JPH0159193B2 - - Google Patents
Info
- Publication number
- JPH0159193B2 JPH0159193B2 JP56062531A JP6253181A JPH0159193B2 JP H0159193 B2 JPH0159193 B2 JP H0159193B2 JP 56062531 A JP56062531 A JP 56062531A JP 6253181 A JP6253181 A JP 6253181A JP H0159193 B2 JPH0159193 B2 JP H0159193B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- flow rate
- reference voltage
- voltage
- shipping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 239000012530 fluid Substances 0.000 claims description 8
- 230000001186 cumulative effect Effects 0.000 claims description 3
- 230000010354 integration Effects 0.000 claims description 2
- 239000003990 capacitor Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000004880 explosion Methods 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Landscapes
- Loading And Unloading Of Fuel Tanks Or Ships (AREA)
- Flow Control (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は流体の定量出荷装置において、出荷開
始から設定量に至る区間を複数に区分し、各区分
毎に流速に比例する電圧で示した弁制御信号のタ
イムチヤート発生手段に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is a fixed-quantity shipping device for fluid that divides the period from the start of shipping to a set amount into a plurality of sections, and each section is indicated by a voltage proportional to the flow velocity. This invention relates to time chart generation means for valve control signals.
[従来の技術]
定量計を用いて流体を定量出荷または受け入れ
する定量給液装置においては、給液流路に流量計
および制御弁を配設し、定量計に予め出荷すべき
流量を設定して定量計の出荷開始指令スイツチを
押圧したとき発信する信号により制御弁を開弁し
て出荷を開始する。出荷した流量は流量計より発
信される流量パルス信号を定量計において積算す
ることにより検知され、積算値が設定流量に達し
たとき、制御弁は閉弁して給液を完了するもので
ある。上述した定量給液装置は、第1に制御弁を
開閉する際、給液する流体の慣性に基づくウオー
タハンマ現象により制御弁に衝撃を与える結果、
制御弁は早期に劣化し破損に至るという問題があ
る。第2に、制御弁が閉じられる際、閉弁動作の
時間遅れにより、給液量が過大となる定量精度低
下の問題がある。第3に、石油等の非導電流体の
危険物移送の際に流体摩擦により生ずる静電気に
よる静電気爆発発生の危険という問題がある。こ
のような問題点があるため、通常、開弁・閉弁動
作に時間傾斜を与えて弁にウオータハンマが発生
することを防ぎ、定量出荷の初期および定量出荷
完了前の所定期間において小流速とすることによ
り定量精度の向上を図り、また静電気の発生を防
止し、中間域では大流速とすることにより出荷作
業の能率化を図つている。[Prior Art] In a quantitative liquid supply device that ships or receives a fixed amount of fluid using a quantitative meter, a flow meter and a control valve are arranged in the liquid supply flow path, and the flow rate to be shipped is set in advance in the quantitative meter. When the shipping start command switch of the quantitative meter is pressed, the control valve is opened by the signal sent and shipping is started. The shipped flow rate is detected by integrating the flow rate pulse signal transmitted from the flow meter in a quantitative meter, and when the integrated value reaches the set flow rate, the control valve closes to complete liquid supply. First, when the above-mentioned fixed-quantity liquid supply device opens and closes the control valve, a shock is applied to the control valve due to the water hammer phenomenon based on the inertia of the fluid to be supplied.
There is a problem in that the control valve deteriorates early, leading to damage. Second, when the control valve is closed, there is a problem in that the amount of liquid supplied becomes excessive due to a time delay in the valve closing operation, resulting in a decrease in the accuracy of quantitative determination. Thirdly, there is a problem in that there is a risk of electrostatic explosion due to static electricity generated by fluid friction when transporting hazardous materials such as petroleum or other non-conductive current. Because of these problems, it is common practice to prevent water hammer from occurring in the valve by giving a time gradient to the valve opening and closing operations, and to reduce the flow rate to a small flow rate during the initial stage of quantitative shipment and for a predetermined period before the completion of quantitative shipment. By doing so, we aim to improve quantitative accuracy, prevent the generation of static electricity, and increase the flow rate in the intermediate region to streamline shipping operations.
即ち、出荷する設定流量を所定流量毎に複数に
区分して、各区分に対応する流速を前記の流速条
件を加味して流速に比例した電圧を縦軸、積算流
量を横軸としたタイムチヤートを作成し、該タイ
ムチヤートにおける現時点の積算流量に該当する
流速と前記流量パルスのパルス速度から求めた流
速とを比較し、流速をタイムチヤートに示した基
準の流速とするように制御弁を定量計に内蔵され
た制御手段により流速制御して出荷している。上
記タイムチヤートの電圧値は1〜5V(ボルト)を
基準として定められており、また、電流値である
ときは4〜20mAのアナログ値で示されている。
例えば、タイムチヤートを電圧値で示し、出荷設
定流量が2000Klであり、出荷指令により制御弁を
開弁し、出荷を開始したとして、最初の1Klを
150Kl/時、これから1999Klまでを出荷するとき
の流速を600Kl/時、1999Klから2000Klの定流量
に達するまでの流速を再び150Kl/時として閉弁
するときのタイムチヤートは前記の流速に対応し
て0→2V→5V→5V→2V→0のパターンで示さ
れる。このタイムチヤートは0〜2000Klに相当す
るタイムチヤートの電圧0→2V→2V→0に対し
1Klから1999Klまでの出荷流量範囲における電圧
増加分3Vを加算する加算方式を採用している。 In other words, the set flow rate to be shipped is divided into a plurality of sections for each predetermined flow rate, and the flow speed corresponding to each section is calculated by taking into account the flow speed conditions described above, and a time chart is created with the voltage proportional to the flow speed on the vertical axis and the cumulative flow rate on the horizontal axis. The flow velocity corresponding to the current cumulative flow rate in the time chart is compared with the flow velocity obtained from the pulse velocity of the flow pulse, and the control valve is quantified so that the flow velocity becomes the reference flow velocity shown in the time chart. The flow rate is controlled by the control means built into the meter before shipment. The voltage value of the time chart is determined based on 1 to 5 V (volts), and the current value is shown as an analog value of 4 to 20 mA.
For example, if the time chart is shown as a voltage value, and the shipping setting flow rate is 2000Kl, and the control valve is opened according to a shipping command and shipping is started, the first 1Kl is
150Kl/hour, the flow rate when shipping from 1999Kl to 1999Kl is 600Kl/hour, and the flow rate from 1999Kl until reaching a constant flow rate of 2000Kl is 150Kl/hour again.The time chart when closing the valve corresponds to the above flow rate. It is shown in a pattern of 0 → 2V → 5V → 5V → 2V → 0. This time chart employs an addition method in which a voltage increase of 3 V in the shipping flow rate range from 1 Kl to 1999 Kl is added to the voltage of the time chart corresponding to 0 to 2000 Kl from 0 to 2 V to 2 V to 0.
[発明が解決しようとする課題]
上に述べた従来のタイムチヤートを電圧加算方
式において作成するときはタイムチヤートの電圧
を変更して新規なパターンとする場合、例えば最
初の1Klの流速を大流量である450Kl/時で出荷
するとき、電圧は4Vとなり、最後の1999Klから
2000Klまでの流速も同様に450Kl/時である場合
にも出荷初期流速と等しく選ばれ流速が大きいた
め閉弁時点を勘案する場合タイムチヤートの作成
は繁雑となり、更に電圧の加算回路を必要とする
ため各電圧発生回路のインピーダンスマツチング
を計るなど回路条件も考慮しなければならないと
いう問題点があり、不便で非能率的であつた。[Problems to be Solved by the Invention] When creating the conventional time chart described above using the voltage addition method, if the voltage of the time chart is changed to create a new pattern, for example, the initial flow rate of 1 Kl is changed to a large flow rate. When shipping at 450Kl/hour, the voltage will be 4V, and from the last 1999Kl
Similarly, when the flow rate up to 2000Kl is 450Kl/hour, it is selected to be equal to the initial flow rate at shipping, and since the flow rate is large, it becomes complicated to create a time chart when considering the valve closing point, and a voltage addition circuit is also required. Therefore, there is a problem in that circuit conditions such as impedance matching of each voltage generating circuit must be taken into consideration, which is inconvenient and inefficient.
[課題を解決するための手段]
本発明は叙上の問題点を解決するためになされ
たもので、タイムチヤートの電圧を予め流量区分
毎に任意に設定可能に作成しておき、この電圧を
タイムチヤートの出荷流量範囲に亙つて流量区分
毎に順次切り替えられるスイツチを介して出力す
ることにより流量区分での流量変更の際にも回路
条件等の考慮を必要とせず、簡易で、特別な熟練
なしにタイムチヤートを作成できるようにするこ
とを目的とするもので、その要旨は出荷流体の出
荷開始から設定量に達するまでの区間を示した第
1信号、出荷開始から規定された小流速で出荷す
る区間までの第2信号、該第2信号終了から設定
量に達するまでの第3信号および第3信号の設定
量に達する前の所定区間において流速を第2信号
区間と等しい小流速とする第4信号を順次デジタ
ル信号として発信する信号変換回路と、該信号変
換回路の第1信号により閉路し、前記小流速に相
当する基準電圧を任意設定可能に発生する第1の
基準電圧発生手段と、大流速に相当する基準電圧
を任意設定可能に発生する第2の基準電圧発生手
段と、第2の基準電圧から第1の基準電圧を減算
する第1の減算回路と、第1および第2の基準電
圧を切り替えて一方の入力とし他の一方の入力に
第1の減算回路との出力を入力とする第2の減算
回路と、前記第2信号、第3信号および第4信号
により切り替えられ出力する基準電圧の立ち上が
りに所定の傾斜を与える積分回路とからなり、出
荷開始から設定量に至る出荷流量を電圧で示した
タイムチヤート発生回路とで構成した定量計にお
ける弁制御信号のタイムチヤート発生手段であ
る。[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and the voltage of the time chart is created in advance so that it can be arbitrarily set for each flow rate section, and this voltage is set as desired. By outputting via a switch that can be switched sequentially for each flow rate category over the shipping flow rate range of the time chart, there is no need to consider circuit conditions when changing the flow rate in a flow rate category, making it simple and easy to use without special skill. The purpose of this is to make it possible to create a time chart without having to use the first signal. In the second signal up to the shipping section, the third signal from the end of the second signal until reaching the set amount, and the predetermined section before reaching the set amount of the third signal, the flow velocity is set to a small flow velocity equal to the second signal section. a signal conversion circuit that sequentially transmits a fourth signal as a digital signal; and a first reference voltage generating means that is closed by the first signal of the signal conversion circuit and generates a reference voltage corresponding to the small flow velocity that can be set arbitrarily. , a second reference voltage generation means that can arbitrarily generate a reference voltage corresponding to a large flow velocity, a first subtraction circuit that subtracts the first reference voltage from the second reference voltage, and a first and a second reference voltage. a second subtraction circuit which has one input by switching the reference voltage of the first subtraction circuit and the other input which receives the output of the first subtraction circuit; Time chart generation for valve control signals in quantitative meters, consisting of an integrating circuit that gives a predetermined slope to the rising edge of the output reference voltage, and a time chart generating circuit that shows the shipping flow rate from the start of shipping to the set amount in voltage. It is a means.
[作用]
流体の出荷開始から設定量に達するまでの流速
を大小2段階としてタイムチヤート発生回路で流
速に比例する基準電圧を個別に設定可能とし、タ
イムチヤートにおいて流速が変更される出荷流量
で定められる第2、第3、第4の流量区分で順次
開閉するスイツチを介して前記基準電圧を出力
し、第4の流量区分においては第3から第2流量
区分の基準電圧を減算した減算値を第3流量区分
の基準電圧を減算することにより各流量区分のフ
ローチヤート電圧の過渡的な変化に対し任意調整
可能な時間傾斜を与えている。[Function] The flow rate from the start of fluid shipment until reaching the set amount can be set in two stages, large and small, and a reference voltage proportional to the flow rate can be individually set in the time chart generation circuit, and the flow rate is determined by the shipping flow rate at which the flow rate is changed in the time chart. The reference voltage is output through a switch that is sequentially opened and closed in the second, third, and fourth flow rate sections, and in the fourth flow rate section, a subtracted value obtained by subtracting the reference voltage of the second flow rate section from the third flow rate section is output. By subtracting the reference voltage of the third flow rate segment, an arbitrarily adjustable time slope is provided for the transient change in the flowchart voltage of each flow rate segment.
[実施例]
第1図は本発明の定量計におけるタイムチヤー
ト発生手段の構成をしめすブロツク図で、図にお
いて100は指令信号発信部、200はタイムチ
ヤート発生回路である。指令信号発信部100は
定量バツチシーケンス回路1と信号変換回路2と
から構成される。定量バツチシーケンス回路1は
流量設定、流量積算等の定量計機能を有するが、
ここでは流体出荷の開始から設定量に達するまで
の第1信号である出荷流量範囲と該第1信号
区間内において流速を大流量で出荷する流量範囲
Mを示すデジタル信号を出力する。信号変換回路
2は前記定量バツチシーケンス回路1のデジタル
信号およびMの信号を入力し、タイムチヤート
上で出荷流量に対応し、流速が変化する区間のデ
ジタル信号を出力し、該デジタル信号を後述する
タイムチヤート電圧発生回路の対応する回路要素
を開閉するスイツチ電圧とする。第2図Aは第1
信号および信号Mとから流速が変化する区間の
デジタル信号で後述する第2信号、第3信号およ
び第4信号を作成するタイムチヤートを示す。横
軸上Aは出荷開始、Bは出荷開始から大流量に切
り替える流量切替点、CはB点で切り替えられた
大流量を再び小流量に切り替える流量切替点、D
は定量出荷の設定量であり、第1信号はAD区
間、第2信号は第1信号よりM信号を減算し、
CD区間を削除した小流量区間、第3信号は第1
信号より第2信号を減算した区間で大流量区間
BCと小流量区間CDを含む。第4信号は第1信号
よりM信号および第2信号を減算した小流量区間
CDで設定量D点において過剰出荷しないために
設けられている。200はタイムチヤート発生回
路であり、3はデジタル信号である第1信号で
閉路し、図示しない基準電圧よりタイムチヤート
発生回路200に基準電圧を供給するスイツチで
ある。8,11は第2信号で開閉されるスイツ
チ、9,12は第3信号で開閉されるスイツ
チ、13,20は第4信号で開閉されるスイツ
チ、VR1は前記基準電圧と接地間に接続され第
および第信号であるAB、CDの小流速区間の
電圧V1を定めるボリウム、VR2はボリウムVR1
同様基準電圧と接地間に接続されM信号区間であ
るBCの大流速の電圧V2を定めるボリウム、7は
該ボリウムVR2の出力電圧を電圧V2としてイン
ピーダンス変換し、出力する増幅器、10は同様
にスイツチ8または9を介して入力される電圧
V1またはV2の増幅器で入力または出力との比を
任意設定された値にクランプできるようになつて
いる。14は電圧V1とV2とを入力して減算出力
する第1の減算器、15は電圧V1またはV2を入
力する増幅器10を一方の入力とし、第1の減算
器14の出力を他方の入力とする第2の減算器、
18はタイムチヤートの電圧を出力する端子、1
6は該タイムチヤートの電圧をデジタル信号とし
て流量パルス変換する電圧周波数変換回路(V/
F変換回路)、17は該電圧周波数変換回路16
の流量パルスを分周してデジタルな単位流量であ
る単位パルスに変換する分周回路で、19は該単
位パルスを出力する端子である。a,bはスイツ
チ3の閉路により供給される基準電圧によりコン
デンサC1に定電流を導入し、電圧V1,V2の立ち
上がりに一定電圧傾斜を付与する定電流回路で、
各々は任意電圧傾斜を定める電流値を設定でき
る。cも定電流源a,bと同様に定電流を出力し
スイツチ13の閉路により減算器14の出力電圧
に対して定電流値とコンデンサC2とにより定め
られる電圧傾斜を与える定電流回路である。[Embodiment] FIG. 1 is a block diagram showing the configuration of a time chart generating means in a quantitative meter of the present invention. In the figure, 100 is a command signal transmitting section and 200 is a time chart generating circuit. The command signal transmitting section 100 is composed of a quantitative batch sequence circuit 1 and a signal conversion circuit 2. The quantitative batch sequence circuit 1 has quantitative meter functions such as flow rate setting and flow rate integration.
Here, a digital signal indicating a shipping flow rate range which is a first signal from the start of fluid shipping until reaching a set amount and a flow rate range M in which the flow rate is shipped at a large flow rate within the first signal section is output. The signal conversion circuit 2 inputs the digital signal of the quantitative batch sequence circuit 1 and the signal M, and outputs a digital signal corresponding to the shipping flow rate on the time chart and a section where the flow velocity changes, and the digital signal will be described later. This is the switch voltage that opens and closes the corresponding circuit element of the time chart voltage generation circuit. Figure 2 A is the first
A time chart is shown for creating a second signal, a third signal, and a fourth signal, which will be described later, as digital signals in a section where the flow velocity changes from the signal and the signal M. On the horizontal axis, A is the start of shipping, B is the flow rate switching point that switches from the start of shipping to a large flow rate, C is a flow rate switching point that switches the large flow rate switched at point B to a small flow rate again, and D
is the set amount for fixed quantity shipment, the first signal is the AD interval, the second signal is the M signal subtracted from the first signal,
Small flow section with CD section deleted, 3rd signal is 1st
High flow area is the area where the second signal is subtracted from the signal.
Includes BC and small flow section CD. The fourth signal is a small flow area obtained by subtracting the M signal and the second signal from the first signal.
This is provided to prevent over-shipment of CDs at the set point D. 200 is a time chart generation circuit, and 3 is a switch that is closed by a first signal, which is a digital signal, and supplies a reference voltage to the time chart generation circuit 200 from a reference voltage (not shown). 8 and 11 are switches that are opened and closed by the second signal, 9 and 12 are switches that are opened and closed by the third signal, 13 and 20 are switches that are opened and closed by the fourth signal, and VR 1 is connected between the reference voltage and ground. The volume VR 2 is the volume VR 1 that determines the voltage V 1 in the small flow velocity section of AB and CD, which are the first and second signals.
Similarly, a volume is connected between the reference voltage and ground and determines the voltage V 2 of the high flow velocity of BC which is the M signal section. 7 is an amplifier that converts the output voltage of the volume VR 2 into impedance as voltage V 2 and outputs it. Similarly, the voltage input via switch 8 or 9
The V 1 or V 2 amplifier can clamp the input or output ratio to an arbitrarily set value. 14 is a first subtracter that inputs the voltages V 1 and V 2 and outputs the subtracted value; 15 uses the amplifier 10 that inputs the voltage V 1 or V 2 as one input; and the output of the first subtracter 14 is a second subtractor with the other input;
18 is a terminal that outputs the voltage of the time chart, 1
6 is a voltage frequency conversion circuit (V/
F conversion circuit), 17 is the voltage frequency conversion circuit 16
A frequency dividing circuit divides the flow rate pulse and converts it into a unit pulse which is a digital unit flow rate, and 19 is a terminal for outputting the unit pulse. a and b are constant current circuits that introduce a constant current into the capacitor C 1 using the reference voltage supplied by the closed circuit of the switch 3, and give a constant voltage slope to the rise of the voltages V 1 and V 2 ;
Each can set a current value that defines an arbitrary voltage slope. Similarly to constant current sources a and b, c is also a constant current circuit that outputs a constant current and gives a voltage slope determined by the constant current value and capacitor C2 to the output voltage of the subtracter 14 by closing the switch 13. .
次に以上に述べたタイムチヤート発生回路の動
作を第2図、第3図と対比して説明する。 Next, the operation of the time chart generating circuit described above will be explained in comparison with FIGS. 2 and 3.
信号変換回路2よりの第1信号発信によりス
イツチ3が閉路し、ボリウムVR1,VR2により予
め設定された電圧V1,V2が該ボリウムVR1,
VR2より各々出力される。出荷開始の指令によつ
て第2信号が出力され、スイツチ8およびスイ
ツチ11を閉路し、電圧V1は増幅器10と定電
流源aの電流およびコンデンサC1とにより第3
図V3で図示したAA′B区間の電圧で、第2減算器
15の一方の入力端子に入力される。続いて第2
信号が終了してスイツチ8,11が開路し、第
3信号が発信されスイツチ9,12が閉路さ
れ、定電流源bの電流およびコンデンサC1で定
められたBB′の傾斜をもつ電圧がV2でクランプさ
れ、第2減算器15の一方の入力端子に入力され
る。スイツチ20は、この時点で開路されている
ので第2減算器15の他の一方の入力端子には入
力がなく、第3図V3の電圧が端子18に出力す
る。第3信号は出荷流量が設定量に達するD点
まで継続するが、設定量Dに至る直前の区間CD
で第4信号が発信される。該第4信号はスイ
ツチ13,20を閉路する。第1減算器14の一
方の入力に小流速に相当する電圧V1が、他方の
入力には大流速に相当する電圧V2が入力される
ので、スイツチ13,20の閉路により第2減算
器15の他の入力端子には第3図V4の電圧が入
力する。電圧V4は定電流源cの電流とコンデン
サC2とで得られる電圧傾斜をCC′とV4=V2−V1
の電圧をもつCD区間とで構成される。区間CDに
おける第2減算器15からの出力はV3−V4の演
算がなされるので、区間CDにおいてV1圧である
第3図V5でしめしたタイムチヤート
AA′BB′CC′Dの電圧が端子18から出力される。
以上にしめしたタイムチヤート電圧V5は流速の
基準電圧となるので、電圧−周波数変換回路16
と分周器17とによりマスターオツシレータを構
成し、基準単位パルスを端子19から発信するの
で、該基準パルスと流量計から発信される流量パ
ルスとを比較して出荷流量をデジタル的に制御す
ることも可能である。 The switch 3 is closed by the first signal sent from the signal conversion circuit 2, and the voltages V 1 and V 2 preset by the volume VR 1 and VR 2 are applied to the volume VR 1 and VR 2 .
Each is output from VR 2 . In response to the command to start shipping, a second signal is output, which closes the switch 8 and the switch 11, and the voltage V1 is increased to the third signal by the amplifier 10, the current of the constant current source a, and the capacitor C1 .
The voltage in the AA′B section shown in FIG. 3 is input to one input terminal of the second subtracter 15. Then the second
When the signal ends, switches 8 and 11 are opened, a third signal is transmitted and switches 9 and 12 are closed, and the current of constant current source b and the voltage with the slope of BB' determined by capacitor C 1 become V 2 and input to one input terminal of the second subtracter 15. Since the switch 20 is open at this point, there is no input to the other input terminal of the second subtractor 15, and the voltage V3 in FIG. 3 is output to the terminal 18. The third signal continues until the point D when the shipping flow rate reaches the set amount, but in the section CD immediately before reaching the set amount D.
A fourth signal is transmitted. The fourth signal closes switches 13 and 20. Since the voltage V 1 corresponding to a small flow velocity is input to one input of the first subtractor 14 and the voltage V 2 corresponding to a large flow velocity is input to the other input, the second subtractor 14 is closed by closing the switches 13 and 20. The voltage V4 in FIG. 3 is input to the other input terminal 15. The voltage V 4 is the voltage slope obtained by the current of the constant current source c and the capacitor C 2 as CC′ and V 4 = V 2 − V 1
It consists of a CD section with a voltage of . Since the output from the second subtractor 15 in the section CD is calculated as V 3 - V 4 , the time chart shown in FIG. 3 V 5 which is V 1 pressure in the section CD
A voltage of AA'BB'CC'D is output from terminal 18.
Since the time chart voltage V 5 shown above becomes the reference voltage of the flow velocity, the voltage-frequency conversion circuit 16
and the frequency divider 17 constitute a master oscillator, and since a reference unit pulse is transmitted from the terminal 19, the shipping flow rate is digitally controlled by comparing the reference pulse with the flow rate pulse transmitted from the flow meter. It is also possible.
[発明の効果]
上に述べた本発明の定量計におけるタイムチヤ
ート発生手段によれば、タイムチヤートの電圧値
はタイムチヤートの流量区分に従つて順次発信さ
れる信号変換回路のデジタル信号により切り替え
られるタイムチヤート発生手段から連続的に出力
するもので、タイムチヤートの代表的な電圧値は
予めボリウムで設定でき、且つ制御弁等の流量制
御手段にウオータハンマ現象等の衝撃が作用する
ことがないようにタイムチヤートの電圧に所定傾
斜を与える手段も積分値を変更できる積分回路を
有して各々単独に設定でき、また設定量に達する
直前の第1段の閉弁を与える第4信号区間動作に
おける傾斜においても第1、第2の減算器を用い
ることにより前記出荷開始時におけるウオータハ
ンマ対策に使用されたと同様な手段を利用するこ
とができるので、特別の熟練を要することなし
に、しかも回路要件等を考慮することなしに簡単
に設定できる効果がある。[Effects of the Invention] According to the time chart generating means in the quantitative meter of the present invention described above, the voltage value of the time chart is switched by the digital signal of the signal conversion circuit that is sequentially transmitted according to the flow rate division of the time chart. It is continuously output from the time chart generating means, and the typical voltage value of the time chart can be set in advance with a volume control, and it is designed to prevent shocks such as water hammer phenomenon from acting on the flow rate control means such as control valves. The means for giving a predetermined slope to the voltage of the time chart also has an integral circuit that can change the integral value, and can be set independently. By using the first and second subtractors for tilting, it is possible to use the same means used to prevent water hammer at the time of the start of shipment, so there is no need for special skill, and the circuit requirements can be reduced. This has the effect of being easy to set without having to consider other factors.
第1図は本発明の定量計におけるタイムチヤー
ト発生手段の構成を示すブロツク図、第2図は指
令信号発生部100から出されるデジタル信号、
第3図は第2図のデジタル信号によりきりかえら
れたタイムチヤート発生回路200より出される
主回路要素におけるタイムチヤートの電圧値であ
る。
1……定量バツチシーケンス回路、2……信号
変換回路、3,8,9,11,12,13,20
……スイツチ、7,8……増幅器、14……第1
の減算器、15……第2の減算器、16……V/
F変換回路、17……分周器、a,b,c……定
電流源、100……指令信号発信部、200……
タイムチヤート発生回路。
FIG. 1 is a block diagram showing the configuration of the time chart generating means in the quantitative meter of the present invention, and FIG. 2 shows the digital signals output from the command signal generating section 100.
FIG. 3 shows the voltage value of the time chart in the main circuit elements output from the time chart generating circuit 200 which has been changed by the digital signal shown in FIG. 1...Quantitative batch sequence circuit, 2...Signal conversion circuit, 3, 8, 9, 11, 12, 13, 20
...Switch, 7, 8...Amplifier, 14...1st
subtractor, 15...second subtractor, 16...V/
F conversion circuit, 17... Frequency divider, a, b, c... Constant current source, 100... Command signal transmitter, 200...
Time chart generation circuit.
Claims (1)
し、予め定められた積算体積に従つて制御弁の駆
動信号を発信する定量計を用いた流体の定量出荷
装置において、出荷流体の出荷開始から設定量に
達するまでの区間を示した第1信号、出荷開始か
ら規定された小流速で出荷する区間までの第2信
号、該第2信号終了から設定量に達する区間まで
の第3信号および第3信号の設定量に達する前の
所定区間において流速を第2信号区間と等しい小
流速とする第4信号を順次デジタル信号として発
信する信号変換回路と、該信号変換回路の第1信
号により機能する前記小流速に相当する基準電圧
を任意設定可能に発生する第1の基準電圧発生手
段と、大流速に相当する基準電圧を任意設定可能
に発生する第2の基準電圧発生手段と、第2の基
準電圧から第1の基準電圧を減算する第1の減算
回路と、第1および第2の基準電圧を切り替えて
一方の入力とし他の一方に前記第1の減算回路の
出力を第4信号区間のみ入力とする第2の減算回
路と、前記第2信号、第3信号および第4信号に
より切り替えられ出力する基準電圧の立ち上がり
に所定の傾斜を与える積分回路とからなり、出荷
開始から設定量に至る出荷流量を電圧で示した弁
制御信号のタイムチヤート発生回路とで構成した
ことを特徴とする定量計における弁制御信号のタ
イムチヤート発生手段。1. In a fluid quantitative shipping device that uses a quantitative meter that receives and integrates the flow rate signals transmitted from the flow meter and transmits a drive signal for the control valve according to a predetermined cumulative volume, the settings are set from the start of shipment of the shipped fluid. A first signal indicating the section until the amount is reached, a second signal from the start of shipping to the section where shipping is carried out at a specified small flow rate, a third signal from the end of the second signal until the section when the set amount is reached, and a third signal. a signal conversion circuit that sequentially transmits a fourth signal as a digital signal in which the flow velocity is set to a small flow velocity equal to the second signal interval in a predetermined section before reaching a set amount of the signal; a first reference voltage generation means that arbitrarily generates a reference voltage corresponding to a small flow velocity; a second reference voltage generation means that arbitrarily generates a reference voltage corresponding to a large flow velocity; and a second reference voltage. a first subtraction circuit that subtracts a first reference voltage from the voltage; and a first subtraction circuit that switches between the first and second reference voltages and uses one as an input and the output of the first subtraction circuit as the other for a fourth signal period only. It consists of a second subtraction circuit as an input, and an integration circuit that is switched by the second, third, and fourth signals and gives a predetermined slope to the rise of the output reference voltage, and reaches the set amount from the start of shipment. 1. A time chart generating means for a valve control signal in a quantitative meter, comprising a time chart generating circuit for a valve control signal indicating a shipping flow rate in terms of voltage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6253181A JPS57183994A (en) | 1981-04-27 | 1981-04-27 | Batch system using quantity meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6253181A JPS57183994A (en) | 1981-04-27 | 1981-04-27 | Batch system using quantity meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57183994A JPS57183994A (en) | 1982-11-12 |
JPH0159193B2 true JPH0159193B2 (en) | 1989-12-15 |
Family
ID=13202871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6253181A Granted JPS57183994A (en) | 1981-04-27 | 1981-04-27 | Batch system using quantity meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57183994A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0759446B2 (en) * | 1991-02-18 | 1995-06-28 | 日本通商株式会社 | Belt cleaner mechanism mounting support device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5684298A (en) * | 1979-11-30 | 1981-07-09 | Hokushin Electric Works | Fixed quantity forwarding device |
-
1981
- 1981-04-27 JP JP6253181A patent/JPS57183994A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5684298A (en) * | 1979-11-30 | 1981-07-09 | Hokushin Electric Works | Fixed quantity forwarding device |
Also Published As
Publication number | Publication date |
---|---|
JPS57183994A (en) | 1982-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4086804A (en) | Precision pneumatic pressure supply system | |
US3940594A (en) | Automatic process controller with bumpless operation | |
GB1320272A (en) | Process cont'ol system | |
US4449059A (en) | Triangle waveform generator having a loop delay compensation network | |
US4001813A (en) | Precision capacitance to digital conversion system | |
US3016197A (en) | Square root extracting integrator | |
US3992670A (en) | Frequency control circuits such as for use in modulation measurement | |
JPS62192810A (en) | Sonic and subsonic flow rate control for fluid traversing gate with fixed section having mobile valve | |
US3940593A (en) | Automatic process controller with digital memory | |
JPH0159193B2 (en) | ||
GB1170616A (en) | Apparatus for Maintaining the Ratio between Two Variables at a Set Value which is controlled by a Further Variable (the "Control Variable") | |
GB1481021A (en) | Flow control system | |
US4137503A (en) | Phase shifting apparatus | |
US3725762A (en) | Hybrid process controller operable in the automatic and manual | |
KR970706532A (en) | A voltage reference device, a voltmeter, a battery voltage detection device, and a wireless communication device (a voltage reference arrangement, a voltage meter, a battery voltage detection arrangement, and a wireless communication device) | |
US4246571A (en) | High resolution quantizer | |
EP0037207B1 (en) | Signal generating arrangements | |
GB1452791A (en) | Analog computer circuits | |
US4616332A (en) | Apparatus for converting analog-format signals to pulse-format signals | |
JPS6318725A (en) | Low level voltage-pulse converter | |
US3448408A (en) | Frequency modification of pulse train as a function of an analog signal | |
US5787134A (en) | Switched capacitance phase locked loop system | |
US4651027A (en) | Current-to-frequency converter | |
US3375508A (en) | Means for converting a synchro shaft angle to a linear direct current signal | |
EP0029239A1 (en) | Low-pass filtering circuit and method of using the same |