason, the oscillation region is surrounded by a semiconductor with a large forbidden band width and a low refractive index, resulting in stable oscillation with a single horizontal transverse mode.

本発明による半導体レーザ装置の第1の実施例
を第3図により説明すると、活性層13は活性層
よりも禁制帯幅が大きく、屈折率の小さい上部ク
ラツド層14と下部クラツド層12により挟まれ
ており、上部クラツド層の上にはオーミツク電極
を形成するためのGaAs層15が設けられ、下部
クラツド層の下面にはバツフアー層19を介して
GaAsなどの導電性結晶基板1が設けられてい
る。GaAs層15の中央にはストライプ状の電流
注入領域18が設けられている。
The first embodiment of the semiconductor laser device according to the present invention will be explained with reference to FIG. 3. An active layer 13 has a wider forbidden band width than the active layer and is sandwiched between an upper cladding layer 14 and a lower cladding layer 12 having a small refractive index. A GaAs layer 15 for forming an ohmic electrode is provided on the upper cladding layer, and a buffer layer 19 is provided on the lower surface of the lower cladding layer.
A conductive crystal substrate 1 made of GaAs or the like is provided. A striped current injection region 18 is provided in the center of the GaAs layer 15.

活性層13は厚さが20〜100Aの組成の異なる
二種の化合物半導体薄膜16,17を交互に三層
以上積み重ねた量子井戸型構造であつてGaAs、
Ga1xAlxAs、GaAs1-xPx、In1-xGaxAsyP1-y
どの2元系、3元系或るいは4元系の禁制帯幅の
異なる二つの化合物半導体により構成される。
The active layer 13 has a quantum well structure in which three or more layers of two compound semiconductor thin films 16 and 17 with different compositions and a thickness of 20 to 100 A are stacked alternately.
Two binary, ternary, or quaternary systems with different forbidden band widths such as Ga 1x Al x As, GaAs 1- x P x , In 1-x Ga x As y P 1-y , etc. Composed of compound semiconductors.

上述の活性層、上部、下部のクラツド層などは
基板結晶の上に分子線気相成長法、熱分解気相成
長法などにより形成する。
The above-mentioned active layer, upper and lower cladding layers, etc. are formed on a substrate crystal by molecular beam vapor phase epitaxy, pyrolysis vapor phase epitaxy, or the like.

活性層13の中央部分の発振領域20の両側に
は亜鉛、カドミウム、マグネシウム、硫黄、シリ
コン、スズ、セレン、ガリウムなどの閉管法など
の拡散方法により形成した不純物拡散領域21が
あり、更に、発振領域20と不純物拡散領域21
との間には領域21に較べて不純物濃度が低い低
不純物濃度領域22が介在している。この低不純
物濃度領域は例えば不純物拡散領域の押し込み拡
散によつて形成することができる。また領域21
は前記不純物をイオン注入法を用いて結晶中に添
加することによつても形成することができる。
On both sides of the oscillation region 20 in the center of the active layer 13, there are impurity diffusion regions 21 formed by a diffusion method such as a closed tube method of zinc, cadmium, magnesium, sulfur, silicon, tin, selenium, gallium, etc. Region 20 and impurity diffusion region 21
A low impurity concentration region 22 having a lower impurity concentration than the region 21 is interposed between the two regions. This low impurity concentration region can be formed, for example, by forced diffusion of an impurity diffusion region. Also area 21
can also be formed by adding the impurity into the crystal using an ion implantation method.

上述の如き半導体レーザ装置において、活性層
13は多重量子井戸型層から成つているが、不純
物拡散領域21では積層状態が消滅し、二つの半
導体の平均組成となり、屈折率が積層状態の発振
領域20よりも小さくなり、光の横方向の閉じ込
めを行うことになる。一例として、上部クラツド
層14はp型Al0.3Ga0.7As層(厚さ2μm)、下部
クラツド層12はn型Al0.3Ga0.7As層(厚さ
2μm)により構成され、活性層13はGaAs膜1
6(厚さ150Å)とAl0.2Ga0.8As膜17(厚さ100
Å)を交互に積み重ねた0.15μm厚さの多重薄膜
積層とし、発振領域のストライプ幅を約2μm、低
不純物濃度領域の幅を0.5μmとすると、活性層の
不純物拡散領域においては多重超薄膜間の合金化
が生じて、この領域の禁制帯幅はGaAsとAl0.2
Ga0.8Asとの間の値となる。従つて発振領域20
はAlGaAsで囲まれたのと同じことになる。この
場合の発振波長はほぼGaAsの禁制帯間隔である
から、結局発振領域は周囲を禁制帯間隔の大きい
屈折率の低い領域で囲まれたことになる。従つ
て、電流注入領域18を通つて活性層に到達した
キヤリア及び発振光は共に発振領域に閉じ込めら
れ、水平横モードは制御されることとなる。
In the semiconductor laser device as described above, the active layer 13 is composed of a multi-quantum well type layer, but in the impurity diffusion region 21, the stacked state disappears, and the composition becomes the average composition of the two semiconductors, and the refractive index becomes the oscillation region in the stacked state. 20, which results in lateral confinement of the light. As an example, the upper cladding layer 14 is a p-type Al 0.3 Ga 0.7 As layer (thickness: 2 μm), and the lower cladding layer 12 is an n-type Al 0.3 Ga 0.7 As layer (thickness:
2 μm), and the active layer 13 is composed of a GaAs film 1
6 (thickness 150 Å) and Al 0.2 Ga 0.8 As film 17 (thickness 100 Å)
Assuming that the stripe width of the oscillation region is approximately 2 μm and the width of the low impurity concentration region is 0.5 μm, there will be a gap between the multiple ultra-thin films in the impurity diffusion region of the active layer. Alloying of GaAs and Al 0.2 occurs, and the forbidden band width in this region is
The value is between Ga 0.8 As. Therefore, the oscillation region 20
is the same as being surrounded by AlGaAs. Since the oscillation wavelength in this case is approximately the gap between the forbidden bands of GaAs, the oscillation region is eventually surrounded by a region with a low refractive index and a large gap between the forbidden bands. Therefore, both carriers and oscillation light that have reached the active layer through the current injection region 18 are confined in the oscillation region, and the horizontal transverse mode is controlled.

しかし、不純物拡散領域21においては格子欠
陥、転位などによる非輻射中心が多数存在し得る
ために不純物拡散領域21と発振領域20との境
界においては注入キヤリアは非輻射再結合するこ
とになり、発振閾値電流密度は上昇し、微分効率
は減少し、またレーザの動作寿命も短かくなる。
この欠点を除くため、本発明においては発振領域
と不純物拡散領域間に低不純物濃度領域22を設
ける。この低不純物濃度領域においても、多重薄
膜積層は不純物拡散領域と同様に合金化するため
キヤリア及び発振光の閉じ込め効果は存在する
が、この領域は不純物の濃度が低いために転位、
格子欠陥などの非輻射再結合中心の発生が軽減さ
れる。このため発振領域と低不純物拡散領域との
間の境界においてキヤリアは非輻射的に再結合す
ることが少い。従つて発振の閾値電流密度は低
く、また微分効率の高い半導体レーザ装置が得ら
れる。また動作寿命についても通常の半導体レー
ザ装置と同様の長さとなり、高い信頼性が得られ
る。
However, since there may be many non-radiative centers due to lattice defects, dislocations, etc. in the impurity diffusion region 21, the implanted carriers will be non-radiatively recombined at the boundary between the impurity diffusion region 21 and the oscillation region 20, causing oscillation. The threshold current density increases, the differential efficiency decreases, and the operating lifetime of the laser also decreases.
In order to eliminate this drawback, in the present invention, a low impurity concentration region 22 is provided between the oscillation region and the impurity diffusion region. Even in this low impurity concentration region, the multiple thin film stacks are alloyed in the same way as in the impurity diffusion region, so there is a confinement effect for carriers and oscillation light, but because the impurity concentration is low in this region, dislocations and
The occurrence of non-radiative recombination centers such as lattice defects is reduced. Therefore, carriers are less likely to recombine non-radiatively at the boundary between the oscillation region and the low impurity diffusion region. Therefore, a semiconductor laser device with a low oscillation threshold current density and high differential efficiency can be obtained. Furthermore, the operating life is the same as that of a normal semiconductor laser device, and high reliability can be obtained.

上述の如き低不純物濃度領域を発振領域と不純
物拡散領域の間に形成させる方法としては拡散の
先端は不純物濃度が低いので活性層を低濃度にし
ておき、拡散の先端が丁度活性層と下部クラツド
層12との境界に接するように拡散深さを制御す
れば、不純物濃度の低い拡散領域が発振領域との
境界に形成することになる。しかし、活性層が薄
く拡散深さを正確に制御することが困難な場合は
活性層の左右に不純物拡散領域を先ず形成し、次
いで押し込み拡散などによつて発振領域との境界
に低不純物濃度領域を設けるようにする。
The method of forming a low impurity concentration region as described above between the oscillation region and the impurity diffusion region is to keep the active layer at a low concentration since the impurity concentration is low at the diffusion tip, and to form the active layer so that the diffusion tip is just between the active layer and the lower cladding. If the diffusion depth is controlled so as to contact the boundary with the layer 12, a diffusion region with a low impurity concentration will be formed at the boundary with the oscillation region. However, if the active layer is thin and it is difficult to accurately control the diffusion depth, impurity diffusion regions are first formed on the left and right sides of the active layer, and then low impurity concentration regions are formed at the boundary with the oscillation region by forced diffusion etc. should be established.

第4図は本発明による半導体レーザ装置の第2
実施例を示し、層の構造については、第1の実施
例と同じであるが、量子井戸型構成の活性層13
へ不純物を拡散する際に拡散の深さを活性層の途
中で止まるように制御し、拡散の先端が活性層1
3、下部クラツド層12の境界に達するようにし
て、低不純物濃度領域22を発振領域20との境
界だけでなく、発振領域部分を除く活性層と下部
クラツド層の境界にも形成させる。このような構
成にしても、水平横モードが単一で安定に発振さ
せることができ、例えば、下部クラツド層まで不
純物を拡散することが好ましくないような場合は
上述の如き手法用いると良い。
FIG. 4 shows a second example of the semiconductor laser device according to the present invention.
An example is shown in which the layer structure is the same as in the first example, but an active layer 13 with a quantum well type structure is used.
When diffusing impurities into the active layer, the depth of the diffusion is controlled so that it stops midway through the active layer, and the tip of the diffusion reaches the active layer 1.
3. The low impurity concentration region 22 is formed not only at the boundary with the oscillation region 20 but also at the boundary between the active layer and the lower cladding layer excluding the oscillation region so as to reach the boundary of the lower cladding layer 12. Even with such a configuration, stable oscillation can be achieved with a single horizontal transverse mode. For example, when it is not desirable to diffuse impurities to the lower cladding layer, the above-mentioned method may be used.

以上の説明で明らかなように、本発明によれば
活性層を量子井戸型構造とした半導体レーザ装置
において、活性層の発振領域と発振領域の両側の
不純物拡散領域との間に低不純物濃度領域を介在
させることにより、発振閾値電流密度が低いなど
の特徴を備えると共に水平横モードが単一で安定
に発振し、光通信、情報処理などに好適に使用で
きる半導体レーザ装置を実現することになる。
As is clear from the above description, according to the present invention, in a semiconductor laser device in which the active layer has a quantum well structure, a low impurity concentration region is formed between the oscillation region of the active layer and the impurity diffusion regions on both sides of the oscillation region. By interposing this, it is possible to realize a semiconductor laser device that has characteristics such as a low oscillation threshold current density, stably oscillates in a single horizontal transverse mode, and can be suitably used for optical communications, information processing, etc. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の量子井戸型構造を活性層とした
半導体レーザ装置の概略断面図、第2図は第1図
の半導体レーザ装置のエネルギー・バンドを示す
図、第3図は本発明による半導体レーザ装置の第
1の実施例を示す概略断面図、第4図は本発明に
よる半導体レーザ装置の第2の実施例を示す概略
断面図である。 11…基板結晶、12…下部クラツド層、13
…量子井戸型活性層、14…上部クラツド層、2
0…発振領域、21…不純物拡散領域、22…低
不純物濃度領域。
FIG. 1 is a schematic cross-sectional view of a semiconductor laser device with a conventional quantum well structure as an active layer, FIG. 2 is a diagram showing the energy band of the semiconductor laser device of FIG. 1, and FIG. 3 is a semiconductor laser device according to the present invention. FIG. 4 is a schematic sectional view showing a first embodiment of a laser device, and FIG. 4 is a schematic sectional view showing a second embodiment of a semiconductor laser device according to the present invention. 11...Substrate crystal, 12...Lower cladding layer, 13
...Quantum well type active layer, 14...Upper cladding layer, 2
0...Oscillation region, 21...Impurity diffusion region, 22...Low impurity concentration region.

Claims (1)

【特許請求の範囲】[Claims] 1 禁制帯間隔の異なる二種の化合物半導体薄膜
を交互に三層以上積み重ねて構成した量子井戸型
構造の活性層の上下を活性層を構成する化合物半
導体よりも禁制帯間隔の大きい化合物半導体で構
成した半導体レーザ装置において、該活性層の発
振領域の両側には無秩序化領域を構成し、該発振
領域と無秩序化領域との間に低不純物濃度領域を
介在させることを特徴とする半導体レーザ装置。
1 The upper and lower parts of the active layer of a quantum well structure, which is constructed by alternately stacking three or more layers of two types of compound semiconductor thin films with different forbidden band spacings, are made of compound semiconductors with a larger forbidden band spacing than the compound semiconductors constituting the active layer. A semiconductor laser device characterized in that disordered regions are formed on both sides of an oscillation region of the active layer, and a low impurity concentration region is interposed between the oscillation region and the disordered region.
JP7757383A 1983-05-04 1983-05-04 Semiconductor laser device Granted JPS59202677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7757383A JPS59202677A (en) 1983-05-04 1983-05-04 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7757383A JPS59202677A (en) 1983-05-04 1983-05-04 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS59202677A JPS59202677A (en) 1984-11-16
JPH0159753B2 true JPH0159753B2 (en) 1989-12-19

Family

ID=13637742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7757383A Granted JPS59202677A (en) 1983-05-04 1983-05-04 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS59202677A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827483A (en) * 1985-08-12 1989-05-02 Hitachi, Ltd. Semiconductor laser device and method of fabricating the same
JPH01143285A (en) * 1987-11-28 1989-06-05 Mitsubishi Electric Corp Disordering of semiconductor superlattice and semiconductor laser device
US5031185A (en) * 1988-11-17 1991-07-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a disordered superlattice
JPH02196486A (en) * 1989-01-24 1990-08-03 Mitsubishi Electric Corp Manufacture of semiconductor laser

Also Published As

Publication number Publication date
JPS59202677A (en) 1984-11-16

Similar Documents

Publication Publication Date Title
US20080054277A1 (en) Semiconductor laser device
US4932033A (en) Semiconductor laser having a lateral p-n junction utilizing inclined surface and method of manufacturing same
US4727557A (en) Phased array semiconductor lasers fabricated from impurity induced disordering
EP0210616A2 (en) Semiconductor laser
JPH06104533A (en) Blue color light emitting element and fabrication thereof
US4881235A (en) Semiconductor laser having a multiple quantum well structure doped with impurities
US5305341A (en) Semiconductor laser whose active layer has an ordered structure
US7215691B2 (en) Semiconductor laser device and method for fabricating the same
JPH0159753B2 (en)
JP3763459B2 (en) Semiconductor laser device and manufacturing method thereof
JPS61168981A (en) Semiconductor laser device
JPH0462195B2 (en)
JP3763708B2 (en) Manufacturing method of semiconductor laser
JPH10256647A (en) Semiconductor laser element and fabrication thereof
JP2679974B2 (en) Semiconductor laser device
JPH11177176A (en) Semiconductor laser
JP2003086894A (en) Semiconductor laser device and its manufacturing method
JP2893990B2 (en) Semiconductor laser and manufacturing method thereof
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JP2004134786A (en) Semiconductor laser device and manufacturing method therefor
JPH0572118B2 (en)
JPH0467353B2 (en)
JP2000040857A (en) Semiconductor laser element
JP3494461B2 (en) Semiconductor laser
JP3302790B2 (en) Semiconductor light emitting device