JPH0159529B2 - - Google Patents

Info

Publication number
JPH0159529B2
JPH0159529B2 JP17727082A JP17727082A JPH0159529B2 JP H0159529 B2 JPH0159529 B2 JP H0159529B2 JP 17727082 A JP17727082 A JP 17727082A JP 17727082 A JP17727082 A JP 17727082A JP H0159529 B2 JPH0159529 B2 JP H0159529B2
Authority
JP
Japan
Prior art keywords
slit
amount
light
light receiving
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17727082A
Other languages
Japanese (ja)
Other versions
JPS5965737A (en
Inventor
Kazuo Makishima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP17727082A priority Critical patent/JPS5965737A/en
Publication of JPS5965737A publication Critical patent/JPS5965737A/en
Publication of JPH0159529B2 publication Critical patent/JPH0159529B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/12Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving photoelectric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】 本発明は、トルク伝達軸に生じるトルクの大き
さに比例したねじれ角を光電的に位相差信号に変
換して取出すトルク検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a torque detector that photoelectrically converts a torsion angle proportional to the magnitude of torque generated on a torque transmission shaft into a phase difference signal.

産業上の利用分野 トルクは、エンジン、モータ等の原動機の性能
を表わす重要な特性値の一つであり、原動機の検
査、あるいは研究開発における評価試験はもちろ
ん、その原動機と結合されるポンプ等の負荷装置
の性能試験においてトルクの測定は欠かせない。
トルク検出器は、このような試験に広く利用され
るものである。
Industrial Application Fields Torque is one of the important characteristic values that expresses the performance of prime movers such as engines and motors, and is used not only for inspection of prime movers or evaluation tests in research and development, but also for pumps, etc. connected to the prime mover. Torque measurement is essential in testing the performance of load devices.
Torque detectors are widely used for such tests.

従来技術 先ず、公知のものについて簡単に説明する。Conventional technology First, the known ones will be briefly explained.

第1図において、軸方向に間隔を隔てた軸1上
の2点には、環体11,21の基部が固着されて
その各開放端面に一体的に固着された円板12,
22は近接して対向し、その円板12,22の周
辺に穿設された等ピツチで、デユーテイ1:1の
スリツト列を挾んで発光素子30と受光素子40
が対向する状態に配置されている。
In FIG. 1, the bases of ring bodies 11 and 21 are fixed to two points on the shaft 1 spaced apart in the axial direction, and a disk 12 is fixed integrally to each open end surface thereof.
22 are closely facing each other, and the light emitting element 30 and the light receiving element 40 are sandwiched between a row of slits with a duty ratio of 1:1 at equal pitches bored around the periphery of the disks 12 and 22.
are placed facing each other.

以上のものにおいて、いま、軸1がトルクを伝
達し、それにより軸1がねじられ、環体11,2
1の基部間の軸1にねじられ角θが生じると、円
板12と22も一体的に相対角変位θを生じ、し
たがつて、両円板12と22のスリツトの重合面
積も角変位θに比例して変わり、その結果、投光
素子30からその重合面積部分を介して受光素子
40に達する光量が変わり、受光素子40の出力
を変化させることになる。
In the above, the shaft 1 transmits torque, which causes the shaft 1 to be twisted, and the annular bodies 11 and 2 to be twisted.
When the axis 1 between the bases of the disks 1 is twisted and an angle θ occurs, the disks 12 and 22 also produce a relative angular displacement θ, and therefore the overlapping area of the slits of both disks 12 and 22 also undergoes an angular displacement. As a result, the amount of light that reaches the light receiving element 40 from the light projecting element 30 via its overlapping area changes, and the output of the light receiving element 40 changes.

さて、第2図は円板12,22のスリツト1
2′,22′の重合状態と受光素子40の出力との
関係を表わした図である。先ず、円板12を基準
にして円板22が角変位し、その結果、スリツト
12′に対し22′が右方に移動する場合の角変位
θと両スリツト12′,22′の重合面積の関係を
みるのに、いま、完全に非重合の状態(スリツト
12′の左端と22′の右端の位置が一致)から円
板22が右方に回動すると、重合面積はその回動
角変位に比例して増加し、その角変位がスリツト
ピッチ角θpの1/2に達した際、完全に重合する。
続いて、そのθp/2からさらに右方に回動する
と、前記とは逆に、回動角変位に比例して減少
し、θpに達すると、再び元の状態の非重合とな
る。以上のように、スリツトト12′,22′の重
合面積は、角変位θに対して三角波状に変化する
わけである。次に、その重合面積と受光素子40
の出力の関係をみるのに、理想的には両者は等し
い変化となるはずであるが、実際には両円板1
2,22間での光の回折や発光面、受光面が円形
であること等に影響されて前記のように重合面積
が三角波状に変化した場合、受光素子40の出力
はサイン波あるいはサイン波に極めて近似した(ロ)
に示すような変化を生じることになる。
Now, Figure 2 shows the slit 1 of the disks 12 and 22.
FIG. 2 is a diagram showing the relationship between the superposition state of 2' and 22' and the output of the light receiving element 40. First, when the disk 22 is angularly displaced with respect to the disk 12, and as a result, the slit 22' moves to the right with respect to the slit 12', the angular displacement θ and the overlapping area of both the slits 12' and 22' are calculated. To look at the relationship, if the disc 22 rotates to the right from a completely non-polymerized state (the left end of the slit 12' and the right end of the slit 22' are in the same position), the overlapping area will be equal to the angular displacement of the rotation. When the angular displacement reaches 1/2 of the slit pitch angle θp, complete polymerization occurs.
Subsequently, when the rotation angle is further turned to the right from θp/2, contrary to the above, it decreases in proportion to the rotational angular displacement, and when it reaches θp, it returns to its original state of non-polymerization. As described above, the overlapping area of the slits 12' and 22' changes in a triangular wave shape with respect to the angular displacement θ. Next, the overlapping area and the light receiving element 40
In order to look at the relationship between the output of
When the overlapping area changes in a triangular wave shape as described above due to the diffraction of light between 2 and 22, the circular shape of the light emitting surface and the light receiving surface, etc., the output of the light receiving element 40 becomes a sine wave or a sine wave. Very close to (b)
The following changes will occur.

したがつて、この受光素子40の出力V〓を測
定しても、それは角変位θとは比例せず、直接θ
は求められない。
Therefore, even if the output V〓 of this light receiving element 40 is measured, it is not proportional to the angular displacement θ, but is directly proportional to θ.
is not required.

これを改善するものとして、位相差方式のもの
が、すでに特開昭55−164323号「光電式トルク検
出装置」として公知である。これは、前記第1図
の円板12と22の間隙を大にしてその間の軸上
にベアリングを介して円筒体を支承し、その円筒
体の左右端面には、円板12,22とそれぞれ対
向するように別の円板をそれぞれ固着し、左右の
それぞれにおいて、円板対を挾んで発光素子と受
光素子を対向させ、前記円筒体を外部モータと係
合させて常時軸の回転方向と反対方向に回転させ
るようにしたものである。これによれば、軸が静
止していても円板12,22とそれぞれ対向する
別の円板が回転させられているのでそのスリツト
ピツチθp回転ごとに各受光素子にはサイン波の
1周期分が発生し、その二つのサイン波の位相差
αは角変位θに比例することになる。
To improve this, a phase difference method is already known as ``Photoelectric Torque Detector'' in Japanese Patent Laid-Open No. 55-164323. This is done by widening the gap between the disks 12 and 22 shown in FIG. 1 and supporting a cylindrical body via a bearing on the shaft between them. Another disk is fixed so as to face each other, and the light emitting element and the light receiving element are made to face each other by sandwiching the pair of disks on the left and right sides, and the cylindrical body is engaged with an external motor so that the rotation direction of the shaft is constantly adjusted. It is designed to rotate in the opposite direction. According to this, even if the shafts are stationary, the disks 12 and 22 and the other disks facing each other are rotated, so that each light receiving element receives one period of the sine wave for each rotation of the slit pitch θp. The phase difference α between the two sine waves is proportional to the angular displacement θ.

しかし、このものは、全体に大形化してしまう
ことが避けられず、また、構造も複雑化し、組立
に多大の手数を要すると共に、それだけ各構成部
品にも厳しい加工精度が要求される問題点があ
る。また、このものにおいては、軸回転数が低く
なればなるほど検出間隙が長くなり、広い軸回転
数範囲にわたつて一様の応答特性でトルクを求め
られない問題点が残る。
However, this product inevitably becomes large in size, has a complicated structure, requires a lot of effort to assemble, and has the problem of requiring strict machining accuracy for each component. There is. Furthermore, in this case, the lower the shaft rotation speed, the longer the detection gap becomes, and there remains the problem that torque cannot be determined with uniform response characteristics over a wide range of shaft rotation speeds.

発明が解決しようとする問題点 本発明は、上記した従来技術の欠点を除き、部
品数が少なく、しかも小形でありながら、静止状
態を含む広い軸回転数範囲にわたつて高い応答特
性をもつトルク検出器を提供しようとするもので
ある。
Problems to be Solved by the Invention The present invention eliminates the above-mentioned drawbacks of the prior art and provides a torque control system that has a small number of parts, is small in size, and has high response characteristics over a wide range of shaft rotation speeds, including a stationary state. The aim is to provide a detector.

問題点を解決するための手段 そこで、本発明は、位相変調検出方式の検出原
理をねじれ角の検出に利用したものであり、軸方
向の間隔を隔てた2点にそれぞれの基部を固着し
た2枚の円板を近接して対向させ、一方の円板の
周辺上には等ピツチに第1のスリツト列を形成
し、他方の円板の半径の異なる周辺上には第1の
スリツト列と同一ピツチで、互に配列位置が1/4
ピツチずつずれた第2、第3、第4、第5のスリ
ツト列をそれぞれ穿設し、その第1と第2、第1
と第3、第1と第4、第1と第5の各スリツト列
の対を各別に挾んで一方に第1、第2、第3、第
4の発光素子を、他方に第1、第2、第3、第4
の受光素子を配置して対向させ、その第1〜第4
の発光素子は、点灯制御部により互に90度ずつの
位相差をもつサイン波状出力で各別に点灯制御さ
せ、第1〜第4の受光素子出力の合成出力の位相
変化を測定するようにしたものである。
Means for Solving the Problems Therefore, the present invention utilizes the detection principle of the phase modulation detection method for detecting torsion angles, and uses two sensors whose bases are fixed at two points spaced apart in the axial direction. Two disks are placed close to each other and face each other, and a first row of slits is formed at equal pitches on the periphery of one disk, and a first row of slits is formed on the periphery of the other disk with different radii. Same pitch, 1/4 of each other
Second, third, fourth, and fifth slit rows that are shifted by pitch are respectively bored, and the first, second, and first slit rows are
and the third, first and fourth, and first and fifth slit rows, and the first, second, third, and fourth light emitting elements are placed on one side, and the first and second light emitting elements are placed on the other side. 2nd, 3rd, 4th
The first to fourth light receiving elements are arranged and facing each other.
The light-emitting elements were individually controlled by the lighting control unit to produce sine wave outputs with a phase difference of 90 degrees from each other, and the phase change of the combined output of the first to fourth light-receiving element outputs was measured. It is something.

実施例 以下、本発明の実施例につき図面に基づいて詳
細に説明する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

機構部を示す第3図において、前記第1図と同
番号を付した軸1、取付環体11,21は第1図
と同様のものであり、その対向する環体11,2
1の開放端面には円板13,23がそれぞれ固着
されている。その円板13には第4図に示すよう
に等ピツチにデユーテイ1:1の第1のスリツト
列14が形成され、それと対向する他方の円板2
3の周辺には第5図に示すように第1のスリツト
列14と同じピツチを有し、各々は配列位置が互
に1/4ピツチずつずれた第2〜第5の4個のスリ
ツト列15〜18が外周から内周方向に順次形成
されている。そして、その第1のスリツト列14
と各第2、第3、第4、第5のスリツト列15〜
18をそれぞれ挾んで対向する状態に第1の発光
素子31と受光素子41の対、第2の発光素子3
2と受光素子42の対、第3の発光素子33と受
光素子43の対および第4の発光素子34と受光
素子44の対が配設されている。
In FIG. 3 showing the mechanism, the shaft 1 and mounting rings 11 and 21, which are given the same numbers as in FIG. 1, are the same as those in FIG.
Discs 13 and 23 are fixed to the open end surface of 1, respectively. As shown in FIG. 4, first slit rows 14 with a duty ratio of 1:1 are formed at equal pitches on the disk 13, and the other disk 2 facing the first slit rows 14 has a duty ratio of 1:1.
As shown in FIG. 5, around 3, there are four slit rows, second to fifth, which have the same pitch as the first slit row 14, but whose arrangement positions are shifted by 1/4 pitch from each other. 15 to 18 are sequentially formed from the outer circumference to the inner circumference. Then, the first slit row 14
and each of the second, third, fourth, and fifth slit rows 15-
A pair of the first light emitting element 31 and the light receiving element 41, and a second light emitting element 3 are placed facing each other with the light emitting element 18 in between.
A pair of light emitting element 2 and light receiving element 42, a pair of third light emitting element 33 and light receiving element 43, and a pair of fourth light emitting element 34 and light receiving element 44 are arranged.

第6図は、その第1〜第4の発光素子31〜3
4の発光量を制御する点灯制御部50の実施例で
あり、発振器51の各90度位相のずれたsinωtと
cosωtの出力端子はそれぞれ前記第1、第2の発
光素子54,55の入力端子と結線されると共
に、インバータ52,53の各入力端子とそれぞ
れ結線されている。そして、インバータ52,5
3の出力端子は、前記受光素子33,34の駆動
回路56,57の入力端子とそれぞれ結線されて
いる。
FIG. 6 shows the first to fourth light emitting elements 31 to 3.
This is an embodiment of the lighting control unit 50 that controls the amount of light emitted by the oscillator 51, and the sinωt and
The output terminals of cosωt are connected to the input terminals of the first and second light emitting elements 54 and 55, respectively, and to the input terminals of the inverters 52 and 53, respectively. And inverter 52,5
The output terminals of No. 3 are connected to input terminals of drive circuits 56 and 57 for the light receiving elements 33 and 34, respectively.

以上のものにおいて、いま、発振器51により
トルクを求めようとする時間間隔Tに基づいて予
め定めた角速度ω(=2π/T)のサイン波および
コサイン波を発振させて駆動回路54,55に入
力させると同時に、インバータ52,53により
それを反転させて駆動回路56,57に入力させ
ると、その各駆動回路54〜57により各発光素
子31〜34は、それぞれサイン波、コサイン
波、反転サイン波、反転コサイン波状に発光量が
制御される。ただし、この場合負の発光量はあり
得ないから、ある正の発光量の範囲、例えば、0
〜2Aの間で周期的変化を生じさせることになり、
それぞれ第1〜第4の発光素子31〜34の発光
量は、A(sinωt+1)、A(cosωt+1)、A(−
sinωt+1)、A(−cosωt+1)となる。そして、
この各光量は、それぞれが対向する第1のスリツ
ト列14と各第2、第3、第4、第5のスリツト
列15〜18の重合部を透過して各対応する受光
素子41〜44に達し、そこで電気信号に変換さ
れることになる。したがつて、受光素子41〜4
4に発生する電気信号もまたそれぞれ角速度ωの
サイン波、コサイン波、反転サイン波、反転コサ
イン波であり、その波高が光の透過面積、すなわ
ち、各対向するスリツトの重合面積の大きさに応
じて変わることになる。
In the above, the oscillator 51 oscillates a sine wave and a cosine wave with a predetermined angular velocity ω (=2π/T) based on the time interval T for which the torque is to be determined, and inputs the sine waves and cosine waves to the drive circuits 54 and 55. At the same time, when the inverters 52 and 53 invert the signal and input it to the drive circuits 56 and 57, the respective drive circuits 54 to 57 cause the light emitting elements 31 to 34 to generate a sine wave, a cosine wave, and an inverted sine wave, respectively. , the amount of light emission is controlled in the form of an inverted cosine wave. However, in this case, there is no negative luminescence amount, so it is within a certain positive luminescence amount range, for example, 0.
This will cause periodic changes between ~2A,
The amount of light emitted by the first to fourth light emitting elements 31 to 34 is A(sinωt+1), A(cosωt+1), and A(−
sinωt+1) and A(-cosωt+1). and,
The amount of each light passes through the overlapping portions of the first slit row 14 and the second, third, fourth, and fifth slit rows 15 to 18 facing each other, and reaches the corresponding light receiving elements 41 to 44. where it is converted into an electrical signal. Therefore, the light receiving elements 41 to 4
The electrical signals generated in 4 are also a sine wave, a cosine wave, an inverted sine wave, and an inverted cosine wave with an angular velocity of ω, and their wave heights depend on the light transmission area, that is, the size of the overlapping area of each opposing slit. This will change.

さて、すでに前記第2図にて説明したように、
二つのスリツト列の重合面積は、角変位θが0か
らスリツトピツチθpまで変化する間に三角波状
に変化するが、その重合面積とそこを透過する光
量の関係はサイン波状に変化する。したがつて、
受光素子41〜44の出力は、それぞれ角速度ω
で周期的に変化しながらその高さも角変位θに応
じてサイン波状、コサイン波状、反転サイン波
状、反転コサイン波状に変化することになる。す
なわち、前記した各発光素子31〜34の発光量
は、対向する二つのスリツト列が完全に非重合の
場合、受光素子41〜44には達しないものとし
てそのときの受光素子41〜44の出力を0、完
全に重合したときの出力を0とおき、また、スリ
ツトトピツチ角θpを2πとする角変位θに対応し
た電気角をα(=2πθ/θp)とおくと、受光素子
41〜44の出力e1〜e4は次のように表される。
Now, as already explained in Figure 2 above,
The overlapping area of the two slit rows changes like a triangular wave while the angular displacement θ changes from 0 to the slit pitch θp, but the relationship between the overlapping area and the amount of light transmitted through it changes like a sine wave. Therefore,
The outputs of the light receiving elements 41 to 44 each have an angular velocity ω
While changing periodically, the height also changes in the form of a sine wave, a cosine wave, an inverted sine wave, and an inverted cosine wave depending on the angular displacement θ. That is, the amount of light emitted from each of the light emitting elements 31 to 34 described above does not reach the light receiving elements 41 to 44 when the two opposing slit rows are completely non-polymerized, and the output of the light receiving elements 41 to 44 at that time is assumed to be Letting 0, the output when completely polymerized is 0, and let α (=2πθ/θp) be the electrical angle corresponding to the angular displacement θ when the slit pitch angle θp is 2π, then the light receiving elements 41 to 44 The outputs e 1 to e 4 are expressed as follows.

e1=(B/2)(sinα+1)(sinωt+1) e2=(B/2)(cosα+1)(cosωt+1) e3=(B/2)(−sinα+1)(−sinωt+1) e4=(B/2)(−cosα+1)(−cosωt+1) 結局、この出力e1〜e4は角速度ωで、互に位相
が90度ずつずれた搬送波を、各々が90度の位相ず
れをもち、角変位θに対応する電気角αによつて
正弦波状に振幅変調させたものとなる。
e 1 = (B/2) (sinα+1) (sinωt+1) e 2 = (B/2) (cosα+1) (cosωt+1) e 3 = (B/2) (-sinα+1) (-sinωt+1) e 4 = (B/ 2) (-cosα+1) (-cosωt+1) In the end, these outputs e 1 to e 4 have an angular velocity of ω, and are carrier waves whose phases are shifted by 90 degrees from each other, each having a phase shift of 90 degrees and an angular displacement of θ. The amplitude is modulated sinusoidally by the corresponding electrical angle α.

以下、これら各出力e1〜e4は加算器60によつて
加算合成されることになり、その出力eは次のよ
うになる。
Hereinafter, each of these outputs e 1 to e 4 will be added and combined by the adder 60, and the output e will be as follows.

e=B〔cos(ωt−α)+2〕 しかして、この合成出力eは、角速度ωのサイ
ン波出力であり、その位相αが角変位θに対応し
て変化することになる。したがつて、この合成出
力eの位相αを前記発振器51の出力、あるいは
その反転出力のいずれかを基準に測定することに
より、所定の周期T(=2π/ω)ごとに角変位
θ、すなわち、それに比例するトルクが求められ
ることになる。
e=B [cos(ωt-α)+2] Therefore, this composite output e is a sine wave output of the angular velocity ω, and its phase α changes in accordance with the angular displacement θ. Therefore, by measuring the phase α of this composite output e with reference to either the output of the oscillator 51 or its inverted output, the angular displacement θ, i.e., is determined every predetermined period T (=2π/ω) , a torque proportional to that is required.

なお、上記実施例においては、受光素子41〜
44の出力をそのまま加算する場合につき例示し
たが、フイルタを介して直流成分を除去した上で
加算させても同様であり、さらに受光素子41〜
44を共通の受光素子に置き換えて合成機能も併
せ持つようにしてもよい。
Note that in the above embodiment, the light receiving elements 41 to
Although the case where the outputs of the light receiving elements 41 to 44 are added as they are is illustrated, the same effect can be obtained by removing the DC component through a filter and then adding them.
44 may be replaced with a common light receiving element to also have a combining function.

効 果 以上のとおりであり、本発明は、ねじれ角θに
応じて相対的に角変位させられる円板により互に
90度ずつの位相ずれをもつ4個のスリツト列対の
群にスリツトの重合変化を生じさせると共に、そ
の各重合部に投光する光量も互に90度ずつ位相の
ずれたサイン波状に変化させ、さらにそこを透過
した光量の合成出力を取り出すことにより、ねじ
れ角を合成出力の位相変化に変換しているので、
ねじれ角に比例するトルクは、合成出力の一定の
周期ごとに取り出すことができ、軸の静止中から
高速まで広い軸回転数にわたつて高い応答性をも
つてトルクが求められる。
Effects As described above, the present invention enables mutual angular displacement by disks that are relatively angularly displaced according to the torsion angle θ.
A change in the overlapping of the slits is caused in a group of four pairs of slit rows with a phase shift of 90 degrees, and the amount of light emitted to each overlapping portion is also changed in the form of a sine wave with a phase shift of 90 degrees. , and by extracting the combined output of the amount of light transmitted through it, the twist angle is converted into a phase change of the combined output.
Torque, which is proportional to the torsion angle, can be extracted at every fixed period of the composite output, and the torque can be obtained with high responsiveness over a wide range of shaft rotational speeds, from when the shaft is stationary to high speeds.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は公知のものの検出部を示す正面図、第
2図はその動作説明図、第3図は本発明の検出機
構部の実施例を示す正面図、第4,5図は円板の
実施例を示す側面図、第6図は本発明の点灯制御
部の実施例を示すブロツク線図である。13,2
3:円板、14〜18:スリツト例、31〜3
4:発光素子、41〜44:受光素子、50:点
灯制御部。
Fig. 1 is a front view showing a known detection unit, Fig. 2 is an explanatory diagram of its operation, Fig. 3 is a front view showing an embodiment of the detection mechanism of the present invention, and Figs. FIG. 6 is a side view showing an embodiment, and FIG. 6 is a block diagram showing an embodiment of the lighting control section of the present invention. 13,2
3: Disc, 14-18: Slit example, 31-3
4: light emitting element, 41 to 44: light receiving element, 50: lighting control section.

Claims (1)

【特許請求の範囲】[Claims] 1 軸方向の間隔を隔てた2点にそれぞれの基部
を固着した2枚の円板を近接して対向させ、一方
の円板の周辺上には等ピツチに第1のスリツト列
を穿設し、他方の円板の半径の異なる周辺上には
第1のスリツト列と同一ピツチで、互に配列位置
が1/4ピツチずつずれた第2、第3、第4、第5
のスリツト列をそれぞれ穿設し、その第1と第
2、第1と第3、第1と第4、第1と第5の各ス
リツト列の対の一方側にはそれぞれ第1、第2、
第3、第4の発光素子を配設してその発光量を互
に90度ずつの位相ずれをもつサイン波状に各別に
点灯制御部により制御させ、その各透過光量の合
成光量に対応した出力の位相の変化量を取り出す
ところのトルク検出装置。
1. Two disks whose bases are fixed at two points spaced apart in the axial direction are placed close to each other, and a first row of slits are bored at equal pitches on the periphery of one disk. , second, third, fourth, and fifth slit rows are arranged on the periphery of the other disk having different radii, at the same pitch as the first slit row, but whose arrangement positions are shifted by 1/4 pitch from each other.
The first and second slit rows are drilled on one side of each pair of the first and second, first and third, first and fourth, and first and fifth slit rows. ,
The third and fourth light emitting elements are arranged and the amount of light emitted is controlled by the lighting control unit separately in the form of a sine wave with a phase shift of 90 degrees from each other, and an output corresponding to the combined light amount of the amount of transmitted light of each. Torque detection device that extracts the amount of change in phase.
JP17727082A 1982-10-08 1982-10-08 Torque detector Granted JPS5965737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17727082A JPS5965737A (en) 1982-10-08 1982-10-08 Torque detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17727082A JPS5965737A (en) 1982-10-08 1982-10-08 Torque detector

Publications (2)

Publication Number Publication Date
JPS5965737A JPS5965737A (en) 1984-04-14
JPH0159529B2 true JPH0159529B2 (en) 1989-12-18

Family

ID=16028114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17727082A Granted JPS5965737A (en) 1982-10-08 1982-10-08 Torque detector

Country Status (1)

Country Link
JP (1) JPS5965737A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2564586A1 (en) * 1984-05-18 1985-11-22 Honda Motor Co Ltd OPTICAL TORQUE DETECTION APPARATUS
JPH0584841U (en) * 1991-06-27 1993-11-16 株式会社ハーモニック・ドライブ・システムズ Optical torque detector

Also Published As

Publication number Publication date
JPS5965737A (en) 1984-04-14

Similar Documents

Publication Publication Date Title
US3096444A (en) Electromechanical transducing system
US3193744A (en) Optical synchro system
JP2982638B2 (en) Displacement detector
EP1166069A1 (en) Torque and speed sensor
EP0263888B1 (en) Optical rotary encoder
CA1306618C (en) Torquemeter
Godler et al. A novel rotary acceleration sensor
JPH0159529B2 (en)
US5537874A (en) Angular acceleration detector
JPH01302130A (en) Torque detector and torque measuring apparatus
JPH0159530B2 (en)
US4008600A (en) Torsional vibration damper measuring
JPH0450771A (en) Speed detector
JP3399586B2 (en) Integrated angle and angular acceleration detector
JPS63118614A (en) Multirotation detector for multirotational absolute encoder
JP7100677B2 (en) Test system
US3851525A (en) Thrust-meter utilizing a phase measurement system for thurst measurement
JPH10332732A (en) Angular acceleration detecting device with built-in resolver
JP2002303507A (en) Steering angle sensor
JPS6145972A (en) Optical speedometer
JPH10153613A (en) Angular velocity sensor
JPS5852566A (en) Frequency modulation system angular velocity and angular displacement detector
JPS6013449A (en) Servo motor
JP3157949B2 (en) Optical rotation torque detector
JPS61111433A (en) Measuring instrument of torque