JPH0158344B2 - - Google Patents
Info
- Publication number
- JPH0158344B2 JPH0158344B2 JP58183393A JP18339383A JPH0158344B2 JP H0158344 B2 JPH0158344 B2 JP H0158344B2 JP 58183393 A JP58183393 A JP 58183393A JP 18339383 A JP18339383 A JP 18339383A JP H0158344 B2 JPH0158344 B2 JP H0158344B2
- Authority
- JP
- Japan
- Prior art keywords
- needle valve
- servo motor
- opening
- needle
- valve opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 230000007246 mechanism Effects 0.000 claims description 10
- 238000010586 diagram Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B1/00—Engines of impulse type, i.e. turbines with jets of high-velocity liquid impinging on blades or like rotors, e.g. Pelton wheels; Parts or details peculiar thereto
- F03B1/04—Nozzles; Nozzle-carrying members
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Hydraulic Turbines (AREA)
- Control Of Water Turbines (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は多ノズル式ペルトン水車の水口開度
を制御するためのニードル弁制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a needle valve control device for controlling the water port opening of a multi-nozzle Pelton turbine.
第1図は2ノズル式ペルトン水車の従来のニー
ドル弁制御装置の構成図を示したものである。図
において、1は水車のランナ、2A,2Bはノズ
ル、3A,3Bはニードル弁、4A,4B,5は
ニードル弁駆動リンク機構、6は油圧サーボモー
タ、7,8は油圧サーボモータのそれぞれ閉側絞
り弁、開側絞り弁、9は主配圧弁、10はレター
ンワイヤ、11は基準周波数設定器、12は周波
数検出器、13は増幅器、14はアクチユエー
タ、15は補助サーボモータ、16は主配圧弁駆
動ワイヤ、17は主配圧弁駆動リンクである。
FIG. 1 shows a configuration diagram of a conventional needle valve control device for a two-nozzle Pelton turbine. In the figure, 1 is a water turbine runner, 2A and 2B are nozzles, 3A and 3B are needle valves, 4A, 4B and 5 are needle valve drive link mechanisms, 6 is a hydraulic servo motor, and 7 and 8 are hydraulic servo motors, respectively. Side throttle valve, open side throttle valve, 9 is a main pressure distribution valve, 10 is a return wire, 11 is a reference frequency setter, 12 is a frequency detector, 13 is an amplifier, 14 is an actuator, 15 is an auxiliary servo motor, 16 is a main The pressure distribution valve drive wire 17 is the main pressure distribution valve drive link.
この構成において、水車の速度が下降して周波
数検出器12が出力する周波数信号のレベルが低
下すると、該周波数信号の値と基準周波数設定器
11の基準周波数設定信号との間に偏差が生じ、
ニードル弁制御装置が作動する。即ち、上記偏差
に対応してアクチユエータ14が作動し、補助サ
ーボモータ15により主配圧弁駆動ワイヤ16が
図示矢印の如く上方へ引き上げられ、主配圧弁駆
動リンク17が押下げられて圧油が主配圧弁9を
通して油圧サーボモータ6に入る。これにより、
ニードル弁駆動リンク機構5,4A,4Bが図示
矢印方向に移動してニードル弁3A,3Bを開方
向に駆動し、水車速度が上昇し始め、遂には上記
基準周波数信号に対応する水車速度となる。水車
速度が上昇した場合も同様にして水車速度が調速
される。 In this configuration, when the speed of the water turbine decreases and the level of the frequency signal output by the frequency detector 12 decreases, a deviation occurs between the value of the frequency signal and the reference frequency setting signal of the reference frequency setting device 11.
The needle valve control is activated. That is, the actuator 14 operates in response to the deviation, and the main pressure distribution valve drive wire 16 is pulled upward as shown by the arrow in the figure by the auxiliary servo motor 15, and the main pressure distribution valve drive link 17 is pushed down, so that the pressure oil is It enters the hydraulic servo motor 6 through the pressure distribution valve 9. This results in
The needle valve drive link mechanisms 5, 4A, and 4B move in the direction of the arrow in the figure to drive the needle valves 3A and 3B in the opening direction, and the water turbine speed begins to increase and finally reaches the water turbine speed that corresponds to the reference frequency signal. . Even when the water wheel speed increases, the water wheel speed is controlled in the same manner.
このように、従来は油圧サーボ機構を用いてニ
ードル弁の開度を制御するようにしている為、圧
油発生装置や油圧サーボ弁等を必要とする等、装
置が複雑で大型、高価になると云う問題があつ
た。 Conventionally, a hydraulic servo mechanism has been used to control the opening of the needle valve, which requires a pressure oil generator, hydraulic servo valve, etc., making the device complicated, large, and expensive. I had a problem.
この発明は上記した従来の問題点に鑑みてなさ
れたもので、各ニードル弁の開度位置を電動サー
ボモータを用いてフイードバツク制御するように
し、その制御目標値は共通のニードル弁開度設定
器から与えて純電気的な構成とすることにより、
従来に比して、著しく、構成が簡単で、小型で、
安価に作ることができるペルトン水車のニードル
弁制御装置を提案するものである。
This invention was made in view of the above-mentioned conventional problems, and the opening position of each needle valve is feedback-controlled using an electric servo motor, and the control target value is set by a common needle valve opening setting device. By giving it a pure electrical configuration,
It is significantly easier to configure, smaller, and
This paper proposes a needle valve control device for a Pelton water turbine that can be manufactured at low cost.
第2図ははこの発明の一実施例をブロツク図で
示したものである。
FIG. 2 is a block diagram showing one embodiment of the present invention.
この図において、水車ノズル2Aのニードル弁
3Aの開閉駆動は電動サーボモータ21によつて
行われる。ニードル弁3Aの開閉位置即ちニード
ル弁開度はサーボモータ21の動作を電気信号に
変換して取出すニードル弁開度検出器22によつ
て検出され、この検出信号はフイードバツクされ
て比較器24に入力される。比較器24はニード
ル弁開度指令器25のニードル弁開度指令信号と
上記検出信号の値を比較してその偏差をサーボモ
ータ駆動装置23に制御信号として供給する。サ
ーボモータ駆動装置23は上記偏差が零になるよ
うにサーボモータ21を制御する。ニードル弁3
Bに対しても上記21〜25を具える電気式サー
ボ機構は同じように設けられる。 In this figure, an electric servo motor 21 drives a needle valve 3A of a water turbine nozzle 2A to open and close. The opening/closing position of the needle valve 3A, that is, the needle valve opening degree, is detected by a needle valve opening degree detector 22 that converts the operation of the servo motor 21 into an electric signal and extracts it, and this detection signal is fed back and input to the comparator 24. be done. The comparator 24 compares the needle valve opening command signal from the needle valve opening command device 25 with the value of the detection signal, and supplies the deviation to the servo motor drive device 23 as a control signal. The servo motor drive device 23 controls the servo motor 21 so that the above deviation becomes zero. Needle valve 3
The electric servo mechanism provided with the above-mentioned 21 to 25 is similarly provided for B.
この構成において、第1図は水車のランナ1の
速度が変動してニードル弁開度指令器25が出力
するニードル弁開度指令信号の大きさが変わる
と、比較器24が偏差出力を発生するので、サー
ボモータ21が該偏差が無くなる開度位置までニ
ードル弁3Aを駆動し、ニードル弁3Aは上記ニ
ードル弁指令信号により指令された新たな位置に
自動位置決めされる。ニードル弁3Bについても
同様であり、この結果、水車速度が新な速度に調
速されることになる。 In this configuration, FIG. 1 shows that when the speed of the runner 1 of the water turbine fluctuates and the magnitude of the needle valve opening command signal output from the needle valve opening command device 25 changes, the comparator 24 generates a deviation output. Therefore, the servo motor 21 drives the needle valve 3A to the opening position where the deviation disappears, and the needle valve 3A is automatically positioned to a new position commanded by the needle valve command signal. The same applies to the needle valve 3B, and as a result, the water wheel speed is controlled to a new speed.
本実施例では、ニードル弁3A,3Bの開度位
置がフイードバツク制御されるので、その位置決
め制度は高い。 In this embodiment, since the opening positions of the needle valves 3A and 3B are feedback-controlled, the positioning accuracy is high.
本実施例は、ノズルが2つのばあいであるが、
ノズル数が3つ以上の場合でも、それぞれに上記
21〜25を具える電気式サーボモータ機構を設
ければよく、制御目標値を与えるニードル弁開度
設定器は1台でよい。 In this example, there are two nozzles, but
Even when the number of nozzles is three or more, it is sufficient to provide each nozzle with an electric servo motor mechanism having the above-mentioned servo motor mechanisms 21 to 25, and only one needle valve opening setting device for providing the control target value is sufficient.
この発明は以上説明した通り、ニードル弁の開
度位置を油圧式サーボ機構ではなく、電気式サー
ボ機構を用いて純電気的に行うようにしたので、
前記した圧油発生装置等が不要になり、従来に比
し、極めて構成が簡単になり、小型で安価に製作
することができる。
As explained above, in this invention, the opening position of the needle valve is determined purely electrically using an electric servo mechanism instead of a hydraulic servo mechanism.
The above-mentioned pressure oil generator and the like are not required, and the structure is extremely simple compared to the conventional one, and it can be manufactured in a small size and at low cost.
第1図は従来のニードル弁制御装置の構成を示
す図、第2図はこの発明の一実施例を示すブロツ
ク図である。
図において、21……電動サーボモータ、22
……ニードル弁開度検出器、23……駆動装置、
24……比較器、25……ニードル弁開度指令
器。なお、図中、同一符号は同一または相当する
部分を示す。
FIG. 1 is a diagram showing the configuration of a conventional needle valve control device, and FIG. 2 is a block diagram showing an embodiment of the present invention. In the figure, 21... electric servo motor, 22
... Needle valve opening detector, 23 ... Drive device,
24...Comparator, 25...Needle valve opening command device. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.
Claims (1)
位置をそれぞれ制御する電気式サーボ機構と該電
気式サーボ機構に共通のニードル弁開度指令をあ
たえるニード弁開度指令器を備えていることを特
徴とするペルトン水車のニードル弁制御装置。1. It is characterized by being equipped with an electric servo mechanism that controls the opening position of each needle valve of a multi-nozzle Pelton water turbine, and a needle valve opening command device that gives a common needle valve opening command to the electric servo mechanism. A needle valve control device for a Pelton turbine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58183393A JPS6073064A (en) | 1983-09-29 | 1983-09-29 | Needle valve controller for pelton turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58183393A JPS6073064A (en) | 1983-09-29 | 1983-09-29 | Needle valve controller for pelton turbine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6073064A JPS6073064A (en) | 1985-04-25 |
JPH0158344B2 true JPH0158344B2 (en) | 1989-12-11 |
Family
ID=16134987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58183393A Granted JPS6073064A (en) | 1983-09-29 | 1983-09-29 | Needle valve controller for pelton turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6073064A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0723711B2 (en) * | 1987-11-10 | 1995-03-15 | 富士電機株式会社 | Turbine needle valve opening unbalance detection device |
JPH0245661A (en) * | 1988-08-05 | 1990-02-15 | Meidensha Corp | Governor controller for water wheel |
JP2559965Y2 (en) * | 1988-10-11 | 1998-01-19 | 株式会社明電舎 | Pelton turbine driving equipment |
CN107100788A (en) * | 2017-06-30 | 2017-08-29 | 武汉武水电气技术有限责任公司 | Hydraulic turbine nozzle or guide vane opening control system |
CN107191317A (en) * | 2017-07-07 | 2017-09-22 | 武汉武水电气技术有限责任公司 | It is a kind of to be used as power rotational speed of water turbine modulator of the water as working media using hydraulic pressure |
-
1983
- 1983-09-29 JP JP58183393A patent/JPS6073064A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6073064A (en) | 1985-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3688495A (en) | Control system for metering the fuel flow in gas turbine engines | |
US4007361A (en) | Adaptive control system using position feedback | |
US5285715A (en) | Electrohydraulic servovalve with flow gain compensation | |
GB1083943A (en) | Improvements in control system | |
US3274443A (en) | Redundant speed control system | |
US4196472A (en) | Stall control apparatus for axial flow compressors | |
JPS61256003A (en) | Fluid power drive | |
US3814537A (en) | Turbine nozzle control | |
US4335694A (en) | Fuel supply system for internal combustion engines | |
JPS61215170A (en) | Flow control servo device for fluid device | |
JPH0158344B2 (en) | ||
GB2026212A (en) | Controlling production processes | |
KR840001325B1 (en) | Turbine control device | |
JPS61232996A (en) | System for supplying engine for aircraft with fuel | |
US4326376A (en) | Governorless gas turbine fuel control | |
US4203297A (en) | Governing system for use in sliding-pressure type turbine power plant | |
IT8049875A1 (en) | PROCEDURE AND APPARATUS TO CONTROL PRODUCTION PROCESSES. | |
US4267693A (en) | Hydromechanical fuel control with independent electromechanical interface | |
US3213613A (en) | Fuel control mechanism for a gas turbine engine | |
US4888537A (en) | Method of monitoring the end position of a controlling element and circuit arrangement for the carrying out of the method | |
DE2315423A1 (en) | FUEL CONTROL | |
JPS6117225Y2 (en) | ||
DE2251158C3 (en) | Remote control device of a ship propulsion engine with a run-up control | |
JPH11338552A (en) | Electro-pneumatic transducer | |
SU1132031A1 (en) | Method of regulating steam turbine |