JPH0159083B2 - - Google Patents

Info

Publication number
JPH0159083B2
JPH0159083B2 JP9639886A JP9639886A JPH0159083B2 JP H0159083 B2 JPH0159083 B2 JP H0159083B2 JP 9639886 A JP9639886 A JP 9639886A JP 9639886 A JP9639886 A JP 9639886A JP H0159083 B2 JPH0159083 B2 JP H0159083B2
Authority
JP
Japan
Prior art keywords
cement
cut
base material
flat plate
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9639886A
Other languages
Japanese (ja)
Other versions
JPS62253407A (en
Inventor
Koichi Kawabata
Hiroyuki Yamakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Mining and Cement Co Ltd
Original Assignee
Mitsubishi Mining and Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Mining and Cement Co Ltd filed Critical Mitsubishi Mining and Cement Co Ltd
Priority to JP9639886A priority Critical patent/JPS62253407A/en
Publication of JPS62253407A publication Critical patent/JPS62253407A/en
Publication of JPH0159083B2 publication Critical patent/JPH0159083B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、炭素繊維補強セメント板の製造方法
に関し、さらに詳しくは製品の強度が高く、装置
が簡単で、生産性の高い製造方法に関するもので
ある。 〔従来の技術〕 石綿繊維補強セメント板は内・外装材として広
く用いられているが、石綿は発癌性物質であると
言われるので脱石綿化が図られ、耐アルカリ性ガ
ラス繊維が試用されたが、耐アルカリ性が不十分
で長期強度を確保することが不可能であつたの
で、耐アルカリ性に優れる炭素繊維による補強が
望まれている。 炭素繊維補強セメント板を製造する方法として
は、プレミツクス法、スプレー法、抄造法、押出
成形法が試みられたが、それぞれ次の問題点を有
している。 プレミツクス法は、セメントペーストまたはセ
メントモルタルと炭素繊維とを混合した後、型枠
を用いて成形する方法であるが、必要とする強度
を発現し得る炭素繊維を均一に混合することは不
可能であつた。 スプレー法は、炭素繊維をカツターで切断しつ
つ、セメントペーストまたはセメントモルタルと
同時に吹き付ける方法で、スプレーサクシヨン法
は、スプレー法における吹付面の裏面よりサクシ
ヨンにより水分を吸引除去する方法で、共に炭素
繊維が2次元に均一に配向された製品を製造し得
るが、特殊で複雑な装置を必要とするばかりでな
く、生産性の向上も望み難い。 円網抄造法は、抄造時の炭素繊維によるセメン
ト粒子の保持力が小さいため、炭素繊維とセメン
トとによる素地の抄き上げが不可能である。 押出成形法は、押出機としてスクリユー式押出
機が用いられており、石綿繊維補強セメント板の
製造においては主力の製造方法である円網抄造法
に比し生産性が高く、かつ排水を生じないなどの
優れた方法であるが、口金より押し出された未硬
化成形体をそのまま養生して製品とするため未硬
化成形体は密実なものとする必要があるので、口
金の開口面積の押出機の押出口面積に対する比
(開口比)を約0.2〜0.4として押出素地を締め固
めているため、押出機および口金内の素地は高い
押出圧力により強い剪断力を受け、石綿に代えて
炭素繊維を用いても炭素繊維は切断されて強度の
発現に殆ど寄与せず、押出機より円柱状で押し出
されてくる素地に対し横断面形状の変化の大きい
平板を製造する場合は、炭素繊維の切断は特に顕
著である。 〔発明が解決しようとする問題点〕 本発明は前記の問題点を解決し、製品の曲げ強
度および衝撃強度が高く、装置が簡単で生産性が
高い製造方法を提供するものである。 〔問題点を解決するための手段〕 本発明は前記の問題点を解決するために、少な
くともセメントと炭素繊維とセメントに対し0.2
〜0.5重量%の遅延剤とを含有する原料を水にて
混練した素地を、スクリユー式押出成形機により
開口比0.4〜0.8にて円筒状に押し出し、該円筒を
押出方向に対し直角方向に切断し、該切断体の上
部を押出方向に切開して平板状に展開し、該平板
を圧延したのち養生するものである。 〔作用〕 本発明の主眼は、押出機および口金内の素地の
剪断力を低下させて炭素繊維の切断を防ぐことに
ある。 セメントとしてはポルトランドセメント、高炉
セメント、シリカセメント、フライアツシユセメ
ントなどが製品に要求される品質、許される製造
期間、養生の種類などによつて選択され、オート
クレーブ養生が行われる場合などには珪砂粉が混
合される。 炭素繊維としては、PANまたはピツチ系の直
径12〜15μm長さ5〜10mmのものが用いられ、そ
の使用量は原料に対し内割0.5〜5重量%である。 素地は、押出機のスクリユー、スクリユーのケ
ーシングおよび口金との摩擦によつて発熱しこの
発熱によつてセメントの水和が促進され、この水
和によつて発熱しこの発熱によつて水和がさらに
促進され、素地は凝結を開始して累進的に可塑性
が減少して剪断力が増加するので、リグニンスル
フオン酸カルシウム、珪弗化物等の凝結遅延剤を
セメントに対し0.2〜0.5重量%使用する。0.2重量
%未満では効果が不充分で、0.5重量%を越えて
使用しても効果の増進がない。 押出機および口金内の素地に対し成形時に脱水
現象を起こさせると、押出成形が安定して行えな
いため、これを防ぐと同時に素地の剪断力を低下
させて歪のない素地を押出すために、水溶性セル
ロース、エーテル類、エチレンオキサイド重合
体、アクリルアミド重合体、ポリビニールアルコ
ール等の増粘剤を素地に混入することが好まし
く、混入量は素地の他の組成等を考慮し、押出成
形に所要の最適可塑性を発現させるべく試行によ
つて定められる。 スクリユー式押出機の押出口は円形をしている
ので、素地の剪断力をなるべく低くして押し出す
には素地を円柱状に押し出すことが望ましいが、
押し出された未硬化成形体を押出方向に切開して
平板状に展開するためには円筒状に押し出すこと
が必要である。 円筒の外・内径は、押出機の押出口の大きさ、
製品の大きさ、圧延の程度等を考慮して定められ
る。 口金の開口比は、大きくすれば素地の剪断力が
低下し、炭素繊維の切断を防ぐことができるが、
円筒状未硬化成形体の密実性が不十分となり、切
開・展開・圧延の操作が不可能となつたり、これ
等の操作が可能の場合でも得られた製品の物性が
不十分となる恐れがあるので、0.8以下とし、0.4
未満とすると炭素繊維の切断が顕著となるので、
開口比は0.4〜0.8とする。 押し出された円筒は、製品の大きさ、圧延の程
度を勘案して、押出方向に対し直角方向に切断し
た後、切断体の上部を押出方向に切開して展開す
ることにより平板状にすることができる。切断体
は未硬化であるので、例えば回転鋸を用いれば容
易に切開することができる。 平板を圧延し所要の厚さおよび/または密度と
する。 圧延はロールプレスまたは全面プレスにより行
うことができるが、ロールプレスを用いて対向す
るロールの間隙を逐次小とし、その間を平板を通
過させる方法が圧延が容易で、かつ圧延素地の組
成をいためず好ましい。ロールプレスまたは全面
プレスの加圧力およびロールの数は、平板の腰の
強さ、加工度等より適宜定められる。 圧延の後、自然養生、蒸気養生またはオートク
レーブ養生を行つて硬化させ、必要があれば裁断
して製品とする。 〔実施例〕 普通ポルトランドセメント55.32重量部、粗粒
砂40重量部、直径10μm長さ8mmのピツチ系炭素
繊維4重量部、リグニンスルフオン酸カルシウム
0.18重量部およびメチルセルロース0.5重量部よ
りなる原料を水25重量部にて混練した素地を、押
出口の内径250mmのスクリユー式押出機に口金を
接続して外形220mm内径100mmの円筒状に押し出
し、この円筒を回転鋸を用いて押出方向に対して
直角方向に切断して長さ500mmの切断体とし、こ
の切断体の上部を回転鋸を用いて切開して平板状
とした。平板はロールプレスにより圧延して厚さ
を12mmとし、ゲージ圧10atg、5時間のオートク
レーブ養生を行い製品を得た。 製品の物性を表に示す。 〔比較例〕 リグニンスルフオン酸カルシウムを0.12重量
部、メチルセルロースを0.5重量部、口金を開口
部の高さ12mm・幅330mmの平板用口金とした以外
は実施例と同様にし、製品の物性を表に示した。
[Industrial Field of Application] The present invention relates to a method for manufacturing a carbon fiber reinforced cement board, and more particularly to a method for producing a product with high strength, simple equipment, and high productivity. [Prior art] Asbestos fiber-reinforced cement boards are widely used as interior and exterior materials, but since asbestos is said to be a carcinogen, efforts have been made to remove asbestos, and alkali-resistant glass fibers have been tried. However, it has been impossible to ensure long-term strength due to insufficient alkali resistance, so reinforcement with carbon fibers, which have excellent alkali resistance, is desired. As methods for manufacturing carbon fiber reinforced cement boards, premix methods, spray methods, paper forming methods, and extrusion methods have been tried, but each method has the following problems. The premix method is a method in which carbon fiber is mixed with cement paste or cement mortar and then molded using a mold, but it is impossible to uniformly mix carbon fiber that can develop the required strength. It was hot. The spray method is a method in which carbon fibers are cut with a cutter and simultaneously sprayed with cement paste or cement mortar.The spray suction method is a method in which water is suctioned and removed from the back side of the sprayed surface in the spray method. Although it is possible to manufacture products in which the fibers are uniformly oriented in two dimensions, it not only requires special and complicated equipment, but also makes it difficult to improve productivity. In the cylinder papermaking method, the holding power of cement particles by carbon fibers during papermaking is small, so it is impossible to form a base material using carbon fibers and cement. The extrusion molding method uses a screw-type extruder as an extruder, and has higher productivity than the cylinder papermaking method, which is the main manufacturing method for manufacturing asbestos fiber reinforced cement boards, and does not generate wastewater. This is an excellent method, but since the uncured molded body extruded from the nozzle is cured as it is and made into a product, the uncured molded body needs to be dense, so the extruder has a small opening area. Since the extruded substrate is compacted with a ratio of 0.2 to 0.4 to the area of the extrusion opening (opening ratio), the substrate in the extruder and die is subjected to strong shearing force due to high extrusion pressure, and carbon fiber is used instead of asbestos. Even if carbon fibers are used, they will be cut and will hardly contribute to the development of strength.When manufacturing a flat plate with a large change in cross-sectional shape from the base material extruded in a cylindrical shape from an extruder, cutting the carbon fibers is necessary. This is particularly noticeable. [Problems to be Solved by the Invention] The present invention solves the above-mentioned problems and provides a manufacturing method in which a product has high bending strength and impact strength, a simple device, and high productivity. [Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention aims to solve the above-mentioned problems.
A base material made by kneading raw materials containing ~0.5% by weight of a retarder with water is extruded into a cylindrical shape using a screw extruder at an aperture ratio of 0.4 to 0.8, and the cylinder is cut in a direction perpendicular to the extrusion direction. Then, the upper part of the cut body is cut in the extrusion direction, developed into a flat plate, and the flat plate is rolled and then cured. [Function] The main purpose of the present invention is to reduce the shearing force of the substrate in the extruder and die to prevent cutting of the carbon fibers. Portland cement, blast furnace cement, silica cement, fly ash cement, etc. are selected as cement depending on the quality required for the product, the allowable manufacturing period, the type of curing, etc. Silica sand powder is used when curing in an autoclave, etc. are mixed. As carbon fibers, PAN or pitch type carbon fibers having a diameter of 12 to 15 μm and a length of 5 to 10 mm are used, and the amount used is 0.5 to 5% by weight based on the raw material. The base material generates heat due to friction with the extruder screw, screw casing, and die, and this heat generation promotes hydration of the cement. This is further accelerated and the substrate begins to set, progressively decreasing its plasticity and increasing shearing force. Therefore, setting retarders such as calcium lignin sulfonate and silicofluoride are used in an amount of 0.2 to 0.5% by weight of the cement. do. If it is less than 0.2% by weight, the effect is insufficient, and if it is used in excess of 0.5% by weight, the effect will not be improved. If dehydration occurs in the base material inside the extruder and the die during molding, extrusion cannot be performed stably, so in order to prevent this and at the same time reduce the shearing force of the base material to extrude the base material without distortion. It is preferable to mix thickeners such as , water-soluble cellulose, ethers, ethylene oxide polymers, acrylamide polymers, polyvinyl alcohol, etc. into the base material, and the amount to be mixed should be determined by considering other compositions of the base material, etc. It is determined by trial to develop the required optimal plasticity. Since the extrusion port of a screw type extruder is circular, it is desirable to extrude the base material in a cylindrical shape in order to extrude the base material with as low a shearing force as possible.
In order to cut the extruded uncured molded product in the extrusion direction and develop it into a flat plate, it is necessary to extrude it into a cylindrical shape. The outer and inner diameters of the cylinder are determined by the size of the extruder opening,
It is determined by taking into account the size of the product, degree of rolling, etc. If the aperture ratio of the cap is increased, the shearing force of the substrate will be reduced and cutting of the carbon fiber can be prevented, but
The solidity of the cylindrical uncured molded body may become insufficient, making it impossible to perform cutting, rolling, and rolling operations, or even if these operations are possible, the physical properties of the resulting product may be insufficient. Therefore, it should be 0.8 or less, and 0.4
If it is less than that, the cutting of carbon fiber will be noticeable.
The aperture ratio shall be 0.4 to 0.8. The extruded cylinder is cut in a direction perpendicular to the extrusion direction, taking into account the size of the product and the degree of rolling, and then the upper part of the cut body is cut in the extrusion direction and expanded to form a flat plate. Can be done. Since the cut body is uncured, it can be easily cut using a rotary saw, for example. The flat plate is rolled to the required thickness and/or density. Rolling can be carried out by a roll press or a full surface press, but rolling is easier and the method of using a roll press to gradually reduce the gap between opposing rolls and passing a flat plate between them is easier and does not damage the composition of the rolled material. preferable. The pressing force and the number of rolls of the roll press or the full surface press are determined as appropriate based on the stiffness of the flat plate, the degree of processing, etc. After rolling, it is cured by natural curing, steam curing or autoclave curing, and if necessary, it is cut into products. [Example] 55.32 parts by weight of ordinary Portland cement, 40 parts by weight of coarse sand, 4 parts by weight of pitch carbon fibers with a diameter of 10 μm and a length of 8 mm, calcium lignin sulfonate
A base material made by kneading raw materials consisting of 0.18 parts by weight and 0.5 parts by weight of methyl cellulose with 25 parts by weight of water was extruded into a cylindrical shape with an external diameter of 220 mm and an internal diameter of 100 mm by connecting a nozzle to a screw type extruder with an internal diameter of 250 mm. The cylinder was cut perpendicularly to the extrusion direction using a rotary saw to obtain a cut body having a length of 500 mm, and the upper part of this cut body was cut using a rotary saw to form a flat plate. The flat plate was rolled to a thickness of 12 mm using a roll press, and the plate was cured in an autoclave for 5 hours at a gauge pressure of 10 atg to obtain a product. The physical properties of the product are shown in the table. [Comparative Example] The same procedure was used as in Example except that 0.12 parts by weight of calcium lignin sulfonate, 0.5 parts by weight of methyl cellulose, and a flat plate mouth with an opening height of 12 mm and width of 330 mm were used, and the physical properties of the product were shown. It was shown to.

〔発明の効果〕〔Effect of the invention〕

本発明の方法により、強度および靭性の高い炭
素繊維補強セメント板を簡単な装置で生産性高く
製造することができた。 また、製品中の炭素繊維は主として押出方向に
対して直角方向に配向しているので、この配向方
向における強度は、同一炭素繊維配合量の二次元
配向の製品に比し高い。
By the method of the present invention, a carbon fiber-reinforced cement board with high strength and toughness could be manufactured with high productivity using a simple device. Further, since the carbon fibers in the product are mainly oriented in a direction perpendicular to the extrusion direction, the strength in this orientation direction is higher than that of a two-dimensionally oriented product with the same amount of carbon fibers.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくともセメントを炭素繊維とセメントに
対し0.2〜0.5重量%の遅延剤とを含有する原料を
水にて混練した素地を、スクリユー式押出成形機
により開口比0.4〜0.8にて円筒状に押し出し、該
円筒を押出方向に対し直角方向に切断し、該切断
体の上部を押出方向に切開して平板状に展開し、
該平板を圧延した後養生することを特徴とする炭
素繊維補強セメント板の製造方法。
1 A base material obtained by kneading a raw material containing at least cement, carbon fiber, and a retarder of 0.2 to 0.5% by weight relative to the cement with water is extruded into a cylindrical shape with a screw extrusion molding machine at an aperture ratio of 0.4 to 0.8, Cutting the cylinder in a direction perpendicular to the extrusion direction, cutting the upper part of the cut body in the extrusion direction and developing it into a flat plate,
A method for manufacturing a carbon fiber reinforced cement board, which comprises curing the flat board after rolling it.
JP9639886A 1986-04-25 1986-04-25 Manufacture of carbon fiber-reinforced cement board Granted JPS62253407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9639886A JPS62253407A (en) 1986-04-25 1986-04-25 Manufacture of carbon fiber-reinforced cement board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9639886A JPS62253407A (en) 1986-04-25 1986-04-25 Manufacture of carbon fiber-reinforced cement board

Publications (2)

Publication Number Publication Date
JPS62253407A JPS62253407A (en) 1987-11-05
JPH0159083B2 true JPH0159083B2 (en) 1989-12-14

Family

ID=14163855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9639886A Granted JPS62253407A (en) 1986-04-25 1986-04-25 Manufacture of carbon fiber-reinforced cement board

Country Status (1)

Country Link
JP (1) JPS62253407A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549859A (en) * 1992-08-11 1996-08-27 E. Khashoggi Industries Methods for the extrusion of novel, highly plastic and moldable hydraulically settable compositions
US5545297A (en) * 1992-08-11 1996-08-13 E. Khashoggi Industries Methods for continuously placing filaments within hydraulically settable compositions being extruded into articles of manufacture

Also Published As

Publication number Publication date
JPS62253407A (en) 1987-11-05

Similar Documents

Publication Publication Date Title
EP0068741B1 (en) Boards and sheets
JP3891256B2 (en) Hydraulic composition for extrusion molding and cured body thereof
JP2003104766A (en) Fiber reinforced hydraulic composition and fiber reinforced hydraulic formed body obtained by using the composition
JPH0159083B2 (en)
JPH01320243A (en) Lightweight cement composition
KR100919972B1 (en) Cement mortar additive for extrusion molding, cement mortar for extrusion molding having the additive, and method for preparing the cement mortar using the additive
JPH06293546A (en) Production of hydraulic and inorganic material molding
JP2812837B2 (en) Extrusion molding method for cementitious materials
JP2724618B2 (en) High strength composite material and method for producing the same
JPH03153551A (en) Method for extrusion-molding inorganic sheet
JP3984333B2 (en) Manufacturing method of inorganic board
JP3849760B2 (en) Hydraulic composition for extrusion molding and cured body thereof
CN111943532B (en) Geopolymer-based organic-inorganic composite cementing material and forming preparation method thereof
JP2791054B2 (en) Admixture for fiber reinforced concrete
JPH0380141A (en) Production of extrusion-molded cement product
JPH026360A (en) Lightweight cement composition and production of lightweight cement form therefrom
JPH0319804A (en) Manufacture of inorganic hardened body
JPH10182208A (en) Production of hydraulic inorganic composition and production of inorganic hardened body
JPH02102158A (en) Production of formed cement body
JPH062613B2 (en) Hollow Autoclave Curing Extrusion Composition
CN117209214A (en) Composition for gel-extrusion rolled sheet, and method for producing same
JPH0781990A (en) Cement composition and cement hardened body
JP2538928B2 (en) Extruded building material composition
CN117550844A (en) Continuously extrusion molded ultrahigh-performance cement-based tile and preparation process thereof
JPH0132181B2 (en)