JPH0158045B2 - - Google Patents

Info

Publication number
JPH0158045B2
JPH0158045B2 JP61032563A JP3256386A JPH0158045B2 JP H0158045 B2 JPH0158045 B2 JP H0158045B2 JP 61032563 A JP61032563 A JP 61032563A JP 3256386 A JP3256386 A JP 3256386A JP H0158045 B2 JPH0158045 B2 JP H0158045B2
Authority
JP
Japan
Prior art keywords
particles
phenolic resin
wire mesh
mesh structure
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61032563A
Other languages
Japanese (ja)
Other versions
JPS62191103A (en
Inventor
Norihiko Mikawa
Kimimichi Masui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP61032563A priority Critical patent/JPS62191103A/en
Publication of JPS62191103A publication Critical patent/JPS62191103A/en
Publication of JPH0158045B2 publication Critical patent/JPH0158045B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Producing Shaped Articles From Materials (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 この発明は、金網構造体の製造法に関する。[Detailed description of the invention] (b) Industrial application fields The present invention relates to a method for manufacturing a wire mesh structure.

さらに詳しくは、セメントやコンクリートの打
込み支材、壁支材などの各種建築用支材として有
用である断熱性中間層を有する金網構造体の製造
法に関する。
More specifically, the present invention relates to a method for manufacturing a wire mesh structure having a heat insulating intermediate layer, which is useful as various architectural supports such as cement or concrete cast supports and wall supports.

(ロ) 従来の技術 従来から、立体状(三次元)の金網構造体の中
央部に断熱材層を形成せしめた構造体が知られて
おり、断熱性中間層を有するセメントやコンクリ
ート用打込み支材や壁支材として用いられてい
る。かかる断熱性中間層を有する金網構造体は、
通常、金属構造体の中央部のみにウレタン液を用
いてウレタン発泡層を一体に形成させる方法によ
り製造されている。
(b) Conventional technology Structures in which a heat insulating material layer is formed in the center of a three-dimensional (three-dimensional) wire mesh structure have been known for a long time. It is used as timber and wall support. A wire mesh structure having such a heat insulating intermediate layer is
Usually, the metal structure is manufactured by a method in which a urethane foam layer is integrally formed using a urethane liquid only in the central part of the metal structure.

(ハ) 発明が解決しようとする問題点 しかしながら、かかるウレタンの発泡層は断熱
性を有するものの耐火性が不充分で建築材料とし
て不充分なものであり用途が限定されるという問
題点がある。さらに上記中間発泡層の形成は、所
定の上下スペーサに金網構造体を装着し、このス
ペーサ間に未発泡のウレタン液を介在させて加熱
発泡するという方法で行なわれているが、液状の
ものを取扱う点で作業性が悪くしかも金網構造体
の中央部にウレタン液を保持しうる特定のスペー
サを用いる必要があり、現場で簡便に製造するこ
とは困難であつた。
(c) Problems to be Solved by the Invention However, although the urethane foam layer has heat insulating properties, it has insufficient fire resistance, making it insufficient as a building material, and its uses are limited. Furthermore, the formation of the intermediate foam layer is carried out by attaching a wire mesh structure to predetermined upper and lower spacers, interposing an unfoamed urethane liquid between the spacers, and heating and foaming it. In terms of handling, the workability is poor, and it is necessary to use a specific spacer that can hold the urethane liquid in the center of the wire mesh structure, making it difficult to easily manufacture it on site.

この発明は、かかる問題点に鑑みなされたもの
であり、耐火性に優れかつ軽量な断熱性中間層を
有し、しかも特定のスペーサ等を要せず製造を簡
便に行なうことができる金網構造体の製造法を提
供しようとするものである。
This invention was made in view of the above problems, and provides a wire mesh structure that has a heat-insulating intermediate layer that is excellent in fire resistance and lightweight, and can be easily manufactured without requiring a specific spacer or the like. The aim is to provide a manufacturing method for

(ニ) 問題点を解決するための手段及び作用 かくしてこの発明によれば、成形用金型内に立
体状の金網構造体を装着し、この金型内に、(a)無
機骨材粒子を導入する工程、(b)無機骨材粒子に発
泡性フエノール樹脂組成物を被覆した被覆粒子を
導入する工程及び(c)無機骨材粒子を再び導入する
工程をこの順で行なうことにより、金網構造体の
底部領域に無機骨材粒子層、中央部領域に被覆粒
子層、上部領域に無機骨材粒子層を分層形成し、
次いで金型を閉鎖した状態で加熱して上記被覆粒
子の発泡性フエノール樹脂組成物を発泡硬化させ
た後、金網構造体の上記金型からの取出し並びに
その底部領域及び上部領域に残存しうる無機骨材
粒子の除去を行なうことを特徴とする断熱性中間
層を有する金網構造体の製造法が提供される。
(d) Means and operation for solving the problem Thus, according to the present invention, a three-dimensional wire mesh structure is installed in a molding mold, and (a) inorganic aggregate particles are placed in the mold. (b) introducing coated particles in which the inorganic aggregate particles are coated with the expandable phenolic resin composition; and (c) reintroducing the inorganic aggregate particles in this order. An inorganic aggregate particle layer is formed in the bottom region of the body, a covering particle layer is formed in the central region, and an inorganic aggregate particle layer is formed in the upper region,
The mold is then heated in a closed state to foam and cure the expandable phenolic resin composition of the coated particles, and then the wire mesh structure is removed from the mold and any inorganic material that may remain in its bottom and top regions is removed. A method of manufacturing a wire mesh structure having a thermally insulating intermediate layer is provided that includes removal of aggregate particles.

この発明の一つの最も特徴とする点は、立体状
の金網構造体の中央部領域の断熱層を形成させる
に際し、その断熱層として骨材粒子含有のフエノ
ール樹脂複合発泡体を適用すると共にその発泡体
の素材として骨材粒子に発泡性フエノール樹脂組
成物を被覆した被覆粒子を用いた点にある。この
発明の他の最も特徴とする点は、この断熱層を構
造体中中央部領域にのみに簡便に形成させるため
に、断熱層成形時に構造体上部及び底部領域に骨
材粒子層を設定し、これらの粒子層を上記被覆粒
子(発泡素材)に対する一種のスペーサとして用
いる点にある。
One of the most characteristic points of this invention is that when forming a heat insulating layer in the central region of a three-dimensional wire mesh structure, a phenolic resin composite foam containing aggregate particles is applied as the heat insulating layer, and the foamed The main feature is that coated particles, which are aggregate particles coated with an expandable phenolic resin composition, are used as the body material. The other most characteristic feature of this invention is that, in order to easily form this heat insulating layer only in the central region of the structure, an aggregate particle layer is set on the top and bottom regions of the structure when forming the heat insulating layer. The point is that these particle layers are used as a kind of spacer for the covering particles (foamed material).

この発明の立体状金網構造体としては少なくと
も建築構造としての強度を有するものであればよ
くその大きさ、材質等はとくに限定されない。
The three-dimensional wire mesh structure of the present invention is not particularly limited in size, material, etc., as long as it has at least the strength as an architectural structure.

この発明に用いる成形用金型は、通常上記金網
構造体に対応するものが用いられる。
The molding die used in this invention is usually one that corresponds to the above-mentioned wire mesh structure.

この発明に用いる無機骨材粒子としては、たと
えばパーライト、シラスバルーン、ガラスバルー
ン、ガラス発泡粒、ガラス綿粒状物、ロツクウー
ル粒状物、スラツグ、粘土多泡粒、砂、石コウ粒
状物、金属性粒状物などが挙げられる。これらの
うち、加熱成形時の熱効率の点でできるだけ熱容
量が小さいものが好ましく、さらに粒径もあまり
小さ過ぎず取扱いに適し大きさ(通常1mm以上、
好ましくは3〜10mm)を有するものが好ましい。
かかる観点から最も好ましい無機骨材粒子は、パ
ーライト、ガラス発泡粒である。
Inorganic aggregate particles used in this invention include, for example, perlite, shirasu balloons, glass balloons, glass foam particles, glass cotton particles, rock wool particles, slag, clay cellular particles, sand, plaster particles, and metallic particles. Examples include things. Among these, those with as small a heat capacity as possible are preferable in terms of thermal efficiency during thermoforming, and the particle size is also suitable for handling without being too small (usually 1 mm or more,
Preferably, those having a diameter of 3 to 10 mm) are preferred.
From this point of view, the most preferred inorganic aggregate particles are perlite and foamed glass particles.

この発明に用いる発泡素材は、無機骨材粒子に
発泡性フエノール樹脂組成物を被覆したものであ
る。ここで発泡性フエノール樹脂組成物とは、い
わゆるフエノール樹脂初期縮合物、分解型発泡剤
及び必要に応じて加えられる硬化剤を含み、さら
に任意に充填剤を含有する組成物を意味し、通常
粉末状、タブレツト状、ペリツト状等の形態で入
手できるものを用いることができる。
The foamed material used in this invention is one in which inorganic aggregate particles are coated with a foamable phenolic resin composition. The term "expandable phenolic resin composition" as used herein refers to a composition containing a so-called phenolic resin initial condensate, a decomposable foaming agent, and a curing agent added as necessary, and optionally a filler. Those available in the form of tablets, tablets, pellets, etc. can be used.

上記フエノール樹脂初期縮合物としては、いわ
ゆるレゾールやノポラツクと呼ばれるものが好適
に用いられ、分解型発泡剤としては、N,N′−
ジニトロソペンタメチレンテトラミン、ベンゼン
スルホニルヒドラジド、アゾビスイソブチロニト
リル、アゾジカルボンアミド、パラトルエンスル
ホニルヒドラジドなどの有機分解型発泡剤、並び
に重炭酸ナトリウム、炭酸アンモニウム、重炭酸
アンモニウム、亜硝酸アンモニウム、アジト化合
物(例えばCaN6)などの無機分解型発泡剤が挙
げられる。
As the above-mentioned phenolic resin initial condensate, so-called resol and noporak are preferably used, and as the decomposition type blowing agent, N,N'-
Organic decomposition blowing agents such as dinitrosopentamethylenetetramine, benzenesulfonyl hydrazide, azobisisobutyronitrile, azodicarbonamide, paratoluenesulfonyl hydrazide, as well as sodium bicarbonate, ammonium carbonate, ammonium bicarbonate, ammonium nitrite, azide compounds Examples include inorganic decomposition type blowing agents such as (eg CaN 6 ).

また、硬化剤は、ことにノボラツク型フエノー
ル樹脂初期縮合物を用いた時に使用される。この
硬化剤は、加熱で分解し、ノボラツク型フエノー
ル樹脂初期縮合物と架橋反応しうる化合物を意味
する。このような化合物としては、ホルムアルデ
ヒドと同様に反応でフエノール樹脂形成に用いら
れる化合物で通常粉末状のものがある。その具体
例としては、ヘキサメチレンテトラミン、パラホ
ルムアルデヒド、メチラール、ジオキソラン、ト
リオキサン、テトラオキサン、トリメチロールホ
スフイン、S−トリアジンなどが挙げられる。ま
た、混合させる充填剤としては、クレイ、タル
ク、ホウ砂、酸化亜鉛、炭酸カルシウム、硫酸カ
ルシウム、カーボンブラツク、酸化アルミニウ
ム、酸化マグネシウム、酸化鉛等が挙げられる。
Curing agents are also used in particular when novolak type phenolic resin precondensates are used. This curing agent means a compound that can be decomposed by heating and can undergo a crosslinking reaction with the novolak type phenolic resin initial condensate. Examples of such compounds include compounds that are used in the reaction to form phenolic resins, similar to formaldehyde, and are usually in powder form. Specific examples include hexamethylenetetramine, paraformaldehyde, methylal, dioxolane, trioxane, tetraoxane, trimethylolphosphine, S-triazine, and the like. Further, examples of the filler to be mixed include clay, talc, borax, zinc oxide, calcium carbonate, calcium sulfate, carbon black, aluminum oxide, magnesium oxide, lead oxide, and the like.

上記発泡性フエノール樹脂組成物を被覆する対
象の無機骨剤粒子としては前述した各種骨材粒子
が挙げられる。通常、スペーサとして用いる骨材
粒子と被覆粒子の核となる骨材粒子とは同種類・
同形状のものが用いられるが、場合によつては異
種類・異形状のものを用いてもよい。ただし、少
なくとも下層に用いる骨材粒子の形状ことに大き
さは被覆粒子と同程度またはそれよりも小さくす
ることが分層状態の維持の点で好ましく、同様に
上層に用いる骨材粒子も被覆粒子と同程度または
それよりも大きくすることが好ましい。
Examples of the inorganic aggregate particles to be coated with the expandable phenolic resin composition include the various aggregate particles described above. Usually, the aggregate particles used as spacers and the aggregate particles that form the core of the coating particles are of the same type.
Those of the same shape are used, but depending on the case, different types and shapes may be used. However, it is preferable that the shape and size of the aggregate particles used in the lower layer be at least the same as or smaller than the coated particles in order to maintain the separated layer state. It is preferable to make it about the same level as or larger than .

被覆粒子は、上記発泡性フエノール樹脂組成物
を加熱軟化(発泡硬化温度以下)条件下やことに
粒末状の発泡性フエノール樹脂組成物の場合に
は、水やメタノール等の結合剤の存在下で、骨材
粒子にパン型造粒機等を用いてその表面を被覆す
ることにより簡便に得ることができる。なお、単
に発泡性フエノール樹脂組成物と無機骨材粒子の
混合物を用いても均一な骨材粒子含有フエノール
樹脂発泡層を形成することは困難である。
The coated particles are prepared by heating and softening the above-mentioned foamable phenolic resin composition (below the foaming hardening temperature), or in the case of a granular foamable phenolic resin composition, in the presence of a binder such as water or methanol. It can be easily obtained by coating the surface of aggregate particles using a pan-type granulator or the like. Note that it is difficult to form a uniform phenolic resin foam layer containing aggregate particles even if a mixture of a foamable phenolic resin composition and inorganic aggregate particles is simply used.

この発明において、まず所定の立体状金網構造
体が成形用金型内に装着される。この状態を第2
図に例示する。図中2は立体状金網構造体、6は
成形用金型を示す。次いで第3図に示すように金
型6内に無機骨材粒子7を導入して構造体2の底
部領域に骨材粒子層を形成する。なお、場合によ
つては骨材粒子層の導入後に構造体2を装着して
もよい。次いで、第4図に示すように上記金型6
内に、発泡性フエノール樹脂組成物を表面被覆し
た無機骨材粒子(被覆粒子)8を導入して被覆粒
子層を先に形成された骨材粒子層上、すなわち、
構造体2の中央部領域に形成させる。さらにこの
被覆粒子層上に再び無機骨材粒子7を導入して構
造体2の上部領域に骨材粒子層を形成させ、金型
6を蓋9で閉鎖する。この状態を第5図に示す。
このような各粒子層の分層状態下で加熱して被覆
粒子8の発泡性フエノール樹脂組成物の発泡硬化
を行なうことにより、構造体2の中央部領域に骨
材粒子が均一に含有されたフエノール樹脂発泡層
が一体に形成される。この際、上部及び底部領域
には単なる骨材粒子7の層が設定されているため
これに対応して構造体の上部、底部には発泡層が
形成されない。従つて、これら骨材粒子7が一種
のスペーサとして働き、その結果構造体2を金型
6から取り出しかつ上部及び底部に付着等により
残存しうる骨材粒子7を除去することにより、第
6図に示すごとき、中央部領域にのみ骨材粒子含
有フエノール樹脂発泡層3が成形されたこの発明
の断熱性中間層を有する金網構造体1が簡便に得
られることとなる。なお、最終的に得られた断熱
中間層を有する金網構造体1の斜視図を第1図に
示した。図中4はパーライト、5はフエノール樹
脂発泡層を示す。
In this invention, first, a predetermined three-dimensional wire mesh structure is installed in a molding die. This state is the second
An example is shown in the figure. In the figure, 2 indicates a three-dimensional wire mesh structure, and 6 indicates a molding die. Then, as shown in FIG. 3, inorganic aggregate particles 7 are introduced into the mold 6 to form an aggregate particle layer in the bottom region of the structure 2. Note that, depending on the case, the structure 2 may be attached after the introduction of the aggregate particle layer. Next, as shown in FIG.
Inorganic aggregate particles (coated particles) 8 whose surface is coated with an expandable phenolic resin composition are introduced into the inner layer to form a coated particle layer on the previously formed aggregate particle layer, that is,
It is formed in the central region of the structure 2. Furthermore, inorganic aggregate particles 7 are again introduced onto this coated particle layer to form an aggregate particle layer in the upper region of the structure 2, and the mold 6 is closed with a lid 9. This state is shown in FIG.
By heating and curing the expandable phenolic resin composition of the coated particles 8 under such a separated state of each particle layer, the aggregate particles were uniformly contained in the central region of the structure 2. A phenolic resin foam layer is integrally formed. At this time, since a simple layer of aggregate particles 7 is provided in the upper and lower regions, correspondingly no foam layer is formed in the upper and lower regions of the structure. Therefore, these aggregate particles 7 act as a kind of spacer, and as a result, by removing the structure 2 from the mold 6 and removing the aggregate particles 7 that may remain by adhering to the top and bottom parts, as shown in FIG. As shown in FIG. 2, a wire mesh structure 1 having a heat insulating intermediate layer according to the present invention in which the aggregate particle-containing phenolic resin foam layer 3 is formed only in the central region can be easily obtained. Incidentally, a perspective view of the finally obtained wire mesh structure 1 having a heat insulating intermediate layer is shown in FIG. In the figure, 4 indicates pearlite and 5 indicates a phenolic resin foam layer.

なお、スペーサとなる骨材粒子層の設定厚み
は、少なくとも露出させたい金網構造体の長さに
略調整しておけばよく、例えば、セメント打込み
支材としての用途には、セメントのアンカーとし
て働くのに充分な程度の突出フレームが両面に露
出されるように設定すればよく、通常、金網構造
体空間の幅方向について、中央部被覆粒子層が25
〜60%程度となるように成形時に設定すればよ
い。
The set thickness of the aggregate particle layer that will serve as a spacer should be adjusted to at least the length of the wire mesh structure that you want to expose. It is sufficient to set the protruding frame so that it is exposed on both sides, and usually, the central part coating particle layer is 25 mm wide in the width direction of the wire mesh structure space.
It is sufficient to set it at the time of molding so that it is about ~60%.

(ホ) 実施例 下記(a)、(b)、(c)を混合した発泡性フエノール樹
脂組成物をロール混合機で80℃下5分間混合し、
次いで粉砕して100メツシユパスの粉末を得た。
(E) Example A foamable phenolic resin composition prepared by mixing the following (a), (b), and (c) was mixed with a roll mixer at 80°C for 5 minutes,
It was then ground to obtain 100 mesh powder.

(a) 末硬化ノボラツク型フエノールホルムアルデ
ヒド樹脂 (融点81℃、ゲル化時間 150℃ 76秒)
100重量部 (b) ヘキサメチレンテトラミン(硬化剤)
10重量部 (c) ジニトロペンタメチレンテトラミン(分解型
発泡剤) 10重量部 次いでこの粉末状組成物を平均粒径5mmのパー
ライト(商品名フヨーライト 5号;フヨーライ
ト工業(株)製)に表面被覆した。被覆は、パン型造
粒機を用い、無機骨材粒子であるパーライト10
(嵩容積)に対して結合剤としての水をノズルに
より霧状に噴霧(約15c.c.)した後、上記発泡性フ
エノール樹脂組成物粉末を400g加えて約5分間
造粒することにより行なつた。
(a) End-cured novolac type phenol formaldehyde resin (melting point 81℃, gelation time 150℃ 76 seconds)
100 parts by weight (b) Hexamethylenetetramine (curing agent)
10 parts by weight (c) 10 parts by weight of dinitropentamethylenetetramine (degradable blowing agent) Next, this powdered composition was coated on the surface of pearlite (trade name: Fuyolite No. 5; manufactured by Fuyolite Kogyo Co., Ltd.) with an average particle size of 5 mm. . The coating was made using a pan-type granulator, and perlite 10, which is an inorganic aggregate particle, was used for coating.
After spraying (approximately 15 c.c.) water as a binder in the form of a mist with a nozzle to (bulk volume), 400 g of the above foamable phenolic resin composition powder is added and granulated for approximately 5 minutes. Summer.

このようにして得た被覆粒子を一昼液風乾した
後、70℃の熱風循環式恒温槽内で約6時間乾燥し
た。この被覆粒子は、パーライト粒子の表面に発
泡性フエノール樹脂組成物が密着したものであ
り、乱雑に扱つても剥離しない骨材粒子であつ
て、150℃の雰囲気温度下で約10分放置すると被
覆されたフエノール樹脂組成物が発泡してパーラ
イトの外面がフエノール樹脂発泡体で覆われた複
合粒が得られるものであつた。
The thus obtained coated particles were air-dried for one day, and then dried in a hot air circulation constant temperature bath at 70° C. for about 6 hours. These coated particles are aggregate particles in which an expandable phenolic resin composition is adhered to the surface of pearlite particles, and do not peel off even when handled roughly.The coated particles will be coated if left at an ambient temperature of 150°C for about 10 minutes. The resulting phenolic resin composition was foamed to obtain composite grains in which the outer surface of pearlite was covered with a phenolic resin foam.

次に三次元格子状の針金立体構造体(250×250
×70mm、針金の径2mm、格子間隔 縦、横、高さ
共に70mm)を第2図に示すように金型にセツト
し、この金型内にパーライト(フヨーライト5
号)を見掛け平均厚み15mmとなるように導入して
構造体底部にパーライト層を形成し(第3図参
照)、次いで上記被覆粒子を見掛け平均厚み40mm
となるように導入して構造体中央部に被覆粒子層
を成形し(第4図参照)、さらにパーライト(同
上)をこの上に導入して構造体上部にパーライト
層(見掛け厚み15mm)を形成させた。次いで金型
の蓋を閉じ(第5図参照)、熱風循環式恒温槽内
に160℃下 1時間保持した。その後、金型を恒
温槽から取出し、さらに針金立体構造体を金型か
ら取出し、上部に保持されたパーライト層及び下
部に付着残存するパーライトを手作業で払い落と
すことにより、第1図に示すごとき全厚み70mmの
中央部に、パーライト粒子を均一に分散含有した
厚み約40mmのフエノール樹脂発泡層からなる断熱
層(断熱性中間層)を一体化したこの発明の金網
構造体を得た。
Next, a three-dimensional grid-like wire structure (250 x 250
x 70 mm, wire diameter 2 mm, grid spacing 70 mm in length, width, and height) as shown in Fig. 2, and place pearlite (Fuyolite 5
) to form a pearlite layer at the bottom of the structure (see Figure 3), and then introduce the above-mentioned coated particles to an apparent average thickness of 40 mm.
A coating particle layer is formed in the center of the structure (see Figure 4), and pearlite (same as above) is further introduced on top of this to form a pearlite layer (apparent thickness 15 mm) on the top of the structure. I let it happen. Next, the lid of the mold was closed (see Figure 5), and the mold was kept at 160°C for 1 hour in a hot air circulation thermostat. After that, the mold is taken out from the thermostatic oven, the three-dimensional wire structure is taken out from the mold, and the pearlite layer held on the upper part and the remaining pearlite attached to the lower part are manually removed. A wire mesh structure of the present invention was obtained, in which a heat insulating layer (insulating intermediate layer) made of a phenolic resin foam layer with a thickness of about 40 mm and containing perlite particles uniformly dispersed was integrated in the center part with a total thickness of 70 mm.

かかる金網構造体は、セメント打込み用支材と
して有用であり、ことにフエノールとセメントと
の親和性及び露出金網のアンカー効果によりセメ
ントの付着保持性の良好なものであつた。
Such a wire mesh structure was useful as a support material for cement implantation, and in particular had good adhesion and retention of cement due to the affinity between phenol and cement and the anchoring effect of the exposed wire mesh.

(ヘ) 発明の効果 この発明によれば、耐火性に優れかつ断熱性に
優れた金網構造体を効率良く製造することができ
る。ことにその構造上及び断熱層との親和性の点
でセメントやコンクリートの打込み支材として有
用な金網構造体を効率良く得ることができる。そ
して、一種のスペーサとして働く無機骨材粒子も
特別なものではなく、任意の厚みに設定できかつ
取扱い容易なものであり、現場でも簡便に利用す
ることができる。さらに発泡素材も、ウレタンの
ごとき液状物でないため、取扱い及び板状の断熱
中間層を再現性良く得る点で有利である。
(F) Effects of the Invention According to the present invention, a wire mesh structure having excellent fire resistance and heat insulation properties can be efficiently manufactured. In particular, it is possible to efficiently obtain a wire mesh structure useful as a cast support material for cement or concrete in terms of its structure and compatibility with the heat insulating layer. The inorganic aggregate particles that act as a kind of spacer are not special, and can be set to any thickness and are easy to handle, so they can be easily used in the field. Furthermore, since the foamed material is not a liquid material like urethane, it is advantageous in terms of handling and obtaining a plate-shaped heat insulating intermediate layer with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の方法で得られた断熱性中
間層を有する金網構造体の一例を示す斜視図、第
2図〜第6図は、それぞれこの発明の方法におけ
る各工程を順次説明するための模式図である。 1……断熱性中間層を有する金網構造体、2…
…立体状金網構造体、3……骨材粒子含有フエノ
ール樹脂発泡層、4,7……無機骨材粒子、5…
…フエノール樹脂発泡層、6……成形用金型、8
……被覆粒子、9……蓋。
FIG. 1 is a perspective view showing an example of a wire mesh structure having a heat insulating intermediate layer obtained by the method of the present invention, and FIGS. 2 to 6 sequentially explain each step in the method of the present invention. FIG. 1... Wire mesh structure having a heat insulating intermediate layer, 2...
... Three-dimensional wire mesh structure, 3 ... Phenol resin foam layer containing aggregate particles, 4, 7 ... Inorganic aggregate particles, 5 ...
...Phenolic resin foam layer, 6...Molding mold, 8
...Coated particles, 9...Lid.

Claims (1)

【特許請求の範囲】 1 成形用金型内に立体状の金網構造体を装着
し、この金型内に、(a)無機骨材粒子を導入する工
程、(b)無機骨材粒子に発泡性フエノール樹脂組成
物を被覆した被覆粒子を導入する工程及び(c)無機
骨材粒子を再び導入する工程をこの順で行なうこ
とにより、金網構造体の底部領域に無機骨材粒子
層、中央部領域に被覆粒子層、上部領域に無機骨
材粒子層を分層形成し、次いで金型を閉鎖した状
態で加熱して上記被覆粒子の発泡性フエノール樹
脂組成物を発泡硬化させた後、金網構造体の上記
金型からの取出し並びにその底部領域及び上部領
域に残存しうる無機骨材粒子の除去を行なうこと
を特徴とする断熱性中間層を有する金網構造体の
製造法。 2 発泡性フエノール樹脂組成物が、フエノール
樹脂初期縮合物、分解型発泡剤及び必要に応じて
加えられる硬化剤からなる特許請求の範囲第1項
記載の製造法。
[Scope of Claims] 1 A step of installing a three-dimensional wire mesh structure in a molding mold, and (a) introducing inorganic aggregate particles into the mold, (b) foaming the inorganic aggregate particles. By performing the step of introducing the coated particles coated with the synthetic phenolic resin composition and (c) the step of reintroducing the inorganic aggregate particles in this order, an inorganic aggregate particle layer is formed in the bottom region of the wire mesh structure, and a layer of inorganic aggregate particles is formed in the central region. A coated particle layer is formed in the region and an inorganic aggregate particle layer is formed in the upper region, and then the mold is heated in a closed state to foam and harden the expandable phenolic resin composition of the coated particles, and then a wire mesh structure is formed. A method for manufacturing a wire mesh structure with a heat-insulating intermediate layer, characterized in that the body is removed from the mold and the inorganic aggregate particles that may remain in the bottom and top regions thereof are removed. 2. The manufacturing method according to claim 1, wherein the foamable phenolic resin composition comprises a phenolic resin initial condensate, a decomposable foaming agent, and a curing agent added as necessary.
JP61032563A 1986-02-17 1986-02-17 Manufacture of gauze structure with heat-insulating intermediate layer Granted JPS62191103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61032563A JPS62191103A (en) 1986-02-17 1986-02-17 Manufacture of gauze structure with heat-insulating intermediate layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61032563A JPS62191103A (en) 1986-02-17 1986-02-17 Manufacture of gauze structure with heat-insulating intermediate layer

Publications (2)

Publication Number Publication Date
JPS62191103A JPS62191103A (en) 1987-08-21
JPH0158045B2 true JPH0158045B2 (en) 1989-12-08

Family

ID=12362376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61032563A Granted JPS62191103A (en) 1986-02-17 1986-02-17 Manufacture of gauze structure with heat-insulating intermediate layer

Country Status (1)

Country Link
JP (1) JPS62191103A (en)

Also Published As

Publication number Publication date
JPS62191103A (en) 1987-08-21

Similar Documents

Publication Publication Date Title
JPH0218230B2 (en)
JPH0379183B2 (en)
JPH0158045B2 (en)
FI100597B (en) Heat insulator and structure made of it
JPS58110443A (en) Composite board containing natural vitreous expanded body and its manufacture
JPH0233301B2 (en)
JP2001316159A (en) Cement mortar board mixed with polystyrene foam and method for manufacturing same
JPH0464333B2 (en)
JP3163373B2 (en) Fire resistant composite board
JP2956579B2 (en) Insulation wall panel board also used for formwork
JPH0515540B2 (en)
KR102611738B1 (en) Method for manufacturing lightweight porous ceramic sintered body using vermiculite
JP3163372B2 (en) Fire resistant composite board
JP3256718B2 (en) Fire resistant composite board
JPS60161436A (en) Expansion molded article of novolak type phenolic resin containing aggregate particle
JPH0316899B2 (en)
JPH053819B2 (en)
JPS637618Y2 (en)
JPH0531577B2 (en)
JPS5826266Y2 (en) mortar base plate
JPH0511134B2 (en)
JPS60119843A (en) Building exterior wall insulation method
JPH0571621B2 (en)
JPH0511135B2 (en)
JPH0464539B2 (en)