JPH0158736B2 - - Google Patents

Info

Publication number
JPH0158736B2
JPH0158736B2 JP56058327A JP5832781A JPH0158736B2 JP H0158736 B2 JPH0158736 B2 JP H0158736B2 JP 56058327 A JP56058327 A JP 56058327A JP 5832781 A JP5832781 A JP 5832781A JP H0158736 B2 JPH0158736 B2 JP H0158736B2
Authority
JP
Japan
Prior art keywords
transformer
load
heavy load
overload
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56058327A
Other languages
Japanese (ja)
Other versions
JPS57173329A (en
Inventor
Seiichi Watanabe
Tatsuji Matsuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tsushinki KK
Original Assignee
Toyo Tsushinki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tsushinki KK filed Critical Toyo Tsushinki KK
Priority to JP56058327A priority Critical patent/JPS57173329A/en
Publication of JPS57173329A publication Critical patent/JPS57173329A/en
Publication of JPH0158736B2 publication Critical patent/JPH0158736B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Transformers (AREA)
  • Housings And Mounting Of Transformers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は変圧器の過負荷状況を監視する装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a device for monitoring overload conditions of a transformer.

(従来技術) 現在の小容量自家用需要家変圧器の過負荷保護
はその殆どが次のいずれかで行われている。
(Prior Art) Most current overload protections for small-capacity private customer transformers are performed using one of the following methods.

(a) 変圧器1次側電路にヒユーズを取り付け1次
負荷電流を制限するか又は受電用遮断器にて、
電灯用、動力用等の複数変圧器を一括保護す
る。
(a) Install a fuse in the primary circuit of the transformer to limit the primary load current, or use a power receiving circuit breaker.
Protects multiple transformers for lighting, power, etc. all at once.

(b) 変圧器の2次側電路に複数の配線用遮断器
(又はヒユーズ)を取り付け2次負荷電流を制
限するか又はサーマルリレーを取り付けて2次
負荷電流を監視し警報を発する。
(b) Install multiple circuit breakers (or fuses) on the secondary circuit of the transformer to limit the secondary load current, or install a thermal relay to monitor the secondary load current and issue an alarm.

(c) 油温を監視し警報を発する。(c) Monitor oil temperature and issue an alarm.

しかし、これらは変圧器容量に整合した保護装
置として必要且十分に機能しているとは言えない
のが実状と考えられる。
However, the reality is that these cannot be said to function as necessary and sufficient protection devices that match the transformer capacity.

この問題点を除去するために、新たな変圧器の
負荷状況監視装置及び方法が提案されている。
In order to eliminate this problem, new transformer load condition monitoring devices and methods have been proposed.

第4図は特開昭55−103041号公報に記載された
変圧器の制御方法を示した図であつて、母線41
には変圧器42,44及び遮断器46を接続する
と共に、該遮断器46から分岐した分岐電路に
は、遮断器47乃至50および負荷51乃至54
を接続している。
FIG. 4 is a diagram showing the transformer control method described in Japanese Patent Application Laid-Open No. 55-103041, in which the bus bar 41
Transformers 42, 44 and a circuit breaker 46 are connected to the circuit breaker 46, and circuit breakers 47 to 50 and loads 51 to 54 are connected to the branch circuit branched from the circuit breaker 46.
are connected.

また、前記変圧器44及び遮断器46との間に
は変流器56が設けられ、該変流器56から出力
される電流をデジタル計算機58に入力せしめる
と共に、該デジタル計算機58はプロセス入力制
御機能と演算制御機能とを備え、数秒毎に入力点
の操作と演算とを行つている。
Further, a current transformer 56 is provided between the transformer 44 and the circuit breaker 46, and the current output from the current transformer 56 is input to a digital computer 58, and the digital computer 58 controls process input. It is equipped with functions and arithmetic control functions, and operates input points and performs calculations every few seconds.

即ち、変圧器44の負荷電流を変流器56によ
り検出するとともに、この負荷電流から変圧器の
以前の負荷状態に基づいて過負荷耐量時間をデジ
タル計算機58で演算し、該演算結果によつて遮
断器47乃至50への制御信号を出力することに
より、変圧器の負荷状況を監視しつつ過負荷とな
つた場合に影響の小さいものから順次負荷を切り
離すものである。
That is, the load current of the transformer 44 is detected by the current transformer 56, and the overload withstand time is calculated from this load current by the digital computer 58 based on the previous load state of the transformer. By outputting control signals to the circuit breakers 47 to 50, the load condition of the transformer is monitored and in the event of an overload, the load is sequentially disconnected from the one having the least influence.

前記過負荷耐量時間は定格負荷以下の負荷時間
の単位時間T毎に区切ると共に、T時間内におけ
る実負荷を平均した平均値から等価軽負荷値を算
出し、該等価軽負荷値と変圧器負荷耐量曲線によ
り定められるものであつて、例えば第5図に示す
如く変圧器の負荷が変動し、過負荷になる以前の
等価軽負荷が定格負荷の50%で運転されていた場
合、過負荷耐量時間は第6図に示した変圧器過負
荷耐量曲線において曲線60により与えられる。
The above-mentioned overload withstand time is divided into unit time T of load time below the rated load, and an equivalent light load value is calculated from the average value of the actual load within T time, and the equivalent light load value and the transformer load are calculated. It is determined by the withstand capacity curve, and for example, as shown in Figure 5, if the load of the transformer fluctuates and the equivalent light load before overload is operated at 50% of the rated load, the overload withstand capacity The time is given by curve 60 in the transformer overload capability curve shown in FIG.

即ち、重負荷値(等価重負荷/定格負荷×100)
がK1パーセントではt1時間過負荷運転を行うこ
とができ、またK2パーセントの時にはt2時間過
負荷運転を行うことができるため、前記デジタル
計算機にて重負荷時における重負荷値及びその時
間を検出し、許容値以上となつた際に遮断器を適
宜切り離すものである。
In other words, heavy load value (equivalent heavy load/rated load x 100)
When K1%, overload operation can be performed for t1 hours, and when K2%, overload operation can be performed for t2 hours, so the digital computer detects the heavy load value and its time at heavy load. , the circuit breaker is disconnected as appropriate when the value exceeds the allowable value.

しかしながら、上述した如き従来の方法では過
負荷以前においても常時負荷状態を把握し、しか
も頻繁に等価軽負荷値を算出しなくてはならず、
また、等価軽負荷がほぼ一定である場合にも多数
の等価軽負荷値に対応した過負荷耐量曲線を予め
用意し、デジタル計算機において多量の演算を行
う必要があるため装置が複雑且つ高価となる問題
点があつた。このため、比較的小容量の自家用需
要家等の小規模需要家にとつては経済的負担が大
きく、広く一般に普及する上での妨げとなつてい
た。
However, in the conventional method as described above, it is necessary to constantly grasp the load state even before overload, and to calculate the equivalent light load value frequently.
Furthermore, even when the equivalent light load is approximately constant, it is necessary to prepare in advance overload capability curves corresponding to a large number of equivalent light load values and to perform a large amount of calculations on a digital computer, making the equipment complex and expensive. There was a problem. For this reason, there is a heavy economic burden on small-scale consumers such as private consumers with relatively small capacity, and this has been an obstacle to widespread popularization.

(発明の目的) 本発明は上述した如き従来の問題点に鑑みなさ
れたものであつて、変圧器の過負荷以外に於ける
等価軽負荷を需要家等に設置する際に予め所定の
値に設定すると共に過負荷時のみに過負荷値及び
過負荷時間を積算し、変圧器の過負荷状況を把握
することにより構成が簡単且つ安価な変圧器の負
荷状況を把握することができる変圧器の過負荷状
況監視装置を提供することを目的とする。
(Purpose of the Invention) The present invention has been made in view of the conventional problems as described above, and is to set the equivalent light load other than the overload of a transformer to a predetermined value in advance when installing it at a consumer etc. This is a simple and inexpensive transformer configuration that allows you to understand the load situation of the transformer by setting the overload value and overload time only at the time of overload, and understanding the overload situation of the transformer. The purpose of this invention is to provide an overload situation monitoring device.

(発明の概要) この目的を達成するために、本発明に係る変圧
器の過負荷状況監視装置は、少なくとも変圧器の
負荷電流を検出する検出手段と、該検出した負荷
電流の大きさを判定する重負荷検出手段と、負荷
に応じて発振周波数が変動すると共に前記重負荷
検出手段出力により制御された周波数変換手段
と、 前記周波数変換手段より得たパルスを積算する
重負荷積算手段と、前記重負荷検出手段出力によ
り制御された重負荷時間積算手段と、前記重負荷
積算手段出力及び重負荷時間積算手段出力を入力
し、過負荷状況を判定する判定手段とを備え、変
圧器の負荷電流が当該変圧器の定格電流を越えた
ときのみ重負荷値及び当該重負荷時の時間を積算
し、所定の重負荷時間積算時における重負荷積算
値が変圧器許容過負荷特性に基づいて予め設定さ
れた所定値を越えた場合に過負荷情報を出力する
ように構成したことを特徴とする。
(Summary of the Invention) In order to achieve this object, a transformer overload situation monitoring device according to the present invention includes at least a detection means for detecting the load current of the transformer, and a determination unit for determining the magnitude of the detected load current. heavy load detection means for integrating the pulses obtained from the frequency conversion means; heavy load integration means for integrating the pulses obtained from the frequency conversion means; A heavy load time integrating means controlled by the output of the heavy load detecting means, and a determining means for inputting the output of the heavy load integrating means and the output of the heavy load time integrating means to determine an overload condition, and determining the load current of the transformer. The heavy load value and the time during the heavy load are integrated only when the current exceeds the rated current of the transformer, and the heavy load integrated value at the time of integration of the predetermined heavy load time is preset based on the transformer's allowable overload characteristics. The present invention is characterized in that it is configured to output overload information when the load exceeds a predetermined value.

(実施例) 以下、図面に示した実施例に基づいて本発明を
詳細に説明する。
(Example) Hereinafter, the present invention will be explained in detail based on the example shown in the drawings.

先ず、本発明の理解を助けるために本発明の基
本的考え方について少しく詳細に説明する。
First, the basic idea of the present invention will be explained in some detail in order to facilitate understanding of the present invention.

変圧器の寿命は、主として絶縁物の劣化により
定まり、絶縁物の劣化はその使用温度により大き
く影響されることが従来より良く知られている。
It has been well known that the life of a transformer is mainly determined by the deterioration of the insulator, and that the deterioration of the insulator is greatly influenced by the temperature at which it is used.

ところで参考文献:電気学会技術報告(昭和46
年3月No.99)「油入変圧器の運転指針」によれば
正規寿命(30年)を期待する場合であつても変圧
器の許容負荷は短時間であればかなりの大きさま
で許容可能であることが報告されている。
By the way, reference: Technical Report of the Institute of Electrical Engineers of Japan (1968)
According to the ``Operating Guidelines for Oil-immersed Transformers'' (No. 99, March 2017), even when the normal lifespan (30 years) is expected, the allowable load of a transformer can be quite large for a short period of time. It has been reported that

例えば許容過負荷特性によると、等価周囲温度
(昼夜及び季節的に変化する周囲温度を寿命損失
からみて等価な一定温度に換算して得た周囲温
度)が25℃(夏期)、等価軽負荷(重負荷(ピー
ク負荷)以外の変動負荷による総合損失と一定負
荷による発生損失とが温度面からみて等価である
と考えたときの一定負荷)が70%の場合、1時間
以内では定格電流の150%、同2時間以内では134
%、同4時間以内では120%、同8時間以内では
109%、同24時間以内では100%の負荷を許容する
ことができる。
For example, according to the allowable overload characteristics, the equivalent ambient temperature (the ambient temperature obtained by converting the ambient temperature that changes day and night and seasonally into an equivalent constant temperature from the viewpoint of life loss) is 25℃ (summer), and the equivalent light load ( If the constant load (considering that the total loss due to variable loads other than heavy loads (peak loads) and the generated loss due to constant loads are equivalent from a temperature perspective) is 70%, the rated current will exceed 150% within 1 hour. %, 134 within the same 2 hours
%, within 4 hours 120%, within 8 hours
It can tolerate 109% load and 100% load within the same 24 hours.

上記各条件を記載した変圧器許容過負荷特性曲
線を第2図に示す。
FIG. 2 shows a transformer allowable overload characteristic curve that describes each of the above conditions.

また一般に、小容量自家用需要家電路では日、
月、年の負荷変動を設計時に予め計算し、負荷量
に応じて変圧器の容量を設定するものであり、更
に、設置場所における日、月、季節、年等による
温度変化も予め把握することができるため、等価
軽負荷及び等価周囲温度を比較的容易且つ正確に
知ることができる。
In addition, in general, in small capacity private consumer electrical circuits,
Monthly and yearly load fluctuations are calculated in advance at the time of design, and the capacity of the transformer is set according to the load amount.Furthermore, temperature changes depending on the day, month, season, year, etc. at the installation location are also known in advance. Therefore, the equivalent light load and equivalent ambient temperature can be determined relatively easily and accurately.

したがつて、ある設備における等価軽負荷及び
等価周囲温度は新たな設備等を増設しない限りほ
ぼ一定である。本発明はこの変圧器許容過負荷特
性曲線に着目し変圧器の過負荷時の負荷電流を検
出して重負荷値を積算すると共にその重負荷値と
なつている時間をも積算することにより、所定の
積算時間、例えば0.5、1、2、4、8時間での
重負荷電流の積算値が予め変圧器許容過負荷特性
曲線に基づいて設定しておいた警報値(注意警報
値及び異常警報値)と比較してこれを越えた場合
には警報信号(注意信号、異常信号)を出力する
機能をもたせたもので、正規寿命を維持する限度
内で変圧器容量を有効活用することを可能にする
ものである。
Therefore, the equivalent light load and equivalent ambient temperature of a given piece of equipment remain approximately constant unless new equipment is added. The present invention focuses on this transformer allowable overload characteristic curve, detects the load current when the transformer is overloaded, integrates the heavy load value, and also integrates the time during which the heavy load value is maintained. The cumulative value of heavy load current for a predetermined cumulative time, e.g. 0.5, 1, 2, 4, 8 hours, is set as an alarm value (caution alarm value and abnormal alarm value) that has been set in advance based on the transformer allowable overload characteristic curve. The transformer has a function that outputs an alarm signal (caution signal, abnormal signal) if the value is exceeded, making it possible to effectively utilize the transformer capacity within the limit that maintains the normal lifespan. It is something to do.

尚、積算時間の周期は小電力自家用需要家の場
合、日々の電力使用状況がほぼ一定していること
が多いから24時間を1周期として繰り返せば十分
であろう。
Incidentally, in the case of a small private power consumer, the daily power usage status is often almost constant, so it may be sufficient to repeat the cumulative time period as one cycle of 24 hours.

第1図は本発明に係る変圧器の過負荷状況監視
装置を単相3線用変圧器に適用した場合の一実施
例を示す図であつて、単相三線用変圧器1の非接
地電路2,3に結合した変流器31,32により
負荷電流を検出すると共に該変流器31,32出
力端は変圧器容量設定回路4,10と接続し、該
変圧器容量設定回路4,10により前記検出した
負荷電流をそれぞれに応じた信号電圧に変換す
る。
FIG. 1 is a diagram showing an embodiment in which a transformer overload status monitoring device according to the present invention is applied to a single-phase three-wire transformer. The load current is detected by the current transformers 31, 32 connected to the current transformers 2, 3, and the output terminals of the current transformers 31, 32 are connected to the transformer capacity setting circuits 4, 10. The detected load currents are converted into corresponding signal voltages.

これらの信号電圧のレベルは変圧器定格負荷電
流に対応しており、変圧器容量設定回路に内蔵さ
れるスイツチ(図示せず)を切換えることにより
当該変圧器容量に応じた所定の過負荷監視を行う
ことができる。即ち、変圧器容量が変わる場合に
は変圧器設定回路4,10のスイツチを切換るこ
とにより所望の信号電圧を発生するよう設定す
る。
The levels of these signal voltages correspond to the rated load current of the transformer, and by switching a switch (not shown) built into the transformer capacity setting circuit, the specified overload monitoring according to the transformer capacity can be performed. It can be carried out. That is, when the transformer capacity changes, the switches in the transformer setting circuits 4 and 10 are changed to generate a desired signal voltage.

変圧器容量回路4,10の出力信号電圧は整流
回路5,11でそれぞれ直流電圧に変換され、次
段の重負荷検出回路7,13に与えられ、該重負
荷検出回路7,13では前記整流回路5,11の
出力が変圧器の定格電流に相当した電圧以上(重
負荷値)の場合に整流回路5,11の出力を電圧
周波数変換回路6,12で電圧に応じた周波数に
変換するよう制御信号を出力すると共に重負荷時
間積算回路9,15を作動させ、重負荷となつて
いる時間をクロツク22の信号を用いてカウンタ
ーにより積算する。
The output signal voltages of the transformer capacity circuits 4 and 10 are converted into DC voltages by rectifier circuits 5 and 11, respectively, and given to the next-stage heavy load detection circuits 7 and 13. When the output of the circuits 5 and 11 is higher than the voltage corresponding to the rated current of the transformer (heavy load value), the output of the rectifier circuits 5 and 11 is converted to a frequency corresponding to the voltage by the voltage frequency conversion circuits 6 and 12. At the same time as outputting the control signal, the heavy load time integration circuits 9 and 15 are operated, and the time during which the heavy load is applied is integrated by a counter using the signal from the clock 22.

前記周波数変換回路6,12では前記重負荷検
出回路7,13より制御信号が与えられている
間、前記整流回路5,11の出力電圧に比例した
周波数のパルスを次段の重負荷積算回路8,14
に出力し、該重負荷積算回路8,14では内蔵す
るカウンターにより前記パルスの発生数を積算す
る。
In the frequency conversion circuits 6 and 12, while a control signal is applied from the heavy load detection circuits 7 and 13, pulses having a frequency proportional to the output voltage of the rectification circuits 5 and 11 are transmitted to the heavy load integration circuit 8 of the next stage. ,14
The heavy load integration circuits 8 and 14 integrate the number of pulses generated using built-in counters.

また、重負荷積算回路8,14及び重負荷時間
積算回路9,15にはタイマー20が接続され、
所定の積算時間毎に各積算カウンタ8,9,14
及び15をクリアするため、クリアされるまでの
一周期中に重負荷が時系列上複数離散して発生し
た場合でもそれらを通算して重負荷及び時間を積
算し、その結果を次段の判定回路16に出力す
る。
Further, a timer 20 is connected to the heavy load integration circuits 8 and 14 and the heavy load time integration circuits 9 and 15,
Each integration counter 8, 9, 14 for each predetermined integration time
In order to clear 15 and 15, even if multiple heavy loads occur discretely in time series during one cycle until they are cleared, the heavy loads and time are summed up, and the results are used in the next stage of judgment. Output to circuit 16.

該タイマー20の設定時間は前述したように小
電力自家用需要家の場合にはその電力使用状況か
ら24時間を1周期として繰り返したが、本発明の
実施に当たつては、これに限定する必要はなく、
電力使用状況に応じて適宜設定すればよい。
As mentioned above, in the case of a small private power consumer, the setting time of the timer 20 is set repeatedly with 24 hours as one cycle based on the power usage situation, but in implementing the present invention, it is necessary to limit it to this. Not,
It may be set as appropriate depending on the power usage situation.

判定回路16では入力した信号と判定値設定回
路17より与えられる設定値とを比較判定し注意
警報あるいは異常警報を出力する。
The determination circuit 16 compares and determines the input signal with the set value given by the determination value setting circuit 17, and outputs a caution warning or an abnormality warning.

前記判定値設定回路17より出力される設定信
号は例えば前記第2図に示した如き変圧器許容過
負荷特性曲線に基づいた信号であつて、所定の積
算時間、例えば0.5時間では定格負荷の150%に相
当するパルス数が前記判定回路16に設定されて
おり、該パルス数及び時間と前記積算カウンタ
8,9,14及び15から出力されるパルス数及
び時間とを比較するものである。
The setting signal output from the judgment value setting circuit 17 is, for example, a signal based on the transformer allowable overload characteristic curve as shown in FIG. % is set in the determination circuit 16, and the pulse number and time are compared with the pulse number and time output from the integration counters 8, 9, 14, and 15.

このように構成した変圧器の過負荷状況監視装
置において第3図に示す如く変圧器の負荷特性
(例えば非接地電流2に流れる電流)が変動する
と、整流回路5より負荷に比例した電圧が発生
し、重負荷検出回路7に与えられる。
In the transformer overload situation monitoring device configured in this way, when the load characteristics of the transformer (for example, the current flowing in the non-grounded current 2) fluctuates as shown in FIG. 3, a voltage proportional to the load is generated from the rectifier circuit 5. and is applied to the heavy load detection circuit 7.

該重負荷検出回路7では定格負荷以上となるt
=t0〜t1、t=t2〜t3の区間において重負荷状態
を検知し、電圧周波数変換回路6及び重負荷時間
積算回路9に制御信号を出力し、該電圧周波数変
換回路6では負荷に比例したパルスを発生し、一
方、重負荷時間積算回路9では重負荷となつてい
る時間を積算する。
In the heavy load detection circuit 7, when the load exceeds the rated load, t
A heavy load condition is detected in the interval between = t0 and t1 and t = t2 and t3, and a control signal is output to the voltage frequency conversion circuit 6 and the heavy load time integration circuit 9, and the voltage frequency conversion circuit 6 outputs a control signal proportional to the load. A pulse is generated, and on the other hand, the heavy load time integration circuit 9 integrates the time during which the load is heavy.

例えば、電圧周波数変換回路6,12はそれぞ
れ非接地電路に流れる電流が定格値(100%)の
時に発振周波数が1024Hz、また非接地電路に流れ
る電流が定格値の200%の時に2048Hzのパルスを
発振するもの、例えば電圧制御型発振器(VCO)
を用い、且つ重負荷積算回路として15ビツトのカ
ウンタにより構成しているものを用いた場合、定
格負荷電流に対して0.5時間の間に重負荷積算回
路の出力に得られるパルス数は、1024×1/2×
0.5時間×60分×60秒=56.25パルスとなる。した
がつて、0.5時間における許容過負荷特性値が定
格負荷の1.5倍であるならば56.25パルス×1.5=
84.38パルスが許容過負荷特性値となる。
For example, the voltage frequency conversion circuits 6 and 12 each generate a pulse with an oscillation frequency of 1024 Hz when the current flowing in the ungrounded circuit is the rated value (100%), and a pulse of 2048 Hz when the current flowing in the ungrounded circuit is 200% of the rated value. Something that oscillates, such as a voltage-controlled oscillator (VCO)
When using a heavy load integration circuit consisting of a 15-bit counter, the number of pulses obtained at the output of the heavy load integration circuit during 0.5 hours with respect to the rated load current is 1024 × 1/2×
0.5 hours x 60 minutes x 60 seconds = 56.25 pulses. Therefore, if the allowable overload characteristic value for 0.5 hours is 1.5 times the rated load, then 56.25 pulses x 1.5 =
84.38 pulses is the allowable overload characteristic value.

即ち、第3図におけるT1=0.3時間、T2=0.3
時間とした場合、t2から0.2時間経過後(重負荷
積算時間0.5時間)の重負荷積算回路の出力パル
ス数が84.38パルス以上となつた際に許容過負荷
値150%をこえたと判断し警報を発することにな
る。
That is, T1 = 0.3 hours, T2 = 0.3 in Figure 3
When the number of output pulses from the heavy load integration circuit exceeds 84.38 pulses after 0.2 hours have passed since t2 (heavy load integration time 0.5 hours), it is determined that the allowable overload value has exceeded 150%, and an alarm is issued. It will be emitted.

もし、上記警報値を越えないときには次の設定
時間、即ち、重負荷積算時間が1.0時間のときの
重負荷積算値が許容過負荷値、1024×1/2×
1.0時間×60分×60秒×150%=112.5パルス×1.5
=168.75パルス以内か否かを判定し、該重負荷積
算値が許容過負荷値以内であれば順次所定積算時
間において重負荷積算値が許容過負荷値以内かを
判断し、報知するものである。
If the above alarm value is not exceeded, the next set time, that is, the heavy load cumulative value when the heavy load cumulative time is 1.0 hours is the allowable overload value, 1024 x 1/2 x
1.0 hours x 60 minutes x 60 seconds x 150% = 112.5 pulses x 1.5
= 168.75 pulses or less, and if the heavy load integrated value is within the allowable overload value, it is determined whether the heavy load integrated value is within the allowable overload value in a predetermined integration time, and a notification is made. .

尚、本実施例における判定回路16の積算時間
0.5、1、2、4、8時間として説明したが、こ
れに限定されるものではなく、詳細に変圧器の過
負荷状況を判定したい場合には、タイマーリセツ
ト後0.5、1、1.5、2、2.5時間……と30分毎に判
定を繰り返してもよく、電力需要家における負荷
の変動具合いに応じて所望の時間を設定すればよ
い。
Incidentally, the cumulative time of the determination circuit 16 in this embodiment
Although the explanation is given as 0.5, 1, 2, 4, and 8 hours, the timer is not limited to this, and if you want to determine the overload situation of the transformer in detail, you can use 0.5, 1, 1.5, 2, or 0.5 hours after resetting the timer. The determination may be repeated every 30 minutes, such as 2.5 hours... or a desired time may be set depending on the degree of load fluctuation at the power consumer.

判定値設定回路17の設定は前述の等価周囲温
度と等価軽負荷の両者パラメータとして設定され
るもので、所定の変圧器許容過負荷特性に基づい
て警報値を任意に選択することができる。即ち、
等価周囲温度が25℃、等価軽負荷が50%の場合に
は、重負荷積算時間2.0時間以内では許容過負荷
140%、同4時間以内では許容過負荷123%と前記
第2図に示した変圧器許容過負荷特性曲線とは異
なる許容過負荷特性曲線に基づいて警報値が設定
される。
The determination value setting circuit 17 is set as both the above-mentioned equivalent ambient temperature and equivalent light load parameters, and the alarm value can be arbitrarily selected based on predetermined transformer allowable overload characteristics. That is,
When the equivalent ambient temperature is 25℃ and the equivalent light load is 50%, the overload is allowed within 2.0 hours of heavy load cumulative time.
140%, and within the same four hours, the alarm value is set based on the allowable overload characteristic curve of 123%, which is different from the transformer allowable overload characteristic curve shown in FIG.

更に、等価周囲温度は夏期と冬期とでは異なる
ため、例えば、夏、冬に分けて手動にて変圧器過
負荷特性曲線を設定することも可能であり、また
年間タイマーを設けることにより自動的に夏、冬
の設定値を設定するか、更に正確に処理するため
には月毎に設定変更して用いることもできる。
Furthermore, since the equivalent ambient temperature is different in summer and winter, it is possible to manually set the transformer overload characteristic curve separately for summer and winter, for example, or automatically by setting up an annual timer. Setting values can be set for summer and winter, or for more accurate processing, the settings can be changed for each month.

尚、第2図の特性曲線を用いて警報の判定基準
を設定するに当たつては前述の参考文献に述べら
れている許容過負荷特性値の90%をもつて異常警
報、80%をもつて注意警報とするか、又は寿命を
若干犠牲にする許容過負荷特性値を持つて異常警
報、正規寿命維持の許容過負荷特性値を持つて注
意警報とする等の効果的判断基準とすることもで
きる。
In setting the alarm judgment criteria using the characteristic curve shown in Figure 2, it should be noted that 90% of the allowable overload characteristic value as stated in the above-mentioned reference is an abnormal alarm, and 80% is an abnormal alarm. Use this as effective judgment criteria, such as setting a caution warning as a warning when the overload characteristic value is acceptable at a slight sacrifice of life, or issuing a warning warning as having an allowable overload characteristic value that maintains the normal life. You can also do it.

また、本実施例の説明では単相3線式電路の場
合について説明したが、他の方式、例えば単相2
線式、3相3線式、3相4線式電路等に本発明に
係る変圧器の過負荷状況監視装置を適用してもよ
いことは明かである。但し、第1図の変圧器容量
設定回路4,10及び6,7,8,9の各回路系
は単相2線式の場合1系統、3相3線式、3相4
線式電路では3系統設け、そのいづれかで判定す
る必要があることは云うまでもない。
In addition, in the explanation of this embodiment, the case of a single-phase three-wire electric circuit was explained, but other systems, such as a single-phase two-wire electric circuit, were explained.
It is clear that the transformer overload status monitoring device according to the present invention may be applied to wire type, three-phase three-wire type, three-phase four-wire type electric circuits, etc. However, each circuit system of transformer capacity setting circuits 4, 10 and 6, 7, 8, and 9 in Fig. 1 is one system for single-phase two-wire system, three-phase three-wire system, and three-phase four-wire system.
It goes without saying that there are three systems for wire electric circuits, and it is necessary to make a determination using one of them.

更に、本発明の実施例では等価周囲温度25℃、
等価軽負荷70%の許容過負荷特性曲線を用いたも
のについて説明したが、許容過負荷特性曲線はこ
れに限定されるものではなく需要家の使用状況及
び設置場所により決定される等価周囲温度により
任意の値に予め設定することができるものであ
る。
Furthermore, in the embodiment of the present invention, the equivalent ambient temperature is 25°C,
Although we have explained the case using the allowable overload characteristic curve with an equivalent light load of 70%, the allowable overload characteristic curve is not limited to this. It can be preset to any value.

(発明の効果) 本発明は上述した如く構成し且つ機能するもの
であるから負荷設備容量から変圧器容量を算出す
る際に過負荷を所定時間許容することができるた
め安全率をよりシビアに低く抑えることができ、
その結果、変圧器の正規寿命を維持しつつ許容限
度内の最小容量の変圧器を選ぶことができる変圧
器の保護装置をきわめて簡便且つ安価に実現する
上で著しい効果を発揮する。
(Effects of the Invention) Since the present invention is configured and functions as described above, it is possible to allow overload for a predetermined time when calculating the transformer capacity from the load equipment capacity, so the safety factor can be more severely reduced. can be suppressed,
As a result, a transformer protection device that can select a transformer with the minimum capacity within the allowable limits while maintaining the normal life of the transformer is extremely effective in easily and inexpensively realizing it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図、第2図は
許容過負荷特性曲線の1例を示す説明図、第3図
及び第5図は変圧器負荷特性を示す図、第4図は
従来の変圧器の制御方法を説明する図、第6図は
従来の制御方法にもちいる変圧器の過負荷耐量時
間を説明するための図である。 1……単相3線用変圧器、2,3……非接地電
路、4,10……変圧器容量設定回路、5,11
……整流回路、6,12……電圧周波数変換回
路、7,13……重負荷検出回路、8,14……
重負荷積算回路、9,15……重負荷時間積算回
路、16……判定回路、17……判定値設定回
路、18,19……警報出力、20……タイマ
ー。
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram showing an example of an allowable overload characteristic curve, FIGS. 3 and 5 are diagrams showing transformer load characteristics, and FIG. 6 is a diagram for explaining a conventional transformer control method, and FIG. 6 is a diagram for explaining the overload withstand time of a transformer used in the conventional control method. 1... Single-phase 3-wire transformer, 2, 3... Ungrounded circuit, 4, 10... Transformer capacity setting circuit, 5, 11
... Rectifier circuit, 6, 12 ... Voltage frequency conversion circuit, 7, 13 ... Heavy load detection circuit, 8, 14 ...
Heavy load integration circuit, 9, 15... Heavy load time integration circuit, 16... Judgment circuit, 17... Judgment value setting circuit, 18, 19... Alarm output, 20... Timer.

Claims (1)

【特許請求の範囲】 1 変圧器の過負荷状況の監視装置において、変
圧器の負荷電流を検出する検出手段と、 該検出した負荷電流の大きさを判定する重負荷
検出手段と、 負荷に応じて発振周波数が変動すると共に前記
重負荷検出手段出力により制御された周波数変換
手段と、 前記周波数変換手段より得たパルスを積算する
重負荷積算手段と、 前記重負荷検出手段出力により制御された重負
荷時間積算手段と、 前記重負荷積算手段出力及び重負荷時間積算手
段出力を入力し、過負荷状況を判定する判定手段
とを備え、 変圧器の負荷電流が当該変圧器に対して予め定
めた定格電流を超えたときのみ重負荷値及び当該
重負荷時の時間を積算し、所定の重負荷時間積算
時における重負荷積算値が変圧器許容過負荷特性
に基づいて予め設定された所定値を越えた場合に
過負荷情報を出力するように構成したことを特徴
とする変圧器の過負荷状況監視装置。 2 変圧器許容過負荷特性に基づき予め設定され
る所定値が季節又は月毎により変動する等価周囲
温度に基づいて自動的に設定されるものとなつて
いることを特徴とする特許請求の範囲第1項記載
の変圧器の過負荷状況監視装置。
[Scope of Claims] 1. A transformer overload status monitoring device comprising: a detection means for detecting the load current of the transformer; a heavy load detection means for determining the magnitude of the detected load current; a frequency conversion means whose oscillation frequency is varied and controlled by the output of the heavy load detection means; a heavy load integration means which integrates the pulses obtained from the frequency conversion means; and a frequency conversion means whose oscillation frequency is controlled by the output of the heavy load detection means. load time integration means; and determination means for inputting the output of the heavy load integration means and the output of the heavy load time integration means and determining an overload situation, the load current of the transformer being determined in advance for the transformer. Only when the rated current is exceeded, the heavy load value and the time during the heavy load are integrated, and the heavy load integrated value at the time of integration of the predetermined heavy load time is a predetermined value set in advance based on the transformer allowable overload characteristics. A transformer overload status monitoring device characterized in that it is configured to output overload information when the overload status is exceeded. 2. Claim No. 2, characterized in that the predetermined value that is preset based on the transformer allowable overload characteristics is automatically set based on the equivalent ambient temperature that changes seasonally or monthly. The overload status monitoring device for a transformer according to item 1.
JP56058327A 1981-04-16 1981-04-16 Device for monitoring overload state of transformer Granted JPS57173329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56058327A JPS57173329A (en) 1981-04-16 1981-04-16 Device for monitoring overload state of transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56058327A JPS57173329A (en) 1981-04-16 1981-04-16 Device for monitoring overload state of transformer

Publications (2)

Publication Number Publication Date
JPS57173329A JPS57173329A (en) 1982-10-25
JPH0158736B2 true JPH0158736B2 (en) 1989-12-13

Family

ID=13081194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56058327A Granted JPS57173329A (en) 1981-04-16 1981-04-16 Device for monitoring overload state of transformer

Country Status (1)

Country Link
JP (1) JPS57173329A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247905A (en) * 1984-05-23 1985-12-07 Mitsubishi Electric Corp Transformer
JP2617907B2 (en) * 1984-07-11 1997-06-11 三菱電機株式会社 Transformer operation monitoring device
JP2617906B2 (en) * 1984-07-11 1997-06-11 三菱電機株式会社 Transformer operation monitoring device
JPS6126427A (en) * 1984-07-13 1986-02-05 三菱電機株式会社 Transformer operation monitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS453786Y1 (en) * 1966-10-29 1970-02-21
JPS517456A (en) * 1974-07-06 1976-01-21 Sanyo Electric Co Henatsukino kafukakenshutsusochi

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS453786Y1 (en) * 1966-10-29 1970-02-21
JPS517456A (en) * 1974-07-06 1976-01-21 Sanyo Electric Co Henatsukino kafukakenshutsusochi

Also Published As

Publication number Publication date
JPS57173329A (en) 1982-10-25

Similar Documents

Publication Publication Date Title
US5182547A (en) Neutral wire current monitoring for three-phase four-wire power distribution system
RU2503110C2 (en) System and method of protection of electric circuit against overload current
US5559719A (en) Digitally controlled circuit interrupter with improved automatic selection of sampling interval for 50 Hz and 60 Hz power systems
US4423459A (en) Solid state circuit protection system and method
US4446498A (en) Electronic control system for overload relay or the like
US4423458A (en) Signal processing system for overload relay or the like
KR101205201B1 (en) Incoming and Distributing Panel with Zero-Phase Harmonic Active Filter
US7579712B2 (en) Power system protection system
US5331501A (en) Electrical switching apparatus with digital trip unit and memory reset
US20230208187A1 (en) Photovoltaic disconnect device for storage integration
CN110620434A (en) Block terminal based on intelligent monitoring
CN211296159U (en) Overload control circuit
US5729119A (en) Dual mode power supply and under voltage trip device
CA2145471C (en) Overcurrent trip unit with separately adjustable neutral protection
EP0414657B1 (en) Electronic device for detection and storage of short circuit currents switched off by a power circuit breaker
JPH0158736B2 (en)
JPH0993784A (en) Power saving and overload avoidance apparatus and power saving and overload avoidance method
RU168605U1 (en) TRANSFORMER SUBSTATION
US5390066A (en) Protection device for electrical appliances, machines and installations
EA018813B1 (en) Alternating voltage stabiliser (embodiments)
CN204258443U (en) A kind of three-phase multifunctional numerical monitor Electrical Safety automatic monitoring device
US7206177B2 (en) Device and method for protection against overcurrents in an electrical energy distribution cabinet
KR20170042070A (en) Apparatus and method for preventing disaster caused by short-circuit in electric power systems
CN210608696U (en) Block terminal based on intelligent monitoring
EP0999629A1 (en) Device for the thermal overload protection of an electric motor and related method