JPH0159325B2 - - Google Patents

Info

Publication number
JPH0159325B2
JPH0159325B2 JP31389486A JP31389486A JPH0159325B2 JP H0159325 B2 JPH0159325 B2 JP H0159325B2 JP 31389486 A JP31389486 A JP 31389486A JP 31389486 A JP31389486 A JP 31389486A JP H0159325 B2 JPH0159325 B2 JP H0159325B2
Authority
JP
Japan
Prior art keywords
pulverized coal
blast furnace
branch pipes
pressure
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP31389486A
Other languages
Japanese (ja)
Other versions
JPS63166910A (en
Inventor
Yoshimi Kamitsuma
Mitsuo Ueda
Masayuki Fukui
Kenichiro Takada
Osamu Tako
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IBIDEN ENJINIARINGU KK
NAKAYAMA SEIKOSHO KK
Original Assignee
IBIDEN ENJINIARINGU KK
NAKAYAMA SEIKOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IBIDEN ENJINIARINGU KK, NAKAYAMA SEIKOSHO KK filed Critical IBIDEN ENJINIARINGU KK
Priority to JP31389486A priority Critical patent/JPS63166910A/en
Publication of JPS63166910A publication Critical patent/JPS63166910A/en
Publication of JPH0159325B2 publication Critical patent/JPH0159325B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は微粉炭を製鉄用高炉などの溶鉱炉に吹
込む吹込み方法およびその装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for blowing pulverized coal into a blast furnace such as a blast furnace for iron-making.

(従来の技術) 溶鉱炉技術の発展に伴い、溶鉱炉への吹込み燃
料として重油等の液体燃料が用いられてきたが、
重油の価格が急騰した時期から液体燃料に代つて
石炭を微粉化した微粉炭等の固体燃料が用いられ
るようになり、これと共に粉体の吹込み技術も発
達してきた。
(Prior art) With the development of blast furnace technology, liquid fuels such as heavy oil have been used as fuel for injection into blast furnaces.
From the time when the price of heavy oil soared, solid fuels such as pulverized coal, which is made by pulverizing coal, began to be used in place of liquid fuels, and along with this, powder injection technology also developed.

燃料として使用される微粉炭の性状は、粒径
250μ以下がほとんどであるが、この中には63μ以
下の微粉が40%以上も含まれるものが多く、水分
も1.5%を越えるものがある。
The properties of pulverized coal used as fuel are determined by its particle size.
Most of the particles are less than 250μ, but many of them contain 40% or more of fine powder of 63μ or less, and some have a water content of more than 1.5%.

更に微粉炭はひとたび気体を含むと液体のよう
に流動してフラツシングを起す反面、静置してお
くと圧密されてブリツジを起す性質もあり、気体
にて管内圧送すると、管壁に付着し、管内閉塞を
誘発するという管内輸送上面倒な性質をもつてい
る。
Furthermore, once pulverized coal contains gas, it flows like a liquid and causes flashing, but if it is left to stand still, it becomes compacted and causes bridging. It has the property of causing intraductal occlusion, which is troublesome for intraductal transportation.

従つて、微粉炭を気送して高炉に吹込むための
吹込み機としてはブロータンクと呼ばれる圧力容
器に微粉炭を貯え、これに気体を吹き込んで流動
化させ、ブロータンク内の圧力を適当に調整する
ことによつて吹込み量を制御する方法が用いられ
てきた。
Therefore, a blowing machine for blowing pulverized coal into a blast furnace stores the pulverized coal in a pressure vessel called a blow tank, fluidizes it by blowing gas into it, and adjusts the pressure inside the blow tank appropriately. A method has been used in which the amount of injection is controlled by

従来から使用されている微粉炭の高炉への吹込
み装置の一連の関係は、第6図に示す通りであ
る。
The series of relationships in a conventionally used device for blowing pulverized coal into a blast furnace is shown in FIG.

図中のX,Y,Zは前記のブロータンク型吹込
み機で、例えばXにより微粉炭を輸送していると
き、Yは既に微粉炭が貯蔵されて待機の状態にあ
り、Zは貯蔵バンカー21から微粉炭を受入れ中
の状態にある。従つて連続に吹込むためには、
X,Y,Zと順次切り換えて使用することにな
る。
In the figure, X, Y, and Z are the aforementioned blow tank type blowing machines. For example, when X is transporting pulverized coal, Y is already stored with pulverized coal and is on standby, and Z is a storage bunker. Currently receiving pulverized coal from 21. Therefore, in order to blow continuously,
It is used by switching sequentially to X, Y, and Z.

これらのブロータンクX,Y,Zから順次供出
される微粉炭は、一旦高炉の炉頂近くまで導管2
2にて圧送され、こゝに多岐分配器23が配設さ
れる。
The pulverized coal delivered sequentially from these blow tanks
2, and a multi-manifold distributor 23 is disposed there.

多岐分配器23からは一般に、羽口の数だけ分
岐管24,24……が繰出され、分岐後細い径と
なつた配管は、夫々の羽口25,25……まで下
向きに、しかも各管内圧損が等しくなるよう種々
の制約のもとで連結される。
In general, branch pipes 24, 24, . They are connected under various constraints so that the pressure loss is equal.

その理由は分配器23にて分配される微粉炭の
分配量が圧力ガス源26より送入される搬送ガス
の圧力、流量によつて制御されるものであるか
ら、多岐分配器23の管内圧損が不均一である
と、羽口での吹込微粉炭量に偏りが生ずることに
なり、この偏つた流れが一度発生するとガスと微
粉炭の混合流は、抵抗の少ない管への偏りが増加
されていく。
The reason for this is that the amount of pulverized coal distributed by the distributor 23 is controlled by the pressure and flow rate of the carrier gas sent from the pressure gas source 26, so the pressure drop inside the pipe of the multi-purpose distributor 23 is reduced. If the flow is uneven, the amount of pulverized coal injected at the tuyere will be uneven, and once this uneven flow occurs, the mixed flow of gas and pulverized coal will be biased toward the pipe with less resistance. To go.

この偏りを生じさせないために考案された分配
器の一例として「実公昭41−021135号」及び「特
開昭52−64780号」等があり、第7図、第8図及
び第9図はこれ等の構造を示している。
Examples of distributors devised to prevent this bias are ``Utility Model Publication No. 41-021135'' and ``Japanese Unexamined Patent Publication No. 52-64780,'' which are shown in Figures 7, 8, and 9. It shows the structure of

(発明が解決しようとする問題点) しかし導管内における偏流発生の原因は、分配
装置の良否にのみ起因するものではなく、多くの
要因を秘めているが、最も対処困難な原因は、高
炉内の炉況に起因するものと微粉炭そのものゝ管
内付着に起因するものである。
(Problem to be solved by the invention) However, the cause of uneven flow in the conduit is not only due to the quality of the distribution device, but there are many hidden factors, but the cause that is most difficult to deal with is the inside of the blast furnace. One is caused by the furnace conditions, and the other is caused by the pulverized coal itself adhering to the inside of the pipe.

そして、これ等の原因による偏流は、やがて導
管22及び分岐管24,24……の管内閉塞にま
で発達しその内の何本かは微粉炭の輸送を不可能
にする。
The drift caused by these causes eventually develops to the point of clogging the conduit 22 and the branch pipes 24, 24, etc., making it impossible for some of them to transport the pulverized coal.

上述した配管は、第10図に示したようにブロ
ータンクよりの配送元管28に1個の二又の第1
次分配器27を設け、分配器23,23……を介
してこゝから複数の分岐管24,24……で高炉
羽口へ分配する方法や、更には図示していないが
分配器を用いることなく、前述のブロータンク本
体から直接例えば20本の分岐管を出して高炉の羽
口へ接続する方法もある。この後者の場合は、既
に述べた通り、ブロータンク内で流動化した微粉
炭を、タンク内の圧力を変えることによつて、
夫々の圧力に見合つた量として圧送するものであ
るから、逆に輸送元管28の背圧が変化すると、
搬送ガス量が増減してしまい、これと比例的に微
粉炭量も変動することになり、このことは前述の
分配器の場合と同じである。
As shown in FIG.
There is a method in which a secondary distributor 27 is provided and the water is distributed from there to the blast furnace tuyere via a plurality of branch pipes 24, 24, . . . through the distributors 23, 23, . Alternatively, there is also a method in which, for example, 20 branch pipes are taken out directly from the aforementioned blow tank body and connected to the tuyeres of the blast furnace. In the latter case, as already mentioned, the pulverized coal fluidized in the blow tank is
Since the amount is pumped according to the respective pressure, conversely, if the back pressure of the transport source pipe 28 changes,
The amount of carrier gas increases or decreases, and the amount of pulverized coal also changes in proportion to this, and this is the same as in the case of the distributor described above.

そして又我が国で使用されている高炉は、直径
7m位から15m位にも及び、この円周上にほゞ均
等に分設されている羽口の数は16本乃至40本にま
でおよんでいるのでこれ等に均等量の微粉炭を常
時送り続けることは容易ではなく、従つて上述の
装置を用いて高炉内の全域にわたつて均衡を保つ
た燃焼を維持させることは困難とされている。
Furthermore, the blast furnaces used in Japan range in diameter from about 7 m to 15 m, and the number of tuyeres distributed evenly around the circumference ranges from 16 to 40. Therefore, it is not easy to constantly feed an equal amount of pulverized coal to these devices, and it is therefore difficult to maintain balanced combustion throughout the blast furnace using the above-mentioned device.

更に分岐後の分岐管24,24……の幾本か
に、微粉炭による管内閉塞などにより不具合が発
生した場合、この不具合の分岐管が相互に隣接し
た羽口への導管であつた場合には、隣接する羽口
での燃焼が不能となり高炉にとつては、偏つた部
分で熱的な不均衡を生じ、安定した操業が出来な
くなる。
Furthermore, if a problem occurs in some of the branch pipes 24, 24... after branching due to blockage in the pipes due to pulverized coal, etc., and if the faulty branch pipes are conduits to mutually adjacent tuyeres, This makes it impossible for combustion to occur in adjacent tuyeres, causing a thermal imbalance in uneven parts of the blast furnace, making stable operation impossible.

又従来使用されているブロータンク型吹込み機
は供給する微粉炭量をタンク内のガス圧力を変化
させることによつて増減させる方法であるから導
管22及び分岐管24,24……の圧損変化があ
つたときは、タンクX,Y,Z内の圧力にも変動
が伝達されるので、微粉炭の供給量にも変動をき
たすことになり、供給の起点となるタンクX,
Y,Zの微粉炭供給量に変化を起すことゝなつて
好ましくない等の問題点がある。
In addition, since the conventionally used blow tank type blower increases or decreases the amount of pulverized coal supplied by changing the gas pressure in the tank, pressure drop changes in the conduit 22 and branch pipes 24, 24, etc. When there is a change in the pressure in tanks
There are problems such as changes in the amount of pulverized coal supplied to Y and Z, which is undesirable.

(問題点を解決するための手段) 本発明は前記のように吹込み装置上には避け難
い問題点を含んでいても高炉内での熱的の安定を
維持することを容易とする燃料吹込み方法と、そ
れを実施し得る装置とを提供するもので、微粉炭
を貯蔵圧力容器より高炉内に圧力気体により圧送
して供給する方法において、 前記貯蔵圧力容器内の微粉炭を容積計量型の
フイーダーで切出し、これを圧力気体で気送し
供給するに当り該フイーダーに列設した複数の
排出口の夫々に連設した導管の一端に分配器を
設け、各分配器より分岐した一対の分岐管を
夫々、高炉の周縁部に設けた複数の羽口の高炉
中心に対し対峠した位置にある羽口に連結した
分配配管を経て、高炉内に均等に供給すること
を特徴とする微粉炭の吹込み方法と、 前記吹込み方法を達成する微粉炭の貯蔵圧力
容器の下部に可変速モーターにより駆動し、複
数の排出口より夫々等量の微粉炭を排出する容
積計量型のフイーダーを連設し、該排出口の
夫々に導管を連結し、各導管の先端に一対の分
岐管を分岐する分配器を設け、各一対の分岐管
を夫々、高炉の周縁部に設けた複数の羽口の高
炉中心に対し対峠する位置の羽口に連通した吹
込み装置を構成するものである。
(Means for Solving the Problems) The present invention provides a fuel injection system that makes it easy to maintain thermal stability in a blast furnace even though the injection device has unavoidable problems as described above. The present invention provides a method for supplying pulverized coal from a storage pressure vessel into a blast furnace by force-feeding it with pressurized gas, the pulverized coal in the storage pressure vessel being volumetrically metered. A distributor is provided at one end of a conduit connected to each of the plurality of discharge ports arranged in a row in the feeder, and a pair of branches branched from each distributor are used to supply the cut material by pneumatically supplying it with pressurized gas. A fine powder characterized in that branch pipes are uniformly supplied into a blast furnace through distribution piping connected to a plurality of tuyeres provided at the periphery of the blast furnace, each of which is located opposite to the center of the blast furnace. A method for blowing coal; and a volumetric feeder, which is driven by a variable speed motor and discharges an equal amount of pulverized coal from a plurality of outlets, at the bottom of a pulverized coal storage pressure vessel to accomplish the above method. A plurality of blades are arranged in series, a conduit is connected to each of the discharge ports, a distributor is provided at the tip of each conduit to branch a pair of branch pipes, and each pair of branch pipes is connected to a plurality of blades provided at the peripheral edge of the blast furnace. This constitutes a blowing device that communicates with the tuyere located opposite to the center of the blast furnace.

以下、本発明の構成及び作用を第1図乃至第4
図に示す実施例によつて説明する。上部に微粉炭
受入弁1を有する貯蔵圧力容器2〔以下タンク2
という〕の下部に、可変速モーターMにより水平
に回転するローター3の外周上に計量マス4,4
……を連続して配設し、底壁部に設けた適数(高
炉の羽口数の1/2に相当する数で図は羽口数が18
個所の場合を示す)の排出口5a,5b……5i
の上位部に遮蔽板6,6……を有する容積計量型
のフイーダー7を連設し、該遮蔽板6,6……の
上部に、圧力ガス源8よりのガス導入管9を連通
し、タンク2内の微粉炭を輸送して高炉Bの羽口
から吹込むのに必要な圧力ガスを供給可能とする
と共に、ガス導入管9をフイーダー7の外方で分
岐した均圧管10を、タンク2の上位空間部内に
連通する如く接続して、均圧管10より供給する
圧力ガスによるタンク2内にある微粉炭のタンク
上部空間圧力と、ガス導入管9より供給する圧力
ガスによるフイーダー7の排出口5a,5b……
5i部の圧力即ち微粉炭層の上下部圧を常に均圧
にすることにより、若し羽口への吹込み管に圧力
変動が発生したり、タンク2内の圧力が変化して
も高炉Bへの微粉炭の供給量を大気圧下で供給す
るとほゞ同様に定量を維持させるものである。
The structure and operation of the present invention will be explained in FIGS. 1 to 4 below.
This will be explained using the embodiment shown in the figures. Storage pressure vessel 2 (hereinafter referred to as tank 2) having a pulverized coal receiving valve 1 at the top
At the bottom of the rotor 3, there are weighing squares 4, 4 on the outer periphery of a rotor 3 which is rotated horizontally by a variable speed motor M.
...... are arranged in succession, and an appropriate number (corresponding to 1/2 of the number of tuyere of the blast furnace, the number of tuyere is 18 in the figure) is provided on the bottom wall.
5a, 5b...5i
A volumetric feeder 7 having shielding plates 6, 6, . In addition to being able to supply the pressure gas necessary to transport the pulverized coal in the tank 2 and inject it from the tuyere of the blast furnace B, the pressure equalizing pipe 10, which is a branch of the gas introduction pipe 9 outside the feeder 7, is connected to the tank. The upper space pressure of the pulverized coal in the tank 2 is controlled by the pressure gas supplied from the pressure equalization pipe 10, and the discharge of the feeder 7 by the pressure gas supplied from the gas introduction pipe 9. Exits 5a, 5b...
By always equalizing the pressure in section 5i, that is, the pressure at the top and bottom of the pulverized coal bed, even if pressure fluctuations occur in the blowing pipe to the tuyere or the pressure in tank 2 changes, the pressure in the blast furnace B remains constant. When the amount of pulverized coal supplied under atmospheric pressure is maintained at almost the same constant level.

フイーダー7の排出口5a,5b……5iには
夫々導管11a,11b……11iを連接し、該
導管の先端を二又分配器12a,12b……12
iに連通し、各分配器12a,12b……12i
の夫々より1対の分岐管13a,13a′,13
b,13b′……13i,13i′を分岐し、各1対
の分岐管13a,13a′,13b,13b′……1
3i,13i′を高炉Bの周縁部に高炉中心に対し
対峠して設けた羽口14a,14a′,14b,1
4b′……14i,14i′に連結する本発明の装置
Aを構成し、本装置Aのタンク2の微粉炭受入弁
1より該タンク2内に供給した微粉炭を圧力ガス
源8より注入した圧力ガスによりフイーダー7内
で定量に分配した微粉炭を排出口5a,5b……
5iを通して導管11a,11b……11i内に
均等に送り出し、分配器12a,12b……12
iを経て分岐管13a,13a′,13b,13
b′……13i,13i′により高炉B内に均等でか
つ偏在することなく供給するものである。
Conduits 11a, 11b...11i are connected to the discharge ports 5a, 5b...5i of the feeder 7, respectively, and the tips of the conduits are connected to bifurcated distributors 12a, 12b...12.
i, and each distributor 12a, 12b...12i
A pair of branch pipes 13a, 13a', 13 from each of
b, 13b'...13i, 13i' are branched, and each pair of branch pipes 13a, 13a', 13b, 13b'...1
Tuyeres 14a, 14a', 14b, 1 are provided at the periphery of the blast furnace B with the tuyeres 3i, 13i' facing away from the center of the blast furnace.
4b'...14i, 14i' constitutes the apparatus A of the present invention connected to the tank 2 of the apparatus A, and the pulverized coal supplied into the tank 2 from the pulverized coal receiving valve 1 is injected from the pressure gas source 8. The pulverized coal distributed in fixed quantities in the feeder 7 by pressure gas is discharged from the discharge ports 5a, 5b...
5i into conduits 11a, 11b...11i, and distributers 12a, 12b...12
Branch pipes 13a, 13a', 13b, 13 via i
b' . . . 13i, 13i' supplies the blast furnace B uniformly and without being unevenly distributed.

更に本発明の作用を前記実施例により詳述する
と、このように9個の分配器12a,12b……
12iを用い各分配器にて2分岐して2倍増させ
た分岐管13a,13a′,13b,13b′……1
3i,13i′を高炉Bの羽口へ接続する場合最も
簡単な方法は、第5図の通りであるが、何等かの
原因により相隣る導管11a,11bに不具合が
生じ、微粉炭の供給が停止したと仮定した場合、
第5図に示すような配管の接続では図中の×印の
相隣る羽口14e,14f,14g,14hの4
本が不燃となり炉心に対して約80゜の扇形ゾーン
は加熱出来なくなり、不燃帯が広範囲に偏在する
から、そのゾーンの巾が大きくなり、両端に隣接
する羽口からの補いも、ゾーン中央部に及ぼすこ
の部分は炉内での局部冷却域となる。ところが第
1図および第4図に示す配管の場合は導管11
a,11bが閉塞し図中の△印の2本づつの分岐
管13a,13a′,13b,13b′を接続した羽
口14a,14a′,14b,14b′部、即ち対称
の位置にある約40゜の扇形ゾーンで不燃となる。
Further, the operation of the present invention will be explained in detail with reference to the above-mentioned embodiment.
Branch pipes 13a, 13a', 13b, 13b'...1 which are doubled by branching into two at each distributor using 12i
3i and 13i' to the tuyere of blast furnace B is the simplest method as shown in Figure 5, but due to some reason a problem occurs in the adjacent conduits 11a and 11b, and the supply of pulverized coal is interrupted. Assuming that has stopped,
When connecting the piping as shown in Fig. 5, the 4 tuyeres 14e, 14f, 14g, and 14h marked with an x in the figure are connected.
The fan-shaped zone at about 80 degrees to the core becomes non-flammable and cannot be heated, and since the non-flammable zone is unevenly distributed over a wide area, the width of the zone becomes large, and supplementation from the tuyeres adjacent to both ends is also limited to the center of the zone. This area that affects the temperature becomes a local cooling area within the furnace. However, in the case of the piping shown in Figures 1 and 4, the conduit 11
a, 11b are closed and the tuyeres 14a, 14a', 14b, 14b' are connected to the two branch pipes 13a, 13a', 13b, 13b' marked with △ in the figure, that is, approximately Nonflammable in a 40° fan-shaped zone.

しかし、高炉Bは直径が大きく、その周縁上で
ほゞ均等に配設された羽口から燃焼が行われるの
で、不燃の羽口が1本や2本ならば両隣りの羽口
よりの燃焼で或る程度までは補われ、炉内全体と
しての影響は極力緩和されると共に、2本づつの
不燃帯が遠く離れた対称の位置にあるので、局部
冷却による悪影響からまぬがれることが出来るの
で、第1図及び第4図に示す配管構成は本発明の
不可欠な条件である。
However, since blast furnace B has a large diameter and combustion takes place through tuyeres that are arranged approximately evenly on its periphery, if there is one or two non-flammable tuyeres, combustion can occur from the tuyeres on both sides. This is compensated to a certain extent, and the effect on the entire inside of the reactor is alleviated as much as possible, and since the two non-combustible zones are located far apart and symmetrically, it is possible to avoid the negative effects of local cooling. The piping configuration shown in FIGS. 1 and 4 is an essential condition of the present invention.

又本発明は容積計量型であるからタンク2内の
圧力や導管11a,11b……11i内の圧力損
失が変動しても、微粉炭の供給量には何等影響は
受けずに定量性が保てるから、配管や配置設計上
での制約も少なくてすみ、第6図に示す従来技術
のように導管22又は輸送元管28を高炉Bの炉
頂近くまで持ち上げる必要はなく、従つて配管長
さを必要最小限にとゞめることが可能である。
Furthermore, since the present invention is a volumetric metering type, even if the pressure inside the tank 2 or the pressure loss inside the conduits 11a, 11b, . Therefore, there are fewer restrictions on piping and layout design, and there is no need to lift the conduit 22 or source pipe 28 to near the top of the blast furnace B as in the prior art shown in FIG. can be kept to the necessary minimum.

(効 果) 本発明は、既述のような構成及び作用を有して
いるので、微粉炭を圧送する導管の配置設計の自
由度が非常に大きい。従つて従来方法で止むなく
高炉特有の高熱負荷部や高炉からの高温ガス洩れ
発生部にも導管が近接していたのに比べ、これら
の条件のよくない部位を避けた配管位置の選定も
可能となるので導管の耐久性を向上させると共
に、保全整備上極めて有効となる。
(Effects) Since the present invention has the configuration and operation as described above, the degree of freedom in designing the arrangement of the conduit for pumping pulverized coal is very large. Therefore, compared to the conventional method, where the conduit was forced to be close to the high heat load areas unique to blast furnaces and areas where high-temperature gas leaks from the blast furnace, it is now possible to select piping locations that avoid areas with poor conditions. This improves the durability of the conduit and is extremely effective for maintenance.

更に万一導管閉塞などの事故が発生しても、分
配器以降の分岐管の配置が高炉の対称の位置に配
管されるので事故の影響を受ける羽口も対称位置
となり、高炉のように円周均衡の燃焼が重要な堅
型炉では炉の状況の悪化を抑制する効果が極めて
大きくなる。
Furthermore, even if an accident such as pipe blockage occurs, the branch pipes after the distributor are arranged in symmetrical positions of the blast furnace, so the tuyeres that are affected by the accident are also in symmetrical positions, and the tuyere is placed in a symmetrical position as in the blast furnace. In a vertical furnace where balanced combustion is important, the effect of suppressing the deterioration of the furnace condition is extremely large.

又従来の装置はブロータンク型であるから、タ
ンクから供出される微粉炭量は、タンクに取り付
けたロードセル等の計量器にてある時間(t)内
に供出される微粉炭量(W)をdw/dtの形で演
算し基準値との差を修正していくものであり、こ
の量を修正するためにはタンク内の圧力を増減さ
せる制御方法であるから、高度の計装設備を必要
とし、高額な設備費が必要であるのに対し、本発
明は容積計量型であるから、タンク内の圧力に影
響されることなく、計量フイーダーの回転数を可
変速モーターの制御によつて増減させるだけで、
微粉炭の供給量を制御出来るから、高度の計装設
備を必要としないので設備費も大巾に縮小節減す
ることが出来る。
In addition, since the conventional device is a blow tank type, the amount of pulverized coal delivered from the tank is determined by measuring the amount of pulverized coal delivered within a certain time (t) (W) using a measuring device such as a load cell attached to the tank. It calculates in the form of dw/dt and corrects the difference from the standard value, and in order to correct this amount, the control method is to increase or decrease the pressure in the tank, so advanced instrumentation equipment is required. However, since the present invention is a volumetric metering type, the rotation speed of the metering feeder can be increased or decreased by controlling the variable speed motor without being affected by the pressure inside the tank. Just let it
Since the supply amount of pulverized coal can be controlled, sophisticated instrumentation equipment is not required, and equipment costs can be greatly reduced.

以上の如く本発明は自由度の高い配管設計が可
能であり、作業性、保全整備性が著しく向上する
と共に、供給微粉炭の高い分配精度が確保出来る
ため高炉の安定操作が容易となり、しかも導管内
閉塞などの事故が発生した時には、導管の対称配
置効果により炉況悪化を抑制する効果が大きく広
く炉操作に関連する産業上優れた効果を有するも
のである。
As described above, the present invention enables piping design with a high degree of freedom, significantly improving workability and ease of maintenance, as well as ensuring high distribution accuracy of the supplied pulverized coal, facilitating stable operation of the blast furnace. When an accident such as internal blockage occurs, the symmetrical arrangement of the conduits has a great effect in suppressing the deterioration of the furnace condition, and has a wide range of excellent industrial effects related to furnace operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本発明を示すもので、第1
図は微粉炭吹込装置の配管の1例を示す概要図、
第2図はフイーダーの一部断面を示す正面図、第
3図は排出口の1例を示すフイーダーの底面図、
第4図は高炉羽口部への分岐管の正常な接続方法
及び作用を示す平面図、第5図は高炉羽口部への
分岐管の不良接続方法の1例及び作用を示す平面
図、第6図は従来の微粉炭吹込装置の1例を示す
概要図、第7図、第8図及び第9図イは従来の分
配器の1例を示す一部の断面を表わす正面図、第
9図ロは第9図イの平面図、第10図は従来の吹
込装置の他の1例を示す要部配管要領図、第11
図は第10図の立面図である。 A……本発明の微粉炭吹込装置、B……高炉、
M……可変速モーター、1……微粉炭受入弁、2
……貯蔵圧力容器(タンク)、3……ローター、
4……計量マス、5……排出口、6……遮蔽板、
7……フイーダー、8……圧力ガス源、9……ガ
ス導入管、10……均圧管、11……導管、12
……分配器、13……分岐管、14……羽口。
1 to 4 show the present invention, and the first
The figure is a schematic diagram showing an example of piping for a pulverized coal injection device,
Fig. 2 is a front view showing a partial cross section of the feeder, Fig. 3 is a bottom view of the feeder showing an example of the discharge port,
FIG. 4 is a plan view showing a normal connection method and operation of a branch pipe to the blast furnace tuyere; FIG. 5 is a plan view showing an example of a defective connection method and operation of a branch pipe to the blast furnace tuyere; Fig. 6 is a schematic diagram showing an example of a conventional pulverized coal injection device; Figs. 7, 8, and 9A are front views showing a partial cross section of an example of a conventional distributor; Fig. 9B is a plan view of Fig. 9A, Fig. 10 is a main piping diagram showing another example of the conventional blowing device, and Fig. 11 is a plan view of Fig. 9A.
The figure is an elevational view of FIG. A...Pulverized coal injection device of the present invention, B...Blast furnace,
M...Variable speed motor, 1...Pulverized coal receiving valve, 2
... Storage pressure vessel (tank), 3 ... Rotor,
4...Measuring square, 5...Discharge port, 6...Shielding plate,
7... Feeder, 8... Pressure gas source, 9... Gas introduction pipe, 10... Pressure equalization pipe, 11... Conduit, 12
...Distributor, 13... Branch pipe, 14... Tuyere.

Claims (1)

【特許請求の範囲】 1 貯蔵圧力容器内の微粉炭を該圧力容器に連設
する容積計量型フイーダーにて切出し、該フイー
ダーにて列設した複数の排出口の夫々に連設した
導管の一端に分配器を設け、各分配器より分岐し
た一対の分岐管を夫々、高炉の周縁部に設けた複
数の羽口の高炉中心に対し対峠した位置にある羽
口に連結し、圧力気体により、高炉内に均等に供
給することを特徴とする微粉炭の吹込み方法。 2 微粉炭の貯蔵圧力容器の下部に、可変速モー
ターにより駆動し、複数の排出口より夫々等量の
微粉炭を排出する容積計量型のフイーダーを連設
し、該排出口の夫々に導管を連結し、各導管の先
端に一対の分岐管を分岐する分配器を設け、各一
対の分岐管を夫々、高炉の周縁部に設けた複数の
羽口の高炉中心に対し対峠する位置の羽口に連通
したことを特徴とする微粉炭の吹込み装置。
[Scope of Claims] 1. Pulverized coal in a storage pressure vessel is cut out by a volumetric feeder connected to the pressure vessel, and one end of a conduit connected to each of a plurality of discharge ports arranged in a row in the feeder. A pair of branch pipes branched from each distributor are connected to a plurality of tuyeres provided at the periphery of the blast furnace, which are located opposite to the center of the blast furnace. , a method for injecting pulverized coal, which is characterized by supplying it evenly into a blast furnace. 2 At the bottom of the pulverized coal storage pressure vessel, a volumetric feeder driven by a variable speed motor and discharging an equal amount of pulverized coal from multiple discharge ports is installed in series, and a conduit is connected to each of the discharge ports. A distributor is provided at the tip of each conduit to separate a pair of branch pipes, and each pair of branch pipes is connected to a plurality of tuyeres provided at the periphery of the blast furnace. A pulverized coal blowing device characterized by communicating with a mouth.
JP31389486A 1986-12-26 1986-12-26 Method and device for injecting fine powdered coal Granted JPS63166910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31389486A JPS63166910A (en) 1986-12-26 1986-12-26 Method and device for injecting fine powdered coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31389486A JPS63166910A (en) 1986-12-26 1986-12-26 Method and device for injecting fine powdered coal

Publications (2)

Publication Number Publication Date
JPS63166910A JPS63166910A (en) 1988-07-11
JPH0159325B2 true JPH0159325B2 (en) 1989-12-15

Family

ID=18046791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31389486A Granted JPS63166910A (en) 1986-12-26 1986-12-26 Method and device for injecting fine powdered coal

Country Status (1)

Country Link
JP (1) JPS63166910A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003901693A0 (en) * 2003-04-10 2003-05-01 Technological Resources Pty Ltd Direct smelting process and plant
AU2003901692A0 (en) * 2003-04-10 2003-05-01 Technological Resources Pty Ltd Direct smelting plant

Also Published As

Publication number Publication date
JPS63166910A (en) 1988-07-11

Similar Documents

Publication Publication Date Title
US20110100274A1 (en) Continuous fuel supply for a coal gasification reactor
US6220790B1 (en) Process for conveying fine-grained solid
JPS59124624A (en) Method for distribution and transport of pulverized/ granular material
CN107619895B (en) Device for blowing coal powder into blast furnace
EP0123542B1 (en) Distribution of gas entrained particles
JPH0159325B2 (en)
WO1982003065A1 (en) Conveying systems
JP2000119666A (en) Supplying system for pulverized coal for coal gasification furnace
JP2000119665A (en) Distribution valve for powder stream of high concentration and distributing apparatus for powder stream of high concentration
CN110529871B (en) Dynamic pulverized coal distributor device and working method thereof
CN212293631U (en) Pulverized coal injection system for blast furnace ironmaking
US4049247A (en) Equipment for the continuous pneumatic introduction of coal dust
JPS59115981A (en) Method and device for blowing in powdered and granular body into smelting furnace, etc.
US3626501A (en) Apparatus for injecting fluid fuel into a blast furnace
JP4109591B2 (en) Apparatus for transporting pulverized coal and method for transporting the same
CA1219543A (en) Process for the injection of metered amounts of pulverulent materials by pneumatic means into a vessel which is under variable pressure, and the application thereof to a shaft furnace
JPH0255483B2 (en)
CA1150505A (en) Method and apparatus of injection of solid fuels into a shaft furnace
CN220541122U (en) Pulverized coal injection conveying equipment for double-hearth kiln
CN217057594U (en) Coal water slurry storage and feeding device
CN217685112U (en) Continuous metering and blowing system for lime kiln
JPS6057103A (en) Method of feeding pulverized fuel to multistage type fluidized-bed boiler
GB2106064A (en) Pneumatic conveyance of solids
JPS5855507A (en) Control process for blasting powdered coal
JPH02282117A (en) Granule pressurized transport method