JPH0158212B2 - - Google Patents

Info

Publication number
JPH0158212B2
JPH0158212B2 JP11805282A JP11805282A JPH0158212B2 JP H0158212 B2 JPH0158212 B2 JP H0158212B2 JP 11805282 A JP11805282 A JP 11805282A JP 11805282 A JP11805282 A JP 11805282A JP H0158212 B2 JPH0158212 B2 JP H0158212B2
Authority
JP
Japan
Prior art keywords
rubber
molecular weight
low molecular
residue
modified low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11805282A
Other languages
Japanese (ja)
Other versions
JPS598737A (en
Inventor
Naotake Kono
Hideo Takamatsu
Koichi Wada
Shiro Osada
Kyoto Ootsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP11805282A priority Critical patent/JPS598737A/en
Publication of JPS598737A publication Critical patent/JPS598737A/en
Publication of JPH0158212B2 publication Critical patent/JPH0158212B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、加工性にすぐれ、改善された加硫速
床を有し、すぐれた加硫物々性を䞎えるゎム組成
物に関する。 近幎、ゎムの甚途は倚岐にわたり、その芁求性
胜も耇雑化しおいる。それに察応しお皮々の新し
いタむプのゎムやゎム甚副資材が登堎しおきおい
る。そのなかで、固圢ゎムの可塑剀改質剀ず
しお皮々の液状ゎムが提案され、珟圚䞀郚の甚途
で賞甚されおいる。䟋えば、官胜基を有さない液
状ゎムが固圢ゎムの反応性可塑剀ずしお、たたは
分鎖にカルボキシル基が酞無氎基を有する液状ゎ
ムが接着性を改善する反応性可塑剀ずしお皮々提
案されおいる。これらの液状ゎムは、各々個有の
特城を有しおおり、それ自䜓ゎム可塑剀改質
剀ずしお有甚なものであるが、必ずしもすべお
の甚途にわた぀お十分満足されるものではない。
すなわち、前者の液状ゎムは固圢ゎムに察する可
塑効果にすぐれるものの、加硫物ずしたずきのモ
ゞナラス、及び硬床の改善たでは望めないし、䞀
方埌者の液状ゎムはモゞナラス及び硬床の改善効
果はあるものの、䞀般に可塑効果は小さいものず
なるし、加硫する時にその加硫速床が遅くなるず
いう欠点を有しおいる。 本発明者らは、前述した埓来のゎム甚可塑剀
改質剀の欠点を改善し、すぐれた加硫ゎム組
成物を埗るべく鋭意怜蚎した結果、特定の倉性䜎
分子量ゞ゚ン系ゎムを可塑剀ずしお䜿甚した堎
合、可塑性、したが぀おは加工性にすぐれ、加硫
した時モゞナラスおよび硬床等の加硫物々性にす
ぐれ、しかも加硫速床が改善されるこずを芋出
し、本発明を完成するに到぀た。 本発明によれば、前述の目的は、可塑剀を含有
する固圢ゎム組成物においお、可塑剀ずしお分子
量6000〜100000、ビニル結合量35以䞋の䜎分子
量ゞ゚ン系ゎムであ぀お、該ゎムの偎鎖ずしお䞀
般匏 ここで、は酞玠原子もしくはむオり原子が䞻
鎖䞭に介圚しおもよい炭玠数20たでの炭化氎玠残
基を衚わし、は、
The present invention relates to a rubber composition that has excellent processability, an improved vulcanization rate, and provides excellent vulcanizable properties. In recent years, rubber has been used in a wide variety of applications, and its required performance has become more complex. In response to this trend, various new types of rubber and auxiliary materials for rubber have appeared. Among these, various liquid rubbers have been proposed as plasticizers (modifiers) for solid rubber, and are currently being used in some applications. For example, various liquid rubbers without functional groups have been proposed as reactive plasticizers for solid rubber, and liquid rubbers with carboxyl groups and acid anhydride groups in the branch chain have been proposed as reactive plasticizers to improve adhesion. . Each of these liquid rubbers has its own characteristics, and although they are useful as rubber plasticizers (modifiers), they are not necessarily fully satisfactory for all uses.
That is, although the former liquid rubber has an excellent plasticizing effect on solid rubber, it cannot be expected to improve the modulus and hardness when made into a vulcanized product, while the latter liquid rubber has an effect of improving the modulus and hardness. However, the plasticizing effect is generally small, and the vulcanization rate during vulcanization is slow. The present inventors have made intensive studies to improve the drawbacks of the conventional rubber plasticizers (modifiers) mentioned above and to obtain an excellent vulcanized rubber composition. It was discovered that when used as an agent, it has excellent plasticity and therefore processability, and when vulcanized, it has excellent vulcanized physical properties such as modulus and hardness, and the vulcanization rate is improved, and the present invention was completed. I came to the point. According to the present invention, the above-mentioned object is to provide a solid rubber composition containing a plasticizer, in which the plasticizer is a low molecular weight diene rubber having a molecular weight of 6,000 to 100,000 and a vinyl bond content of 35% or less. General formula () as a chain (Here, R represents a hydrocarbon residue having up to 20 carbon atoms in which an oxygen atom or a sulfur atom may be interposed in the main chain, and A is

【匏】R1もしくはR2 は炭玠数20たでの炭化氎玠残基を瀺すで瀺され
るアミノ残基、たたは第玚窒玠原子を耇玠原子
ずしお含有する耇玠環残基を衚わす で瀺される䜍に第玚アミノ基を有する基を含
有するスクシンむミド誘導䜓残基を前蚘ゎム䞭の
単量䜓単䜍100あたり0.1〜10モル含有しおなる倉
性䜎分子量ゞ゚ン系ゎムを甚いるこずにより達成
される。なお、䞀般匏においおスクシンむ
ミド環䞭の氎玠、特に炭玠原子ず結合しおいる
個の氎玠原子のいずれか䞀方は、ゎム䞻鎖分子ず
の単結合子を圢成するために脱離しおいおもよ
い。すなわち、䞀般匏は のような圢をしおいおもよい。 本発明においお䜿甚される固圢ゎムずは、分子
量が200000以䞊であるゞ゚ン系ゎムであり、その
䟋ずしお倩然ゎム、合成ポリむ゜プレンゎム、ブ
タゞ゚ン−む゜プレン共重合ゎム、スチレン−ブ
タゞ゚ン共重合ゎム、スチレン−む゜プレン共重
合ゎム、ブタゞ゚ン−アクリロニトリル共重合、
む゜プレン−アクリロニトリル共重合ゎム、クロ
ロプレンゎム、ブチルゎムたたぱチレン−プロ
ピレン−ゞ゚ン共重合ゎム等が挙げられる。 本発明においお䜿甚される倉性䜎分子量ゞ゚ン
系ゎムは、 (ã‚€) 䜎分子量ゞ゚ン系ゎムに無氎マレむン酞、マ
レむン酞、マレむン酞モノ゚ステル、マレむン
酞ゞ゚ステル等のマレむン酞系化合物を付加反
応により付加し、偎鎖ずしお無氎コハク酞ス
クシニツクアンハむドラむド残基、コハク酞
スクシニツクアシド、コハク酞モノ゚ステル
スクシネヌト残基、コハク酞ゞ゚ステル
スクシネヌト残基等のスクシニル残基を導
入しお、次いで䞀般匏 H2N−− ここで、は酞玠原子もしくはむオり原子が
䞻鎖䞭に介圚しおもよい炭玠数20たでの炭化氎
玠残基を衚わし、は、
[Formula] (R 1 or R 2 represents a hydrocarbon residue having up to 20 carbon atoms) or a heterocyclic residue containing a tertiary nitrogen atom as a heteroatom) This is achieved by using a modified low molecular weight diene rubber containing 0.1 to 10 moles of a succinimide derivative residue containing a group having a tertiary amino group at the N-position, per 100 monomer units in the rubber. Ru. In addition, in the general formula (), hydrogen in the succinimide ring, especially 2 bonded to the carbon atom
Any one of the hydrogen atoms may be eliminated to form a single bond with the rubber main chain molecule. That is, the general formula () is It may take the form of The solid rubber used in the present invention is a diene rubber having a molecular weight of 200,000 or more, examples of which include natural rubber, synthetic polyisoprene rubber, butadiene-isoprene copolymer rubber, styrene-butadiene copolymer rubber, and styrene-based rubber. Isoprene copolymer rubber, butadiene-acrylonitrile copolymer,
Examples include isoprene-acrylonitrile copolymer rubber, chloroprene rubber, butyl rubber, and ethylene-propylene-diene copolymer rubber. The modified low molecular weight diene rubber used in the present invention is obtained by (a) adding a maleic acid compound such as maleic anhydride, maleic acid, maleic acid monoester, or maleic diester to a low molecular weight diene rubber by an addition reaction; , succinyl residues such as succinic anhydride, succinic acid, succinic monoester (succinate), and succinic diester (succinate) residues are introduced as side chains. Then, the general formula () H 2 N-R-A (where R represents a hydrocarbon residue having up to 20 carbon atoms in which an oxygen atom or a sulfur atom may be interposed in the main chain, and A is ,

【匏】R1もしく はR2は炭玠数20たでの炭化氎玠残基を瀺す
で瀺されるアミノ残基、たたは第玚窒玠原子
を耇玠原子ずしお含有する耇玠環残基を瀺す
で瀺されるアミンを反応せしめた埌、脱氎もし
くは脱アルコヌルによりスクシンむミド環
を圢成せしめるか、たたは (ロ) 䜎分子量ゞ゚ン系ゎムに䞀般匏 ここでおよびは䞀般匏で瀺すもの
ず各々同じ で瀺されるマレむミド誘導䜓を付加反応により
付加せしめるか、 によ぀お補造される。 本発明においお䜿甚する倉性䜎分子量ゞ゚ン系
ゎムのベヌスずなる䜎分子量ゞ゚ン系ゎムずしお
はポリブタゞ゚ン、ポリむ゜プレン、ブタゞ゚ン
−む゜プレン共重合䜓、ブタゞ゚ン−スチレン共
重合䜓、む゜プレン−スチレン共重合䜓、ブタゞ
゚ン−アクリロニトリル共重合䜓たたはむ゜プレ
ン−アクリロニトリル共重合䜓等が挙げられる。
なかでも、む゜プレンを䞻䜓ずする重合䜓、特に
ポリむ゜プレンが奜たしい。 これらの䜎分子量ゞ゚ン系ゎムの分子量が䜎過
ぎるず最終的に埗られた倉性䜎分子量ゞ゚ン系ゎ
ムを固圢ゎムに配合した堎合に可塑効果には問題
はないが、加硫した堎合にその物性が倧幅に䜎䞋
するし、逆に、高過ぎるず倉性のための反応に問
題が生じるし、たた埗られた倉性䜎分子量ゞ゚ン
系ゎムを固圢ゎムに配合した堎合に十分なる可塑
効果が認められない。このような芳点から、分子
量は6000〜100000であるこずが必芁であり、奜適
には15000〜70000である。なお、ここで分子量は
粘床平均分子量を意味し、30℃のトル゚ン䞭で枬
定した固有粘床から求められるものである。 䜎分子量ゞ゚ン系ゎムにおいおビニル結合量が
倚過ぎるず、䜎分子量ゞ゚ン系ゎム自䜓の粘床が
高くなり、倉性反応の際の取扱い䜜業性が悪くな
るばかりでなく、倉性䜎分子量ゞ゚ン系ゎムずし
お固圢ゎムに配合した堎合、可塑効果も小さくな
るし、さらにはその加硫物の物性も䜎䞋しおく
る。したが぀おビニル結合量は35以䞋であるこ
ずが必須であり、奜適には20以䞋である。な
お、ここでビニル結合ずは、結合及び、
結合を意味し、ビニル結合量は赀倖線吞収スペク
トルにより枬定された倀をいう。 このような䜎分子量ゞ゚ン系ゎムは、ブタゞ゚
ン単量䜓やむ゜プレン単量䜓等の共圹ゞ゚ンをチ
ヌグラヌ重合法、アニオン重合法たたはラゞカル
重合法によ぀お補造される。たた前蚘の共圹ゞ゚
ン等の高分子量の重合物や倩然ゎムを䟋えば熱分
解法等によ぀お分子量を䜎䞋せしめるこずによ぀
お補造される。 本発明においお倉性䜎分子量ゞ゚ン系ゎムを前
è¿°(ã‚€)の方法で補造する際に、無氎マレむン酞、マ
レむン酞、マレむン酞モノ゚ステルたたはマレむ
ン酞ゞ゚ステルの付加した䜎分子量ゞ゚ン系ゎム
に反応させるアミンは、䞀般匏 H2N−− で衚わされるものであり、ずしおは (a) 分岐があ぀おもよい炭玠数20たでのアルキレ
ン残基 (b) 炭玠数20たでのシクロアルキレン残基、 (c) 䞀般匏―R3−―oR4ここで、R3及びR4は
゚チレン基、䜎玚アルキル眮換゚チレン基およ
びプロピレン基よりなる矀より遞ばれた同䞀た
たは異なるアルキレン残基であり、は酞玠原
子たたはむオり原子であり、は以䞊の敎数
であるで衚わされる炭玠数20たでの異皮原子
含有炭化氎玠残基、 (d) 炭玠数20たでの芳銙族炭化氎玠残基、 たたは、 (e) 酞玠原子やむオり原子等の異皮原子を含有す
る炭玠数20たでの芳銙族炭化氎玠残基、 が挙げられる。これらのなかでも経枈性や入手し
やすさの点から、゚チレン、プロピレン、ブチレ
ン、む゜ブチレンあるいはペンチレン等のアルキ
レン残基、シクロペンチレンやシクロオクチレン
等のシクロアルキレン残基、たたぱトキシ゚チ
レンや゚トキシプロピレン等のオキシアルキレン
残基の酞玠原子含有アルキレン残基が奜たしい。
たたずしおは (i) 炭玠数20たでのゞアルキルアミノ残基、 (ii) 炭玠数20たでのゞアリヌルアミノ残基、 (iii) 炭玠数20たでのゞアラルキルアミノ残基、等
の䞀般匏
[Formula] (R 1 or R 2 represents a hydrocarbon residue with up to 20 carbon atoms)
(indicates an amino residue represented by or a heterocyclic residue containing a tertiary nitrogen atom as a heteroatom)
After reacting with the amine represented by, a (succinyl)imide ring is formed by dehydration or dealcoholization, or (b) a low molecular weight diene rubber is formed with the general formula (). (Here, R and A are each the same as those shown in the general formula ().) It is produced by adding a maleimide derivative represented by the following by an addition reaction, or by the following steps. Examples of the low molecular weight diene rubber that is the base of the modified low molecular weight diene rubber used in the present invention include polybutadiene, polyisoprene, butadiene-isoprene copolymer, butadiene-styrene copolymer, isoprene-styrene copolymer, and butadiene-styrene copolymer. Examples include acrylonitrile copolymer and isoprene-acrylonitrile copolymer.
Among these, polymers mainly composed of isoprene, particularly polyisoprene, are preferred. If the molecular weight of these low molecular weight diene rubbers is too low, there will be no problem with the plasticizing effect when the finally obtained modified low molecular weight diene rubber is blended into solid rubber, but the physical properties will deteriorate when vulcanized. On the other hand, if it is too high, problems will arise in the reaction for modification, and when the obtained modified low molecular weight diene rubber is blended into solid rubber, a sufficient plasticizing effect will not be observed. From this point of view, the molecular weight needs to be 6,000 to 100,000, preferably 15,000 to 70,000. Note that the molecular weight here means a viscosity average molecular weight, which is determined from the intrinsic viscosity measured in toluene at 30°C. If the amount of vinyl bonds in low molecular weight diene rubber is too large, the viscosity of the low molecular weight diene rubber itself becomes high, which not only impairs handling efficiency during the modification reaction, but also makes it difficult to use solid rubber as modified low molecular weight diene rubber. If it is added to the vulcanizate, the plasticizing effect will be reduced and the physical properties of the vulcanizate will also be deteriorated. Therefore, it is essential that the vinyl bond amount is 35% or less, preferably 20% or less. Note that vinyl bonds here include 1, 2 bonds and 3, 4 bonds.
It means a bond, and the vinyl bond amount refers to a value measured by infrared absorption spectrum. Such low molecular weight diene rubbers are produced by Ziegler polymerization, anionic polymerization or radical polymerization using conjugated dienes such as butadiene monomers and isoprene monomers. It can also be produced by reducing the molecular weight of a high molecular weight polymer such as the conjugated diene mentioned above or natural rubber by, for example, a thermal decomposition method. In the present invention, when producing the modified low molecular weight diene rubber by the method (a) above, the amine to be reacted with the low molecular weight diene rubber to which maleic anhydride, maleic acid, maleic acid monoester or maleic acid diester has been added is , is represented by the general formula () H 2 N-R-A, where R is (a) an alkylene residue having up to 20 carbon atoms, which may be branched, and (b) a cycloalkylene residue having up to 20 carbon atoms. (c) General formula (-R 3 -Z) - o R 4 (where R 3 and R 4 are the same or different alkylenes selected from the group consisting of ethylene group, lower alkyl-substituted ethylene group, and propylene group) a heteroatom-containing hydrocarbon residue having up to 20 carbon atoms, Z is an oxygen atom or a sulfur atom, and n is an integer of 1 or more; (d) an aromatic group having up to 20 carbon atoms; or (e) an aromatic hydrocarbon residue having up to 20 carbon atoms and containing a heteroatom such as an oxygen atom or a sulfur atom. Among these, alkylene residues such as ethylene, propylene, butylene, isobutylene, and pentylene, cycloalkylene residues such as cyclopentylene and cyclooctylene, and ethoxyethylene and ethoxypropylene are selected from the viewpoint of economy and availability. Oxygen atom-containing alkylene residues such as oxyalkylene residues are preferred.
A is a general formula such as (i) dialkylamino residue having up to 20 carbon atoms, (ii) diarylamino residue having up to 20 carbon atoms, (iii) dialkylamino residue having up to 20 carbon atoms, etc.

【匏】で瀺されるアミノ残基、た たは (iv) 第玚窒玠原子を異皮原子ずしお含有する
員環もしくは員環の耇玠環残基、 等が挙げられ、なかでもゞメチルアミノ、ゞ゚チ
ルアミノ、ゞブチルアミノ、ゞむ゜ブチルアミ
ノ、ゞペンチルアミノ等のゞアルキルアミノ残基
やゞシクロペンチルアミノ残基で代衚されるゞシ
クロアルキルアミノ残基が奜たしい。 このようなアミンの代衚的な䟋ずしお、ゞア
ルキルアミノアルキルアミン、−ゞア
ルキルアミノアルコキシアルキルアミンもしく
は該アミン䞭のアルコキシ郚分がポリアルコキシ
ずな぀たアミン、−−ゞアルキルアミノ
メチルベンゞルアミン、−−ゞアルキル
プニルアミン、−アミノアルキルピペリゞ
ン、−アミノアルキルピペコリン、−アミノ
アルキルモルホリン、−アミノアルキル−−
アルキルピペラゞン、アミノアルキルピリゞン、
ピコリルアミン等が挙げられる。 これらのなかでも、ゞメチルアミノ゚チル
アミン、ゞメチルアミノ゚チルアミン、ゞプ
ロピルアミノ゚チレルアミン、ゞメチルアミ
ノプロピルアミン、ゞ゚チルアミノプロピ
ルアミン、ゞメチルアミノブチルアミン、ゞ
゚チルアミノブチルアミン、ゞメチルアミノ
ヘキシルアミン又はゞメチルアミノデシルア
ミン等のゞアルキルアミノアルキルアミン、
−ゞメチルアミノ゚トキシ゚チルアミ
ン−ゞメチルアミノ゚トキシプロピル
アミン、さらにはα−−アミノプロピル−
−−ゞメチルアミノプロピルオキシ−ポ
リオキシ−−゚タンゞむル  䜆し、は〜たでの敎数である等の
−アルキルアミノアルコキシアルキルアミン
が奜たしく䜿甚される。 なお、前述したアミンの代りに、ポリ゚チレン
むミン、アミノアルコヌル、たたはN′−ゞ
プニル−−プニレンゞアミンを䜿甚した堎
合には、埌述の比范䟋で述べるように、本発明の
所期の目的が達成されない。 たた、本発明においお䜿甚される倉性䜎分子量
ゞ゚ン系ゎムを前述(ロ)の方法で補造する際に甚い
られるマレむミド誘導䜓は、䞀般匏 で衚わされるものであるが、及びは各々䞀般
匏たたはで定矩したものず同じであ
る。本発明においお奜たしく甚いられるマレむミ
ド誘導䜓ずしおは、−β−ゞメチルアミノ
゚チルマレむミド、−β−ゞ゚チルアミノ
゚チルマレむミド、−γ−ゞメチルアミノ
プロピルマレむミド、−γ−ゞ゚チルアミノ
プロピルマレむミド、−Ύ−ゞメチルアミノ
ブチルマレむミド、−Ύ−ゞ゚チルアミノ
ブチルマレむミド等の−ゞアルキルアミノ
アルキルマレむミドが挙げられる。 䜎分子量ゞ゚ン系ゎムに、無氎マレむン酞、マ
レむン酞、マレむン酞モノ゚ステル、マレむン酞
ゞ゚ステルたたは䞀般匏で瀺されるマレむ
ミド誘導䜓等のマレむン酞系化合物を付加させる
反応は、皮々の公知の方法が採甚されるが、䟋え
ば䜎分子量ゞ゚ン系ゎムずマレむン酞系化合物を
高熱䞋に混合撹拌する熱付加方法が奜たしく採甚
される。この堎合、過酞化物やアゟ化合物等のラ
ゞカル開始觊媒を甚いるこずが可胜である。その
䟋ずしおはベンゟむルパヌオキサむドやアゟビス
む゜ブチルニトリルが挙げられる。たたヘキサ
ン、トル゚ンたたはベンれン等の䞍掻性炭化氎玠
溶媒を甚いるこずが可胜である。反応枩床ずしお
は60〜250℃、特には100〜200℃、たた反応時間
〜20時間が奜たしい。 無氎マレむン酞、マレむン酞、マレむン酞モノ
゚ステルたたはマレむン酞ゞ゚ステルが付加した
䜎分子量ゞ゚ン系ゎムに䞀般匏で瀺される
アミンを反応させる反応は、〜220℃の枩床で
0.1分〜20時間の範囲で行なわれる。この反応に
おいおは、たず酞無氎基やカルボニル基がアミド
化され、次いで脱氎たたは脱アルコヌルによりむ
ミド化される。なお、䜎分子量ゞ゚ン系ゎムに付
加される官胜基ずしおは、前述したスクシンむミ
ド誘導䜓残基以倖に、物性に悪圱響を及がさない
皋床ならば少量の酞無氎基、カルボキシル基、カ
ルボン酞残基、カルボン酞アミド残基、たたはア
クリルアミド残基等の他の官胜基が存圚しおいお
も䜕ら支障がない。 このようにしお、偎鎖に䞀般匏で衚わさ
れるスクシンむミド誘導䜓残基を含有する倉性䜎
分子量ゞ゚ン系ゎムが埗られるが、その含有量が
少な過ぎるず倉性䜎分子量ゞ゚ン系ゎムを固圢ゎ
ムに配合しお加硫した堎合、加硫速床の改善、硬
床やモゞナラス等の加硫物々性の改善が実珟され
ない。䞀方、含有量が倚過ぎるず固圢ゎムずの盞
溶性が悪くなり、固圢ゎムに配合した堎合、末加
硫ゎム物性の䜎䞋が倧きくなる。したが぀お前蚘
スクシンむミド誘導䜓残基の含有量は、䜎分子量
ゞ゚ン系ゎム䞭の単量䜓単䜍100あたりのモル数
以䞋、単に含有量ず略蚘するで0.1〜20モル、
特に〜10モルの範囲にあるのが奜たしい。 本発明においお䜿甚する倉性䜎分子量ゞ゚ン系
ゎムは、固圢ゎムに配合した堎合、すぐれた可塑
効果を瀺し、固圢ゎム組成物を加硫するず、加硫
速床が倧きくなるし、加硫物々性、特にモゞナラ
ス及び硬床を著しく改善する。なお、本発明の倉
性䜎分子量ゞ゚ン系ゎムは、前述したように加硫
速床を向䞊させるため、加硫促進剀の䜿甚量の枛
量が可胜ずなるし、堎合によ぀おは加硫促進剀を
党く䜿甚しなくおもよい。加硫促進剀の枛量は、
加硫促進剀のブルヌム珟象の䜎枛に぀ながるの
で、未加硫時におけるゎム組成物の接着の点で有
利であるし、ゎム補品の倖芳が奜たしいし、さら
には補品物性のバラツキを小さくするずいうメリ
ツトを生ずる。 倉性䜎分子量ゞ゚ン系ゎムを固圢ゎムに配合す
る際の配合割合は、倉性䜎分子量ゞ゚ン系ゎム
固圢ゎムの重量比で97〜6080、より奜たし
くは95〜3565である。 倉性䜎分子量ゞ゚ン系ゎムを固圢ゎムに配合す
る際には、ゎム補品補造時の際に通垞䜿甚される
皮々のゎム配合薬品が必芁に応じお甚いられる。
その䟋ずしおは、むオりやパヌオキサむド等の加
硫剀、酞化亜鉛やステアリン酞等の加硫助剀、加
硫促進剀、老化防止剀、カヌボンブラツク゜フ
トカヌボンブラツク、ハヌドカヌボンブラツク、
シリカ、炭酞カルシりムもしくはクレヌ等の充填
剀、軟化剀オむル、ロゞン暹脂、テルペン暹
脂、石油暹脂、プノヌル暹脂、゚ポキシ暹脂も
しくはポリ゚ステル暹脂等の暹脂が挙げられる。 本発明の倉性䜎分子量ゞ゚ン系ゎムを配合しお
なる固圢ゎム組成物は、トレツド、カヌカス、ビ
ヌド、ビヌドフむラヌ、リムストリツプ等の自動
車タむダの各郚、コンベアベルト、−ベルト、
ホヌス、防振材、ゎムロヌル等の工業補品、ゎム
匕垃、ゎム糞、茪ゎム、ゎム履物、スポンゞゎム
等のゎム補品の補造に䟛される。 以䞋、実斜䟋によ぀お本発明を具䜓的に説明す
るが、本発明はこれらの実斜䟋によ぀お䜕ら限定
されるものではない。なお、実斜䟋䞭のゎムの物
性評䟡はJISK−6301に準じお行な぀た。たた実
斜䟋䞭の「郚」および「」は特に断わらない限
り重量基準を瀺す。 実斜䟋  觊媒ずしおブチルリチりムを甚いおむ゜プレン
単量䜓を重合するこずによ぀お埗られたビニル結
合量14、分子量31000の䜎分子量ポリむ゜プレ
ンゎム第衚䞭、LIR−ず略蚘するず無氎
マレむン酞ずを180℃で時間反応させるこずに
より、第の倉性䜎分子量ポリむ゜プレンゎムを
埗た。該ゎムは、赀倖線吞収スペクトルグラフむ
ヌにより、前蚘ゎム䞭のむ゜プレン単量䜓単䜍
100あたり無氎コハク酞残基が3.2モル付加しおい
る倉性䜎分子量ポリむ゜プレンゎム第衚䞭
LIR−ず略するであるこずが刀぀た。なお、
無氎コハク酞残基の同定及び定量は1790cm-1およ
び1870cm-1のおける酞無氎基のカルボニルにより
行な぀た。 無氎コハク酞残基の含有する倉性䜎分子量ポリ
む゜プレンゎムLIR−に−ゞメチル
アミノプロピルアミンを100℃で反応させた埌、
160℃で加熱するこずにより第の倉性䜎分子量
ポリむ゜プレンゎムを埗た。該ゎムは、赀倖線吞
収スペクトルグラフむにより調べたずころ、第
の倉性䜎分子量ポリむ゜プレンゎムの酞無氎基の
ほが党量が−ゞメチルアミノプロピルアミ
ン䞭の第玚アミノ基ず反応しおおり、−γ
−ゞメチルアミノプロピルスクシンむミド残基
が付加した倉性䜎分子量ポリむ゜プレンゎム以
䞋、第衚䞭、LIR−ず略蚘するが生成しお
いるこずが刀぀た。なお、−γ−ゞメチルア
ミノプロピルスクシンむミドの同定及び定量
は、1790cm-1もしくは1870cm-1付近の酞無氎基の
カルボニルに垰因する吞収の消倫、および1700cm
-1もしくは1770cm-1付近のスクシンむミドのカル
ボニルに垰因する吞収の生成にもずづいお行な぀
た。 なお、無氎コハク酞残基が付加しおいる倉性䜎
分子量ポリむ゜プレンゎムLIR−に゚チル
アルコヌルを100℃で反応させるこずにより、コ
ハク酞モノメチル残基が付加した倉性䜎分子量ポ
リむ゜プレンゎム第衚䞭、LIR−ず略蚘す
るを埗た。 前述の皮の倉性䜎分子量ポリむ゜プレン
ゎムを各々を甚い、第衚の配合に埓がい、バン
バリヌミキサヌにより倩然ゎム組成物を䜜補し、
各皮䜎分子量ポリむ゜プレンゎムによる可塑効
果、加硫促進効果およびゎム組成物の加硫物々性
を各々評䟡した。可塑効果はムヌニヌ粘床蚈で枬
定される100℃における粘床詊隓方法に぀いお
は、日本ゎム協䌚昭和55幎発行「ゎム詊隓法」第
140頁参照で、加硫促進効果は、145℃における
加硫速床であ぀お、JSRキナラストメヌタヌで枬
定される加硫床が90達成されるたでの時間T90
詊隓方法に぀いおは、前出「ゎム詊隓法」第213
頁参照で、加硫物々性はJISK−6301に準じお
評䟡した。
Amino residue represented by [Formula], or (iv) 5 containing a tertiary nitrogen atom as a heteroatom
membered ring or 6-membered ring heterocyclic residues, etc. Among them, dicyclo, which is represented by dialkylamino residues such as dimethylamino, diethylamino, dibutylamino, diisobutylamino, and dipentylamino, and dicyclopentylamino residues. Alkylamino residues are preferred. Typical examples of such amines include (dialkylamino)alkylamines, (N,N-dialkylaminoalkoxy)alkylamines, amines in which the alkoxy moiety of the amines is polyalkoxy, p-N,N- dialkylaminomethylbenzylamine, p-N,N-dialkylphenylamine, N-aminoalkylpiperidine, N-aminoalkylpipecoline, N-aminoalkylmorpholine, 1-aminoalkyl-4-
Alkylpiperazine, aminoalkylpyridine,
Examples include picolylamine. Among these, (dimethylamino)ethylamine, (dimethylamino)ethylamine, (dipropylamino)ethylamine, (dimethylamino)propylamine, (diethylamino)propylamine, (dimethylamino)butylamine, (diethylamino)butylamine, (dimethyl amino)
(dialkylamino)alkylamines, such as hexylamine or (dimethylamino)decylamine;
(N,N-dimethylamino)ethoxyethylamine (N,N-dimethylamino)ethoxypropylamine, and also α-(3-aminopropyl)-w
-(3-dimethylamino)propyl)oxy-poly(oxy-1,2-ethanediyl) ( However, (n is an integer from 1 to 7) etc.
N-alkylamino)alkoxyalkylamines are preferably used. In addition, when polyethyleneimine, amino alcohol, or N,N'-diphenyl-p-phenylenediamine is used instead of the above-mentioned amine, the desired effect of the present invention can be achieved as described in the comparative example below. Purpose not achieved. Furthermore, the maleimide derivative used in producing the modified low molecular weight diene rubber used in the present invention by the method (b) above has the general formula () where R and A are respectively the same as defined in general formula () or (). Maleimide derivatives preferably used in the present invention include N-(β-dimethylamino)
Ethylmaleimide, N-(β-diethylamino)
Ethylmaleimide, N-(γ-dimethylamino)
Propylmaleimide, N-(γ-diethylamino)
Propylmaleimide, N-(ÎŽ-dimethylamino)
Butylmaleimide, N-(ÎŽ-diethylamino)
N-(dialkylamino) such as butylmaleimide
Examples include alkylmaleimides. Various known methods can be used to add a maleic acid compound such as maleic anhydride, maleic acid, maleic acid monoester, maleic diester, or maleimide derivative represented by the general formula () to a low molecular weight diene rubber. For example, a heat addition method in which a low molecular weight diene rubber and a maleic acid compound are mixed and stirred under high heat is preferably employed. In this case, it is possible to use radical initiation catalysts such as peroxides and azo compounds. Examples include benzoyl peroxide and azobisisobutylnitrile. It is also possible to use inert hydrocarbon solvents such as hexane, toluene or benzene. The reaction temperature is preferably 60 to 250°C, particularly 100 to 200°C, and the reaction time is preferably 1 to 20 hours. The reaction in which the amine represented by the general formula () is reacted with a low molecular weight diene rubber to which maleic anhydride, maleic acid, maleic acid monoester or maleic acid diester is added is carried out at a temperature of 0 to 220°C.
The duration ranges from 0.1 minute to 20 hours. In this reaction, an acid anhydride group or a carbonyl group is first amidated, and then imidized by dehydration or dealcoholization. In addition to the above-mentioned succinimide derivative residues, the functional groups added to the low molecular weight diene rubber include small amounts of acid anhydride groups, carboxyl groups, carboxylic acid residues, and carboxylic acid residues as long as they do not adversely affect physical properties. There is no problem even if other functional groups such as amide residues or acrylamide residues are present. In this way, a modified low molecular weight diene rubber containing a succinimide derivative residue represented by the general formula () in the side chain is obtained, but if the content is too small, the modified low molecular weight diene rubber becomes a solid rubber. When these are blended together and vulcanized, improvements in vulcanization rate and vulcanized physical properties such as hardness and modulus cannot be realized. On the other hand, if the content is too large, the compatibility with solid rubber will deteriorate, and when blended into solid rubber, the physical properties of the final vulcanized rubber will be greatly reduced. Therefore, the content of the succinimide derivative residue is 0.1 to 20 moles per 100 monomer units in the low molecular weight diene rubber (hereinafter simply referred to as content),
In particular, it is preferably in the range of 1 to 10 moles. The modified low molecular weight diene rubber used in the present invention exhibits an excellent plasticizing effect when blended with solid rubber, and when the solid rubber composition is vulcanized, the vulcanization rate increases, and the vulcanized material properties are improved. In particular, the modulus and hardness are significantly improved. The modified low-molecular-weight diene rubber of the present invention improves the vulcanization rate as described above, so it is possible to reduce the amount of vulcanization accelerator used, and in some cases, it is possible to reduce the amount of vulcanization accelerator used. It may not be used at all. The reduction of vulcanization accelerator is
Since it leads to a reduction in the bloom phenomenon of the vulcanization accelerator, it is advantageous in terms of adhesion of the rubber composition during unvulcanization, provides a preferable appearance of the rubber product, and furthermore has the advantage of reducing variations in product physical properties. will occur. When blending modified low molecular weight diene rubber into solid rubber, the blending ratio is: modified low molecular weight diene rubber/modified low molecular weight diene rubber/
The weight ratio of solid rubber is 3/97 to 60/80, more preferably 5/95 to 35/65. When blending the modified low molecular weight diene rubber into solid rubber, various rubber compounding chemicals that are commonly used in the production of rubber products are used as necessary.
Examples include vulcanizing agents such as sulfur and peroxide, vulcanization aids such as zinc oxide and stearic acid, vulcanization accelerators, anti-aging agents, carbon black (soft carbon black, hard carbon black),
Fillers such as silica, calcium carbonate or clay, softeners (oils), resins such as rosin resins, terpene resins, petroleum resins, phenolic resins, epoxy resins or polyester resins are included. The solid rubber composition containing the modified low molecular weight diene rubber of the present invention can be used in various parts of automobile tires such as treads, carcass, beads, bead fillers, rim strips, conveyor belts, V-belts, etc.
It is used for manufacturing industrial products such as hoses, anti-vibration materials, and rubber rolls, as well as rubber products such as rubberized cloth, rubber thread, rubber bands, rubber footwear, and sponge rubber. EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples in any way. The physical properties of the rubber in the examples were evaluated in accordance with JISK-6301. Furthermore, "parts" and "%" in the examples are based on weight unless otherwise specified. Example 1 Low molecular weight polyisoprene rubber with a vinyl bond content of 14% and a molecular weight of 31,000 obtained by polymerizing isoprene monomer using butyllithium as a catalyst (abbreviated as LIR-A in Table 1) ) and maleic anhydride at 180° C. for 7 hours to obtain a first modified low molecular weight polyisoprene rubber. The isoprene monomer unit in the rubber was determined by infrared absorption spectroscopy.
Modified low molecular weight polyisoprene rubber with 3.2 mol of succinic anhydride residue added per 100 ml (see Table 1)
(abbreviated as LIR-B). In addition,
Identification and quantification of succinic anhydride residues were performed using the carbonyl of the acid anhydride group at 1790 cm -1 and 1870 cm -1 . After reacting modified low molecular weight polyisoprene rubber containing succinic anhydride residues (LIR-B) with N,N-dimethylaminopropylamine at 100°C,
A second modified low molecular weight polyisoprene rubber was obtained by heating at 160°C. When the rubber was examined by infrared absorption spectrography, it was found that
Almost all of the acid anhydride groups in the modified low molecular weight polyisoprene rubber react with the primary amino groups in N,N-dimethylaminopropylamine, resulting in N-(γ
It was found that a modified low molecular weight polyisoprene rubber (hereinafter abbreviated as LIR-D in Table 1) to which a -dimethylamino)propyl succinimide residue was added was produced. The identification and quantification of N-(γ-dimethylamino)propyl succinimide is based on the extinction of the absorption attributable to the carbonyl of the acid anhydride group near 1790 cm -1 or 1870 cm -1 and the absorption at 1700 cm -1.
This was based on the generation of absorption attributable to the carbonyl of succinimide near -1 or 1770 cm -1 . In addition, by reacting ethyl alcohol at 100°C with modified low molecular weight polyisoprene rubber (LIR-B) to which succinic anhydride residues have been added, modified low molecular weight polyisoprene rubber (LIR-B) to which monomethyl succinate residues have been added is produced. (abbreviated as LIR-C in Table 1) was obtained. Using each of the above-mentioned four (modified) low molecular weight polyisoprene rubbers, a natural rubber composition was prepared using a Banbury mixer according to the formulation shown in Table 1,
The plasticizing effect and vulcanization accelerating effect of various low molecular weight polyisoprene rubbers and the vulcanized physical properties of the rubber compositions were evaluated. The plasticizing effect is measured by the viscosity at 100℃ measured with a Mooney viscometer (for the test method, refer to "Rubber Test Methods" published by the Japan Rubber Association in 1981).
(see page 140), the vulcanization accelerating effect is the vulcanization rate at 145°C, which is the time T 90 required to reach a degree of vulcanization of 90% as measured by a JSR culastometer.
(For the test method, refer to "Rubber Test Method" 213 above.
(see page), and the vulcanized physical properties were evaluated according to JISK-6301.

【衚】 第衚から明らかなように、偎鎖ずしお−
γ−ゞメチルアミノプロピルサクシンむミド
残基が含有する倉性䜎分子量ポリむ゜プレンゎム
を甚いた堎合にのみ、極めお倧いなる可塑効果、
著しい加硫促進効果、そしお加硫物々性の改善が
同時に達成される。 実斜䟋  觊媒ずしおブチルリチりムを甚いお、ブタゞ゚
ン単量䜓ずむ゜プレン単量䜓を重合するこずによ
りブタゞ゚ン重合ブロツクず略蚘するずむ
゜プレン重合ブロツクず略蚘するが−
−−−−−なる圢態で぀なが぀た䜎分
子量ブタゞ゚ン−む゜プレンブロツク共重合ゎム
LBIR−ず略蚘するを調補した。該ゎムは、
分子量が18000であり、ビニル結合が18であり、
ゎム䞭のの割合は40であ぀た。該ゎムは無氎
マレむン酞を180℃で時間加熱反応させるこず
により倉性䜎分子量共重合ゎムを埗た。該倉性䜎
分子量共重合ゎムは、赀倖線吞収スペクトログラ
フむによ぀お調べるず、無氎コハク酞残基が偎鎖
ずしおゎム䞭の単量䜓単䜍100あたり7.2モル含有
する倉性䜎分子量ブタゞ゚ン−む゜プレンブロツ
ク共重合ゎムLBIR−ず略蚘するであ぀
た。該ゎムに−ゞ゚チルアミノプロピルア
ミノプロピルアミンを100℃で反応埌、枛圧䞋に
160℃で加熱するこずにより脱氎した。このよう
にしお埗られた倉性䜎分子量ブタゞ゚ン−む゜プ
レンブロツク共重合ゎムは、赀倖線吞収スペクト
ログラフむで調べたずころ、−γ−ゞ゚チル
アミノプロピルスクシンむミド残基が偎鎖に存
圚する倉性共重合ゎムLBIR−であ぀た。 前述の皮の倉性䜎分子量ブタゞ゚ン−む゜プ
レンブロツク共重合䜓を各々甚い、第衚の配合
に埓がい、実斜䟋ず同様にしおゎム組成物を䜜
補し、可塑効果、加硫促進効果および加硫物々性
の改善効果に぀いお評䟡した。その結果を第衚
に瀺す。
[Table] As is clear from Table 1, N-
Only when a modified low molecular weight polyisoprene rubber containing (γ-dimethylamino)propyl succinimide residues is used, an extremely large plasticizing effect can be achieved.
A remarkable effect of accelerating vulcanization and improvement of the properties of vulcanized materials are simultaneously achieved. Example 2 A butadiene polymerization block (abbreviated as B) and an isoprene polymerization block (abbreviated as I) were synthesized into B-I by polymerizing butadiene monomer and isoprene monomer using butyllithium as a catalyst.
A low molecular weight butadiene-isoprene block copolymer rubber (abbreviated as LBIR-A) connected in the form -B-I-B-I-B was prepared. The rubber is
The molecular weight is 18000, the vinyl bond is 18%,
The proportion of I in the rubber was 40%. This rubber was obtained by heating and reacting maleic anhydride at 180°C for 7 hours to obtain a modified low molecular weight copolymer rubber. When examined by infrared absorption spectrography, the modified low molecular weight copolymer rubber was found to be a modified low molecular weight butadiene-isoprene block copolymer containing 7.2 moles of succinic anhydride residues as side chains per 100 monomer units in the rubber. It was a polymeric rubber (abbreviated as LBIR-B). After reacting the rubber with N,N-diethylaminopropylaminopropylamine at 100°C, the rubber was reacted under reduced pressure.
Dehydration was performed by heating at 160°C. The thus obtained modified low molecular weight butadiene-isoprene block copolymer rubber was examined by infrared absorption spectrography and was found to be a modified copolymer rubber in which N-(γ-diethylamino)propyl succinimide residues are present in the side chain. (LBIR-C). Using each of the above two types of modified low molecular weight butadiene-isoprene block copolymers, a rubber composition was prepared in the same manner as in Example 1 according to the formulations shown in Table 2, and the rubber composition had a plasticizing effect, a vulcanization accelerating effect and The effect of improving vulcanized physical properties was evaluated. The results are shown in Table 2.

【衚】 倩然ゎムに−γ−ゞ゚チルアミノプロピ
ルスクシンむミド誘導䜓残基を偎鎖に含有する倉
性䜎分子量ブタゞ゚ン−む゜プレン共重合ゎムを
10配合するこずにより倧なる可塑効果、加硫促
進効果、加硫物の改善効果が認められた。たた額
倉性䜎分子量共重合ゎムを䜿甚すれば加硫促進剀
を40枛量しおも、なお察照䟋の倩然ゎム単独配
合よりも加硫速床が倧きく、たた加硫物の硬床も
高い。 実斜䟋  觊媒ずしおブチルリチりムを甚いおむ゜プレン
単量䜓を重合するこずによ぀お埗られたビニル結
合量12、分子量40000の䜎分子量ポリむ゜プレ
ンゎムLIR−に、−ゞメチルアミノ
プロピルマレむミドおよび−プロピルマレむミ
ドを各々190℃で加熱反応するこずにより皮の
倉性䜎分子量ポリむ゜プレンゎムを調補した。
−ゞメチルアミノプロピルマレむミドを反
応させたものは、赀倖線吞収スペクトルグラフむ
により䟋鎖ずしお−γ−ゞメチルアミノプ
ロピルスクシンむミド残基をゎム䞭のむ゜プレン
単量䜓単䜍100あたり2.7モル含有する倉性䜎分子
量ポリむ゜プレンゎムLIR−であるこずが
刀぀た。なお、この赀倖線吞収スペクトルグラフ
は、実斜䟋のLIR−のそれずほが同じであ぀
た。 䞀方、−プロピルマレむミドを反応させたも
のは、偎鎖ずしお−プロピルスクシンむミド残
基をゎム䞭のむ゜プレン単量䜓単䜍100あたり2.9
モル含有する倉性䜎分子量ポリむ゜プレンゎム
LIR−であるこずが刀぀た。 前述の皮の䜎分子量ポリむ゜プレンゎムを
各々甚い、第衚の配合に埓がいゎム組成物を䜜
補し、䜎分子量ポリむ゜プレンゎム䜿甚による効
果を調べた。その結果を第衚に瀺した。
[Table] Modified low molecular weight butadiene-isoprene copolymer rubber containing N-(γ-diethylamino)propyl succinimide derivative residues in the side chain is added to natural rubber.
A large plasticizing effect, vulcanization acceleration effect, and improvement effect on the vulcanizate were observed by adding 10%. Furthermore, if a forehead-modified low molecular weight copolymer rubber is used, even if the vulcanization accelerator is reduced by 40%, the vulcanization rate will still be higher than that of the control example, which contains natural rubber alone, and the hardness of the vulcanizate will also be higher. Example 3 N,N-dimethyl was added to a low molecular weight polyisoprene rubber (LIR-E) with a vinyl bond content of 12% and a molecular weight of 40,000 obtained by polymerizing isoprene monomer using butyllithium as a catalyst. Two types of modified low molecular weight polyisoprene rubbers were prepared by heating and reacting aminopropylmaleimide and N-propylmaleimide at 190°C.
The product reacted with N,N-dimethylaminopropylmaleimide was found to contain 2.7 moles of N-(γ-dimethylamino)propyl succinimide residue per 100 isoprene monomer units in the rubber as an example chain, as determined by infrared absorption spectroscopy. It was found to be a modified low molecular weight polyisoprene rubber (LIR-F). Note that this infrared absorption spectrum graph was almost the same as that of LIR-D of Example 1. On the other hand, those reacted with N-propyl maleimide have N-propyl succinimide residues as side chains at a rate of 2.9 per 100 isoprene monomer units in the rubber.
It was found to be a modified low molecular weight polyisoprene rubber (LIR-G) containing mol. Using each of the three types of low molecular weight polyisoprene rubbers mentioned above, rubber compositions were prepared according to the formulations shown in Table 3, and the effects of using the low molecular weight polyisoprene rubbers were investigated. The results are shown in Table 3.

【衚】【table】

【衚】 実斜䟋  チヌグラヌ觊媒を甚いおむ゜プレン単量䜓を重
合するこずによ぀お埗られた分子量840000、シス
−結合量98のシス−−ポリむ゜プ
レンゎムを熱分解するこずによ぀お分子量53000、
ビニル結合量の䜎分子量ポリむ゜プレンゎム
を調補した。該ゎムを甚い、実斜䟋ず同様の手
法で倉性反応を行な぀お倉性䜎分子量ポリむ゜プ
レンゎムを調補した。赀倖線吞収スペクトルグラ
フむによるず、該倉性ゎムは偎鎖ずしお−γ
−ゞメチルアミノプロピルスクシンむミド残基
をゎム䞭のむ゜プレン単量䜓単䜍100あたり5.8モ
ル含有する倉性䜎分子量ポリむ゜プレンゎムであ
るこずが刀぀た。 埗られた倉性ゎムを甚い、第衚に瀺した加硫
促進剀を含たない配合によりゎム組成物を䜜補し
た。
[Table] Example 4 Pyrolysis of cis-1,4-polyisoprene rubber with a molecular weight of 840,000 and a cis-1,4 bond content of 98% obtained by polymerizing isoprene monomer using a Ziegler catalyst. molecular weight 53000,
A low molecular weight polyisoprene rubber having a vinyl bond content of 9% was prepared. Using this rubber, a modification reaction was carried out in the same manner as in Example 1 to prepare a modified low molecular weight polyisoprene rubber. According to infrared absorption spectrography, the modified rubber has N-(γ
The rubber was found to be a modified low molecular weight polyisoprene rubber containing 5.8 moles of -dimethylamino)propyl succinimide residue per 100 isoprene monomer units in the rubber. Using the obtained modified rubber, rubber compositions were prepared according to the formulations shown in Table 4 without containing the vulcanization accelerator.

【衚】【table】

【衚】 これらのゎム組成物を155℃で20分間加硫した。
−γ−ゞメチルアミノプロピルスクシンむ
ミド残基が偎鎖ずしお含有しおなる倉性䜎分子量
ポリむ゜プレンゎムを甚いおなるゎム組成物は、
十分なる加硫床が達成され、匕匵り匷床242Kg
cm2、䌞び600の加硫物々性を有するシヌトが埗
られたが、ゎム成分ずしお倩然ゎムのみからなる
ゎム組成物では䞊蚘加硫条件では加硫が極めお䞍
十分であり、満足な加硫物々性は埗られなか぀
た。
[Table] These rubber compositions were vulcanized at 155°C for 20 minutes.
A rubber composition using a modified low molecular weight polyisoprene rubber containing N-(γ-dimethylamino)propyl succinimide residue as a side chain is as follows:
Sufficient degree of vulcanization was achieved, with a tensile strength of 242 kg/
cm 2 and elongation of 600%, a rubber composition consisting only of natural rubber as a rubber component was extremely insufficiently vulcanized under the above vulcanization conditions, and a satisfactory vulcanization was not achieved. No sulfur properties were obtained.

Claims (1)

【特蚱請求の範囲】  可塑剀を含有する固圢ゎム組成物においお、
前蚘可塑剀ずしお、分子量6000〜100000、ビニル
結合量35以䞋の䜎分子量ゞ゚ン系ゎムであ぀
お、該ゎムの偎鎖ずしお䞀般匏 ここで、は酞玠原子たたはむオり原子が䞻鎖
䞭に介圚しおもよい炭玠数20たでの炭化氎玠残基
を衚わし、は【匏】R1もしくはR2は 各々炭玠数20たでの炭化氎玠残基を瀺すで瀺さ
れるアミノ残基、たたは第玚窒玠原子を耇玠原
子ずしお含有する耇玠環残基を衚わす で瀺される䜍に第玚アミノ基を有する基を含
有するスクシンむミド誘導䜓残基を前蚘ゎム䞭の
単量䜓単䜍100あたり0.1〜20モル含有しおなる倉
性䜎分子量ゎムを甚いるこずを特城ずするゎム組
成物。
[Claims] 1. In a solid rubber composition containing a plasticizer,
The plasticizer is a low molecular weight diene rubber with a molecular weight of 6,000 to 100,000 and a vinyl bond content of 35% or less, and the side chain of the rubber has the general formula () (Here, R represents a hydrocarbon residue having up to 20 carbon atoms in which an oxygen atom or a sulfur atom may be interposed in the main chain, and A is [Formula] (R 1 or R 2 each has up to 20 carbon atoms. (represents a hydrocarbon residue) or a heterocyclic residue containing a tertiary nitrogen atom as a heteroatom) containing a group having a tertiary amino group at the N-position A rubber composition characterized in that a modified low molecular weight rubber containing 0.1 to 20 moles of succinimide derivative residue per 100 monomer units in the rubber is used.
JP11805282A 1982-07-06 1982-07-06 Rubber composition Granted JPS598737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11805282A JPS598737A (en) 1982-07-06 1982-07-06 Rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11805282A JPS598737A (en) 1982-07-06 1982-07-06 Rubber composition

Publications (2)

Publication Number Publication Date
JPS598737A JPS598737A (en) 1984-01-18
JPH0158212B2 true JPH0158212B2 (en) 1989-12-11

Family

ID=14726828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11805282A Granted JPS598737A (en) 1982-07-06 1982-07-06 Rubber composition

Country Status (1)

Country Link
JP (1) JPS598737A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4902974B2 (en) * 2005-08-05 2012-03-21 株匏䌚瀟ブリヂストン Rubber composition and pneumatic tire using the same
EP1803771B1 (en) 2005-12-28 2017-12-06 Bridgestone Corporation A rubber composition having good wet-traction properties and a low aromatic-oil content
JP5476741B2 (en) * 2009-02-27 2014-04-23 暪浜ゎム株匏䌚瀟 Diene rubber composition
JP5992838B2 (en) * 2013-01-09 2016-09-14 東掋ゎム工業株匏䌚瀟 Rubber composition for anti-vibration rubber
JP6780325B2 (en) * 2016-06-30 2020-11-04 日本れオン株匏䌚瀟 Modified Hydrocarbon Resins and Elastomer Compositions for Tires

Also Published As

Publication number Publication date
JPS598737A (en) 1984-01-18

Similar Documents

Publication Publication Date Title
EP0066241B1 (en) Modified cis-1,4-polyisoprene rubber, a process for its manufacture, a vulcanized modified cis-1,4-polyisoprene rubber composition and the use of the modified cis-1,4-polyisoprene rubber for preparing vulcanized shaped articles
CN101928402B (en) Modified butyl rubber composition
WO1987004172A1 (en) Rubber for tire tread and its composition
US6372855B1 (en) Polymer containing isobutylene as repeating unit and rubber composition containing the same
JPS61225202A (en) Modification of rubber
CN101273086A (en) Rubber composition and crosslinked object
JPS61225201A (en) Modification of rubber
US4243561A (en) Composition and method of improving the green strength of unvulcanized [elastomer] reclaimed rubber elastomer blends
US4198324A (en) Composition and method of improving the green strength of unvulcanized elastomers
JPH01249812A (en) Production of diene-based polymer rubber and rubber composition therefrom
JPH0158212B2 (en)
JPS62218430A (en) Non-contaminating vulcanized elastomer composition and tire with side wall comprising same
US4272436A (en) Composition and method of improving the green strength of unvulcanized reclaimed rubber
JPH0411501A (en) Pneumatic tire
EP0328291B1 (en) Halogenated polybutadiene series elastomers, method of producing the same, and rubber compositions for tires containing the elastomer
JPH0269545A (en) Rubber composition improved in adhesiveness
JP7336454B2 (en) Multi-element copolymers, rubber compositions, resin compositions, tires and resin products
JPS6255541B2 (en)
JPH04288307A (en) Production of diene polymer, and rubber composition
JPH0461001B2 (en)
JP3391052B2 (en) Oil resistant rubber and rubber composition thereof
JPH01182333A (en) Rubber composition for vulcanization
JP3448782B2 (en) Rubber composition and rubber
JP2001335662A (en) New vulcanizing agent for diene-based rubber and rubber composition using the same
CN114773514A (en) Macromolecular coupling agent for improving performance of rubber material vulcanized rubber and application thereof