JPH0157715B2 - - Google Patents

Info

Publication number
JPH0157715B2
JPH0157715B2 JP13363480A JP13363480A JPH0157715B2 JP H0157715 B2 JPH0157715 B2 JP H0157715B2 JP 13363480 A JP13363480 A JP 13363480A JP 13363480 A JP13363480 A JP 13363480A JP H0157715 B2 JPH0157715 B2 JP H0157715B2
Authority
JP
Japan
Prior art keywords
pitch
mesophase
weight
molecular weight
approximately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13363480A
Other languages
Japanese (ja)
Other versions
JPS5657881A (en
Inventor
Chaaruzu Ruizu Aauin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BP Corp North America Inc
Original Assignee
BP Corp North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BP Corp North America Inc filed Critical BP Corp North America Inc
Publication of JPS5657881A publication Critical patent/JPS5657881A/en
Publication of JPH0157715B2 publication Critical patent/JPH0157715B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C3/00Working-up pitch, asphalt, bitumen
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Working-Up Tar And Pitch (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、中間相ピツチ(mesophase pitch)、
特に約100重量%の中間相を含有する中間相ピツ
チの製造法に関するものである。 中間相ピツチは、それを商業的に利用するのに
適した優れた諸性質を有する炭素繊維の製造に好
適であることが知られている。中間相ピツチから
誘導された炭素繊維は、軽量強固で電気伝導性が
あり、化学的にも物理的にも不活性であることが
知られている。中間相ピツチから誘導された炭素
繊維は複合物中の補強材料として有効で、航空宇
宙的応用および高級スポーツ器具にその用途を見
出している。 一般的にいえば、炭素繊維は主として3種類の
前駆材料すなわちレーヨン、アクリロニトリルお
よびピツチから製造されている。前駆材料として
のピツチの使用は経済的に見て魅力的である。 普通のピツチから製造された安価な炭素繊維
は、その分子配列が好ましくないし、その機械的
性質が他に比較して不十分である。 これとは対照的に、中間相ピツチから製造され
た炭素繊維は極めて好適な分子配列を有し、また
他に比較して極めて優秀な機械的性質を示す。 本文に使用される限り、“ピツチ”という術語
は当業界において使用されているように一般に主
として、室温においては固体で、比較的広い融解
温度もしくは軟化温度範囲を有する芳香族化合物
の複雑な混合物より成る炭素質残留物を表わすも
のと解釈されるべきである。その融解物から冷却
されるとピツチはガラスと同様に変化する。 本文に使用される限り、“中間相
(mesophase)”という術語は当業界において使用
されているように、一般に液晶と同意語であると
解釈されるべきである。すなわち、結晶性固体と
通常液体の中間にある物質の状態である。通常、
中間相状態にある物質は異方性と液体性との両性
質を示す。 本文に使用せられる限り、“中間相含有ピツチ”
という術語は中間相の含有量が約40重量%以下
で、非中間相部分、すなわち等方性相が連続相で
あるピツチのことである。 本文に使用せられる限り、“中間相ピツチ”と
いう術語は約40重量%以上の中間相を含有し、先
行技術に従つて撹拌もしくはそれに類似した方法
によつて分散されれば連続的異方性相を形成し得
るピツチのことである。 前駆材料(precursor)ピツチから中間相ピツ
チを製造する慣行方法の中には350℃以上の温度
において熱重合を起させる熱処理が含まれてい
る。本方法は中間相を形成し得る大分子量の分子
を生成させる。 典型的な従来の慣用法は約20時間、約400℃に
保たれた反応器を用いて行われる。最終物質の性
質は反応温度、熱処理時間および揮発率によつて
調節することができる。高分子量留分が存在すれ
ば中間相ピツチの融点は最低330℃になる。中間
相ピツチを繊維に変形するにはより一層高い温度
が必要である。これを業界では“紡糸
(spinning)”と称している。 下記の特許は先行技術の代表的なもので、引用
によつて本文と一体をなすものである:米国特許
第4005183号(Singer)、米国特許第3919387号
(Singer)、米国特許第4032430号および米国特許
第3976729号(Lewis外)、米国特許第3995014号
(Lewis)および特に英国特許第2005298号
(Chwastiak)。 ピツチ中の中間相の量は偏光顕微鏡検査による
既知の方法によつて決定することができる。均質
な、集合状態の中間相区域の存在は偏光顕微鏡検
査によつて肉眼で観察し得るし、上述の
Chwastiakの特許で公開されている方法によつて
定量的に測定できる。以前は、キノリンおよびピ
リジンのような一定の溶剤中に溶けないという規
準が中間相含有量の評価に用いられた。しかし、
前駆材料ピツチの中に一定の、中間相でない不溶
分が存在することもあり得るので、前駆材料ピツ
チを処理する前に、これらの不溶分を除去するの
が常法である。 先行技術に従つて、キノリン不溶分%(%Q.
I.)は、75℃でキノリンで抽出されたピツチ中の
キノリン不溶分を示す。また、ピリジン不溶分%
(%P.I.)はソツクスレー(Soxhlet)装置を用
い、約115℃で沸騰ピリジン中で抽出されたピツ
チ中のピリジン不溶分を示す。 ピツチの軟化点もしくは軟化温度はその分子量
構成に関連していて、大量の高分子量成分が存在
すれば一般にその軟化温度は上昇する傾向があ
る。業界では前駆材料ピツチをその軟化点によつ
てある程度の格付けをすることが常法になつてい
る。中間相ピツチについては、軟化点は適当な紡
糸温度を決定するのに用いられる。一般に、紡糸
温度は軟化温度より約40℃もしくはそれ以上高
い。 一般に、軟化温度の決定には数種の方法があ
り、これらの異なつた方法によつて測定された温
度は相互にある程度異なつている。 一般に、メトラー(Mettler)軟化点測定法が
前駆材料ピツチ評価用の標準として広く採択され
ている。本法は中間相ピツチに適用し得る。 中間相ピツチの軟化温度はまた、加熱ステージ
付顕微鏡による検査によつても測定できる。本法
では、中間相ピツチは顕微鏡の加熱ステージ上、
不活性雰囲気中、偏光下で加熱される。中間相ピ
ツチの温度を調節された速度で上げ、中間相ピツ
チが変形し始める温度を軟化温度として記録す
る。 本文に使用される限り、軟化点もしくは軟化温
度というのは前駆材料ピツチおよび中間相ピツチ
の両方についてメトラー法によつて測定された温
度のことである。 本発明の主要目的の1つは、炭素質前駆材料ピ
ツチに、化学的操作(即ち加熱による熱重合)を
伴わない溶媒による抽出操作を加え、その結果、
その中間相ピツチの分子量分布が、その分子の少
くとも75%が600〜1300の範囲の分子量、その分
子の10%以下が600未満の分子量を有し、そして
その分子の15%以下が1300より大の分子量になる
ように製造され、約100重量%の中間相を含んで
いる中間相ピツチを得ることである。 本発明の他の1つの目的は炭素質の前駆材料ピ
ツチに化学的操作(即ち加熱による熱重合)を伴
わない溶媒による抽出操作を加え、その結果、そ
の中間相ピツチが原子層間隔(Co/2)が約3.60
オングストローム以下、見掛上の重積層高(Lc)
が約20オングストロームより大きいX線構造をも
つように製造され、約100重量%の中間相を含ん
でいる中間相ピツチを得ることである。 上記の目的を達成させるために本発明の方法に
おいて使用される溶剤は石油エーテルとトルエン
との1:2の混合物である。 本発明によつて得られる中間相ピツチから、何
等の化学操作を施さない紡糸によつてピツチ繊維
を形成することができる。上記中間相ピツチから
の紡糸は約370℃以下の温度で行なわれるのが好
ましい。中間相ピツチはその程度の高温では安定
なので従来法による紡糸は約370℃以下の温度、
時間ではピツチに化学変化を起させない。 従つて、炭素質ピツチから、本発明を経由して
ピツチ繊維が何等の化学的操作なしに形成させる
ことができる。 従来行われている熱中間相形成法では、炭素質
前駆材料ピツチを加熱して重合を起させる。そこ
でできた中間相ピツチの特徴は、2個の大きなピ
ークのある分子量分布である。低分子量のピーク
は前駆材料ピツチ成分に相当し、高分子量のピー
クは熱重合によつて生成した分子に相当する。 これと対照的に、本発明によつて得られる中間
相ピツチは、一般に、もし熱重合が行れれば現れ
るはずの2個のピークの中間に位置する単一の大
きなピークがあるような分子量分布をもつてい
る。 本発明のそれ以外の目的および利点は、一部は
下記の明細書で説明され、また一部は特別に言及
せずとも本文の特許請求の範囲に指摘した通りに
実現し、達成されるものと同一であることは明白
である。 本発明の実効化において、表中の説明と本明細
書中に記載するために一定の実施態様が選ばれ
た。 本発明を分かりやすくするための実施例及び参
考例が下に用意されている。その中の指導原理お
よび教示を助けにすれば直ちに多数の実施例を展
開することができる。本文に提供された実施例は
本発明を具体的に示すことを意図するもので、い
かなる意味でも本発明を実施し得る態様を限定す
るものではない。本文中に掲げた部および百分率
は、特別に他の意味付がされない限り、重量部お
よび重量%を示すものである。 一般に、本発明を実行するに適した炭素質前駆
材料ピツチは、前述のSingerの特許第4005183号
中に説明されているような、従来行われている熱
的方式によつて、中間相が広域を占めるピツチを
形成し得る前駆材料ピツチでなければならない。
いかなる炭素質ピツチでもその適性は本文中の教
示に従い直接の方式によつて決定することができ
る。 もちろん、炭素質前駆材料ピツチと、中間相ピ
ツチを製造するために適当なそして好ましい物理
的操作との間には相互関係がある。本文中の教示
は、特性炭素質ピツチ用の物理的操作の選択およ
び適正化する指針を提供するものである。 例 1(参考例) 商品として入手可能な石油ピツチが溶剤抽出法
に使用された。その石油ピツチの軟化温度は約
130℃、ピリジン不溶分は0%で、中間相を含ん
でいなかつた。 そのピツチ10gをトルエン200mlと室温で約1
時間撹拌し、減圧過によつて過した。乾燥し
た不溶分すなわち収得物は約8重量%であつた。
その収得物の軟化点は約319℃、ピリジン不溶分
は47%で約40重量%の中間相を含んでいた。 例 2(参考例) 沸騰トルエンを使用して例1を繰返した。収得
物は6重量%、その中間相含有量は約100%であ
つた。 例 3(実施例) 例1とは異つた、商品として入手可能な石油ピ
ツチを選んだ。そのピツチの軟化温度は約123℃、
ピリジン不溶分はほとんど0%で中間相は含んで
いなかつた。 溶剤を石油エーテルとトルエンの1:2の混合
物に替えて、例1の操作を繰返した。約14重量%
の収得物が得られ、その軟化温度は239℃、ピリ
ジン不溶分は約3%で、約100重量%の中間相を
含有していた。 例 4(参考例) 溶剤を石油エーテルとトルエンの1:1の混合
物に替えて、例3を繰返した。収得物は約32%、
約50重量%の中間相を含んでいた。 例 5(参考例) 例3の中間相ピツチを単繊維紡糸機上290℃で
繊維に紡糸した。その繊維の直径は約20ミクロン
で、それを空気中で1分に2℃ずつの速度で約
375℃まで加熱して熱硬化させた。その熱硬化繊
維を偏光顕微鏡で検査し、約100%の異方性状態
を含んでいることを確認した。その熱硬化繊維を
慣行法に従い不活性雰囲気中、1700℃まで上げて
炭化した。そしてその炭化繊維について行つた試
験が示したそのモジユラス(modulus)は172ギ
ガパスカル(約25×106psi)、その抗張力は1.72ギ
ガパスカル(250000psi)であつた。 中間相ピツチから炭化繊維を製造する方法は業
界では周知であり、特殊な引用文書としては前述
のSingerの特許第4005183号およびChwastiakの
特許第2005298号が知られている。 例 6(参考例) 商品として入手し得る第3のタイプの石油ピツ
チを選んだ。その石油ピツチの軟化温度は約130
℃であつた。好適な実施態様に従つて、そのピツ
チをまず蒸留した、その新しい軟化温度は約201
℃、ピリジン不溶分は約3%、そして中間相は3
重量%であつた。 次に、そのピツチを例1におけると同様に溶剤
で抽出し、約36重量%の収得物を得た。ピリジン
不溶分41%、中間相は約90重量%であつた。その
中間相ピツチの軟化点は約343℃であつた。 例 7(参考例) 溶剤抽出を沸騰トルエンで行う所だけ変えて、
例6を繰返した。約30重量%の収得物が得られ、
その軟化温度は約360℃であつた。その収得物の
ピリジン不溶分は約69%、約100重量%の中間相
を含んでいた。 例 8(参考例) 溶剤抽出を、ベンゼンを用い約80℃で行う所だ
けを変えて、例7を繰返した。収得物は約30重量
%、そのピリジン不溶分は約55%、そして約100
重量%の中間相を含んでいた。その軟化温度は約
360℃であつた。 例 9(参考例) 軟化温度が約152℃の空気吹込石油ピツチを常
温でトルエンを用いて溶剤抽出し、収得物約34重
量%を得た。その収得物には中間相は含まれてい
なかつた。高温分解タールから得られたピツチに
ついても同様の結果が得られた。 これらのピツチは両種とも慣行法に従つて熱処
理しても広域の中間相は得られなかつた。この事
実はこの種のピツチが本発明用としては不適当で
あることを示している。 例 10(参考例) 例6の石油ピツチを極度に分子量の小さい成分
を除くために、不活性ガスで揮発分を追出しなが
ら約390℃で約1時間加熱した。約21重量%が留
去され、残留ピツチの軟化温度は約162℃、ピリ
ジン不溶分は0%を示し、中間相は含まれていな
かつた。 十分に〓砕したピツチ120gをトルエン2400ml
と室温で撹拌することによつて溶剤抽出を行つ
た。焼結ガラス過器を通して減圧過後の収得
物は約19重量%であつた。その収得物の軟化温度
は約320℃、ピリジン不溶分は約39%を示し、約
80重量%の中間相を含んでいた。 例 11(参考例) 溶剤抽出を約110℃で行うことだけを変えて、
例10を繰返した。 その収得物は約7重量%、その収得物の軟化温
度は約370℃、ピリジン不溶分は約64%を示し、
約100重量%の中間相を含んでいた。 例 12(参考例) 例6の蒸留ピツチを粉砕したもの50gを沸騰ベ
ンゼン1000mlと約2時間還流させて溶剤抽出し
た。その熱溶液を焼結ガラス過器で過し、収
得物は約30重量%であつた。その収得物の軟化温
度は約360℃、ピリジン不溶分は約55%を示し、
約100重量%の中間相を含んでいた。 例 13(参考例) あらかじめ蒸留を行わずに、例6を繰返した。
不溶分が全く得られなかつた。 例 14(参考例) 例3の石油ピツチを石油エーテルで溶剤抽出し
た。収得物は約77重量%であつたが中間相を含ん
でいなかつた。さらに、例3に従いトルエンで溶
剤抽出し、約100重量%の中間相を含む収得物約
1重量%を得た。 例 15(参考例) 軟化温度約125℃、中間相約0%のコールター
ルピツチを溶剤抽出した。 室温で、ピツチ60gとトルエン1200mlを約2時
間撹拌した。収得物は約47重量%であつた。その
収得物の軟化点は約318℃、ピリジン不溶分は約
53%を示し、約60重量%の中間相を含んでいた。 例 16(参考例) 例15のコールタールピツチ29.5gをトルエン
500mlと約110℃で約2時間還流させた。約85重量
%の中間相を含む収得物40重量%を得た。 例 17(参考例) 溶剤で抽出したピツチの可溶分と不溶分との配
合の相関的要素として中間相含有量を確認する試
験を行つた。 室温でトルエンで溶剤抽出したナフタレンピツ
チについては、不溶分の約35〜82%の範囲に相当
する中間相の約10〜約100重量%の範囲において、
中間相の含有重量と不溶分の含有重量との間には
十分な直線関係があることが確認された。 ナフタレンピツチからの可溶分および不溶分
と、例3からのそれに相当する部分とを用いた配
合試験を実施したときも、この関係は本質的に同
一だつた。ナフタレンピツチからの不溶分の所与
量を、例3からの不溶分の同一重量で置換えた試
料は同一中間相含有量になつた。これは、前駆材
料ピツチの化学的組成が異なつていることから見
て予期されなかつた結果である。 例 18(参考例) 溶剤抽出を繰返す効果を確認する試験を行つ
た。 室温で、トルエンを用いて徹底的に溶剤抽出す
ると収得物が減少し、実質的に秤量し得る量の中
間相は得られないという結果になることが判つ
た。 従つて、これは本発明を実施するための補足的
な指針である。 例 19(参考例) 諸例からの各種の収得物についてその分子量分
布ならびにX−線回折の両者の特性を確認するた
めの試験を行つた。 ゲル浸透クロマトグラフ法を用いて、数平均分
子量(n)、重量平均分子量(w)およびZ
−平均分子量(z)の数値が確認された。そし
てまた、分子量の定量的分子が確認された。 それに加えて、原子層間隔(Co/2)および
見掛上の重積層高(Lc)の値を確認するために
X−線回折測定を行つた。 各種の中間相ピツチについてのこれらの試験の
結果を第表に示した。 前述Lewisほかの特許第3976729号および
Chwastiakの英国特許2005298号に従つて、分子
分布量のデーターが得られた。ゲル浸透クロマト
グラフ法の処置に用いた溶剤はキノリンであつ
た。
The present invention provides mesophase pitch, mesophase pitch,
In particular, it relates to a method for producing mesophase pitches containing approximately 100% by weight mesophase. Mesophase pitch is known to be suitable for producing carbon fibers having excellent properties that make it suitable for commercial use. Carbon fibers derived from mesophase pitch are known to be lightweight, strong, electrically conductive, and chemically and physically inert. Carbon fibers derived from mesophase pitch are effective as reinforcing materials in composites and find use in aerospace applications and high-end sports equipment. Generally speaking, carbon fibers are primarily made from three types of precursor materials: rayon, acrylonitrile, and pitch. The use of pitch as a precursor material is economically attractive. Cheap carbon fibers made from ordinary pitch have unfavorable molecular alignment and poor mechanical properties compared to others. In contrast, carbon fibers made from mesophase pitch have a very favorable molecular arrangement and exhibit very good mechanical properties compared to others. As used herein, the term "pitch" as used in the art generally refers to a complex mixture of aromatic compounds that are primarily solids at room temperature and have a relatively wide melting or softening temperature range. should be interpreted as representing carbonaceous residues consisting of When cooled from its melt, pitch changes like glass. As used herein, the term "mesophase" should generally be construed as synonymous with liquid crystal, as used in the art. That is, it is a state of matter that lies between a crystalline solid and a normal liquid. usually,
Substances in the mesophase state exhibit both anisotropic and liquid properties. “Mesophase-containing pitch” as long as it is used in the main text
The term refers to pitches in which the mesophase content is less than about 40% by weight and the non-mesophase portion, ie, the isotropic phase, is the continuous phase. As used herein, the term "mesophase pitch" refers to a mesophase containing about 40% by weight or more and which, when dispersed by stirring or similar methods in accordance with the prior art, has a continuous anisotropic property. A pitch that can form a phase. Conventional methods for producing mesophase pitches from precursor pitches include heat treatment to cause thermal polymerization at temperatures above 350°C. The method produces large molecular weight molecules that can form mesophases. Typical conventional practice is carried out using a reactor maintained at about 400° C. for about 20 hours. The properties of the final material can be controlled by reaction temperature, heat treatment time and volatility rate. If a high molecular weight fraction is present, the melting point of the mesophase pitch will be at least 330°C. Higher temperatures are required to transform the mesophase pitch into fibers. This is called "spinning" in the industry. The following patents are representative of the prior art and are incorporated herein by reference: U.S. Pat. No. 4,005,183 (Singer), U.S. Pat. No. 3,919,387 (Singer), U.S. Pat. US Pat. No. 3,976,729 (Lewis et al.), US Pat. No. 3,995,014 (Lewis) and in particular UK Patent No. 2,005,298 (Chwastiak). The amount of mesophase in the pitch can be determined by known methods by polarized light microscopy. The presence of homogeneous, aggregated mesophase zones can be observed with the naked eye by polarized light microscopy and as described above.
It can be measured quantitatively by the method disclosed in the Chwastiak patent. Previously, the criterion of insolubility in certain solvents, such as quinoline and pyridine, was used to evaluate mesophase content. but,
Since there may be some non-intermediate insolubles present in the precursor pitch, it is common practice to remove these insolubles before processing the precursor pitch. According to the prior art, quinoline insoluble % (%Q.
I.) shows the quinoline insoluble content in pitch extracted with quinoline at 75°C. In addition, pyridine insoluble content%
(% PI) indicates the pyridine insoluble content in pitch extracted in boiling pyridine at about 115° C. using a Soxhlet apparatus. The softening point or softening temperature of pitch is related to its molecular weight composition, and the presence of large amounts of high molecular weight components generally tends to increase the softening temperature. It is common practice in the industry to grade precursor pitches to some extent by their softening points. For mesophase pitches, the softening point is used to determine the appropriate spinning temperature. Generally, the spinning temperature is about 40°C or more above the softening temperature. Generally, there are several methods for determining the softening temperature, and the temperatures measured by these different methods differ to some extent from each other. In general, the Mettler softening point measurement method has been widely adopted as the standard for precursor material pitch evaluation. The method can be applied to mesophase pitches. The softening temperature of the mesophase pitch can also be determined by examination with a heated stage microscope. In this method, the mesophase pitch is placed on the heating stage of the microscope.
Heated under polarized light in an inert atmosphere. The temperature of the mesophase pitch is increased at a controlled rate and the temperature at which the mesophase pitch begins to deform is recorded as the softening temperature. As used herein, softening point or softening temperature refers to the temperature measured by the Mettler method for both the precursor pitch and the mesophase pitch. One of the main objects of the present invention is to subject a carbonaceous precursor pitch to a solvent extraction operation without chemical manipulation (i.e. thermal polymerization by heating), so that
The molecular weight distribution of the mesophase pitch is such that at least 75% of the molecules have a molecular weight in the range of 600 to 1300, no more than 10% of the molecules have a molecular weight less than 600, and no more than 15% of the molecules have a molecular weight less than 1300. The objective is to obtain a mesophase pitch which is manufactured to a high molecular weight and contains about 100% by weight of mesophase. Another object of the present invention is to subject a carbonaceous precursor pitch to a solvent extraction operation without chemical manipulation (i.e., thermal polymerization by heating), so that the mesophase pitch has an atomic interlayer spacing (Co/ 2) is approximately 3.60
Apparent stack height (Lc) below angstrom
is made to have an X-ray structure larger than about 20 angstroms, and to obtain a mesophase pitch containing about 100% by weight mesophase. The solvent used in the process of the invention to achieve the above object is a 1:2 mixture of petroleum ether and toluene. Pitch fibers can be formed from the mesophase pitch obtained by the present invention by spinning without any chemical manipulation. Preferably, spinning from the mesophase pitch is carried out at a temperature of about 370°C or less. Since the mesophase pitch is stable at such high temperatures, spinning using the conventional method can be performed at temperatures below approximately 370°C.
Time does not cause chemical changes in pitch. Therefore, pitch fibers can be formed from carbonaceous pitch via the present invention without any chemical manipulation. In conventional thermal mesophase formation methods, a pitch of carbonaceous precursor material is heated to cause polymerization. The resulting mesophase pitch is characterized by a molecular weight distribution with two large peaks. The low molecular weight peak corresponds to the precursor pitch component, and the high molecular weight peak corresponds to molecules produced by thermal polymerization. In contrast, the mesophase pitch obtained according to the present invention generally has a molecular weight distribution with a single large peak located midway between the two peaks that would appear if thermal polymerization were carried out. It has Other objects and advantages of the invention will be realized and attained in part as set forth in the following specification, and in part as pointed out in the claims herein without specific reference. It is clear that it is the same as In practicing the invention, certain embodiments were chosen for discussion in the tables and herein. Examples and reference examples are provided below to facilitate understanding of the invention. Numerous embodiments can readily be developed with the aid of the guiding principles and teachings therein. The examples provided herein are intended to be illustrative of the invention and are not in any way limiting of the manner in which the invention may be practiced. Parts and percentages listed herein are by weight, unless otherwise specified. In general, carbonaceous precursor pitches suitable for carrying out the present invention are prepared by conventional thermal processes, such as those described in the aforementioned Singer patent 4005183, in which the mesophase is extensively dispersed. The precursor material pitch must be such that it can form a pitch that occupies a large area.
The suitability of any carbonaceous pitch can be determined by a direct method according to the teachings herein. Of course, there is an interplay between the carbonaceous precursor pitch and the appropriate and preferred physical manipulations for producing the mesophase pitch. The teachings herein provide guidance in the selection and optimization of physical operations for specific carbonaceous pitches. Example 1 (Reference Example) Commercially available petroleum pitch was used in a solvent extraction method. The softening temperature of the oil pitch is approximately
At 130°C, the pyridine insoluble content was 0% and no intermediate phase was contained. 10g of that pitch is mixed with 200ml of toluene at room temperature for about 1
Stir for an hour and filtrate under reduced pressure. The dry insoluble matter or yield was about 8% by weight.
The obtained product had a softening point of about 319°C, a pyridine insoluble content of 47%, and a mesophase of about 40% by weight. Example 2 (Reference Example) Example 1 was repeated using boiling toluene. The yield was 6% by weight and its mesophase content was approximately 100%. Example 3 (Example) Different from Example 1, a commercially available oil pit was selected. The softening temperature of the pitch is approximately 123℃,
The pyridine-insoluble content was almost 0% and no intermediate phase was contained. Example 1 was repeated, replacing the solvent with a 1:2 mixture of petroleum ether and toluene. Approximately 14% by weight
A product was obtained, which had a softening temperature of 239°C, a pyridine insoluble content of about 3%, and a mesophase content of about 100% by weight. Example 4 (Reference Example) Example 3 was repeated, replacing the solvent with a 1:1 mixture of petroleum ether and toluene. Approximately 32% of what was obtained
It contained approximately 50% by weight mesophase. Example 5 (Reference Example) The mesophase pitch of Example 3 was spun into fibers at 290°C on a single fiber spinning machine. The diameter of the fiber is about 20 microns, and it is heated at a rate of about 2°C per minute in air.
It was heated to 375°C for thermosetting. The thermoset fibers were examined using a polarizing microscope and confirmed to contain approximately 100% anisotropy. The thermoset fibers were carbonized at temperatures up to 1700°C in an inert atmosphere according to conventional methods. Tests conducted on the carbonized fibers showed a modulus of 172 gigapascals (approximately 25 x 106 psi) and a tensile strength of 1.72 gigapascals (250,000 psi). Methods for producing carbonized fibers from mesophase pitch are well known in the industry, with specific reference to the aforementioned Singer Patent No. 4,005,183 and Chwastiak Patent No. 2,005,298. Example 6 (Reference example) We selected the third type of petroleum pittuce available as a commercial product. The softening temperature of the petroleum pitcher is approximately 130
It was warm at ℃. In accordance with a preferred embodiment, the pitch is first distilled and its new softening temperature is about 201
℃, the pyridine insoluble content is about 3%, and the mesophase is 3%.
It was in weight%. The pitch was then extracted with a solvent as in Example 1, yielding about 36% by weight. The pyridine insoluble content was 41%, and the intermediate phase was about 90% by weight. The softening point of the mesophase pitch was about 343°C. Example 7 (reference example) The only difference is that the solvent extraction is performed using boiling toluene.
Example 6 was repeated. Approximately 30% by weight of the product was obtained,
Its softening temperature was approximately 360°C. The yield had a pyridine insoluble content of about 69% and contained about 100% mesophase by weight. Example 8 (Reference Example) Example 7 was repeated with the only difference that the solvent extraction was carried out with benzene at about 80°C. The yield is about 30% by weight, its pyridine-insoluble content is about 55%, and about 100% by weight.
% mesophase by weight. Its softening temperature is approximately
It was 360℃. Example 9 (Reference Example) An air-blown petroleum pit having a softening temperature of about 152° C. was subjected to solvent extraction using toluene at room temperature to obtain a product of about 34% by weight. The yield contained no mesophase. Similar results were obtained for pitch obtained from high-temperature decomposition tar. Both types of pitches were not able to produce extensive mesophases even when heat treated according to conventional methods. This fact indicates that this type of pitch is unsuitable for use in the present invention. Example 10 (Reference Example) In order to remove components with extremely low molecular weight, the petroleum pit of Example 6 was heated at about 390° C. for about 1 hour while expelling volatile matter with an inert gas. About 21% by weight was distilled off, the softening temperature of the residual pitch was about 162°C, the pyridine insoluble content was 0%, and no intermediate phase was contained. Thoroughly crush 120g of pith and 2400ml of toluene.
Solvent extraction was performed by stirring at room temperature. The yield after vacuum filtration through a sintered glass filter was about 19% by weight. The softening temperature of the obtained material was approximately 320°C, the pyridine insoluble content was approximately 39%, and approximately
It contained 80% by weight mesophase. Example 11 (reference example) The only change is that the solvent extraction is performed at about 110℃,
Example 10 was repeated. The obtained product was about 7% by weight, the softening temperature of the obtained product was about 370°C, and the pyridine insoluble content was about 64%.
It contained approximately 100% by weight mesophase. Example 12 (Reference Example) 50 g of the pulverized distilled pitcher from Example 6 was refluxed with 1000 ml of boiling benzene for about 2 hours and subjected to solvent extraction. The hot solution was passed through a sintered glass filter and the yield was approximately 30% by weight. The obtained product has a softening temperature of about 360°C and a pyridine insoluble content of about 55%.
It contained approximately 100% by weight mesophase. Example 13 (Reference Example) Example 6 was repeated without prior distillation.
No insoluble matter was obtained. Example 14 (Reference Example) The petroleum pitch of Example 3 was solvent extracted with petroleum ether. The yield was approximately 77% by weight and contained no mesophase. Further solvent extraction with toluene was carried out according to Example 3, yielding about 1% by weight of a product containing about 100% by weight of the mesophase. Example 15 (Reference Example) Coal tar pitch with a softening temperature of about 125°C and a mesophase of about 0% was extracted with a solvent. 60 g of pitch and 1200 ml of toluene were stirred at room temperature for about 2 hours. The yield was approximately 47% by weight. The softening point of the obtained product is approximately 318℃, and the pyridine-insoluble content is approximately
53% and contained approximately 60% by weight of mesophase. Example 16 (Reference example) 29.5g of coal tar pitch from Example 15 was added to toluene.
It was refluxed at 500 ml and about 110°C for about 2 hours. A yield of 40% by weight was obtained containing about 85% by weight of mesophase. Example 17 (Reference Example) A test was conducted to confirm the mesophase content as a correlation factor in the composition of the soluble and insoluble components of pitch extracted with a solvent. For naphthalene pitches solvent extracted with toluene at room temperature, in the range of about 10 to about 100% by weight of the mesophase, which corresponds to a range of about 35 to 82% of the insoluble content.
It was confirmed that there was a sufficient linear relationship between the weight of the intermediate phase and the weight of the insoluble matter. This relationship was essentially the same when formulation tests were conducted using the soluble and insoluble fractions from the naphthalene pitch and the corresponding portions from Example 3. Samples in which a given amount of insoluble from the naphthalene pitch was replaced with the same weight of insoluble from Example 3 resulted in the same mesophase content. This is an unexpected result in view of the different chemical compositions of the precursor pitches. Example 18 (Reference example) A test was conducted to confirm the effect of repeated solvent extraction. It has been found that exhaustive solvent extraction with toluene at room temperature results in reduced yields and virtually no weighable amounts of mesophase. Therefore, this is a supplementary guide for implementing the invention. Example 19 (Reference Example) Tests were conducted to confirm both the molecular weight distribution and X-ray diffraction characteristics of the various products obtained from the examples. Using gel permeation chromatography, number average molecular weight (n), weight average molecular weight (w) and Z
- The average molecular weight (z) value was confirmed. Also, a quantitative molecular weight molecule was confirmed. In addition, X-ray diffraction measurements were performed to confirm the values of atomic layer spacing (Co/2) and apparent stacking height (Lc). The results of these tests for various mesophase pitches are shown in Table 1. Lewis et al. Patent No. 3976729 and
Molecular distribution data were obtained according to Chwastiak UK Patent No. 2005298. The solvent used in the gel permeation chromatography procedure was quinoline.

【表】【table】

【表】 比較のために、前記各例で使用した前駆材料ピ
ツチから従来の慣用の熱的方式によつて製造され
た中間相ピツチを第2表に示す。第1表と第2表
を比較すれば明らかなとおり同じ前駆材料ピツチ
を使用しても従来の熱重合によつて製造した第2
表の中間相ピツチは第1表の熱重合を行なわない
中間相ピツチと全く異なる分子量分布を示す。
Table 2 For comparison, mesophase pitches prepared by conventional conventional thermal methods from the precursor pitches used in each of the above examples are shown in Table 2. As is clear from a comparison of Tables 1 and 2, even if the same precursor pitch is used, the second
The mesophase pitch shown in the table shows a completely different molecular weight distribution from the mesophase pitch shown in Table 1 which is not subjected to thermal polymerization.

【表】 参考のために、第3表に各種操作を加える以前
の前駆材料ピツチのX−線データーを示す。
[Table] For reference, Table 3 shows the X-ray data of the precursor material pitch before various operations were performed.

【表】 第3表に示されたような前駆材料ピツチの
Co/2およびLcの値と第1表の中間相ピツチの
それらの値とを比較すると第1表の中間相ピツチ
は、前駆材料ピツチを溶剤抽出させることによつ
て本質的に分子配列をなすようになることを示し
ている、即ち中間相をなすようになることを示し
ていることが判る。特に、何の熱も用いない溶剤
抽出が、比較的に構造の乱れた前駆材料ピツチを
本質的に構造の整然とした中間相ピツチに転化さ
せている。 処理後のピツチ中の中間相含有量に対する各種
溶剤の溶解度パラメーター∂を比較することは興
味がある。適応性ある溶剤も不適応なものも同一
範囲内にあることを第4表が示している。
[Table] Precursor material pitch as shown in Table 3
Comparing the values of Co/2 and Lc with those of the mesophase pitches in Table 1 shows that the mesophase pitches in Table 1 essentially form molecular alignments by solvent extraction of the precursor pitches. It can be seen that this shows that it becomes like this, that is, it shows that it comes to form an intermediate phase. In particular, solvent extraction without any heat converts a relatively disordered precursor pitch into an essentially ordered mesophase pitch. It is interesting to compare the solubility parameter ∂ of various solvents with respect to the mesophase content in the pitch after treatment. Table 4 shows that compatible and non-compatible solvents are within the same range.

【表】 例 20(参考例) 例3の中間相ピツチを約300℃で融解し、その
溶剤を除去するために、不活性雰囲気中で約30分
間撹拌した。その生成物を約300℃の温度で単繊
維に紡糸した。紡糸されたまゝの繊維の直径は15
ミクロンと25ミクロンであつた。その25ミクロン
の繊維を粉砕し、X−線で検査した。そのCo/
2は3.54オングストローム、Lcは34オングストロ
ームと測定された。紡糸前の中間相ピツチについ
てのX−線データーはCo/2が3.58オングストロ
ーム、Lcは約25オングストロームであつた。 その紡糸されたまゝの繊維の大部分を占める分
子配向は約30℃と測定された。 比較のために挙げれば、前述のSingerの特許第
4032430号に開示されたような慣行法で製造され
た、紡糸されたまゝの繊磯のCo/2は3.45〜3.55
オングストローム、Lcは30〜50オングストロー
ム、優先的な分子配向は25〜30゜であつた。 さらに、15ミクロンの繊維は空気中、毎分2℃
の速度で約375℃まで加熱して熱硬化させた。そ
の熱硬化させた繊維を検査し、その中の異方性状
態は約100%であつた。その熱硬化繊維を慣行法
に従い、不活性雰囲気中、1700℃まで上げて炭化
した。その炭化繊維の示したモジユラスは約193
ギガパスカル(28×106psi)、抗張力は1.88ギガパ
スカル(273000psi)であつた。
Table: Example 20 (Reference Example) The mesophase pitch of Example 3 was melted at about 300° C. and stirred for about 30 minutes in an inert atmosphere to remove the solvent. The product was spun into single fibers at a temperature of approximately 300°C. The diameter of the as-spun fiber is 15
It was micron and 25 micron. The 25 micron fibers were ground and examined by X-ray. That Co/
2 was measured to be 3.54 angstroms, and Lc was measured to be 34 angstroms. X-ray data for the mesophase pitch before spinning showed Co/2 of 3.58 angstroms and Lc of about 25 angstroms. The molecular orientation that accounts for the majority of the as-spun fibers was determined to be approximately 30°C. For comparison, the Singer patent no.
The Co/2 of the as-spun fiber produced by the conventional method as disclosed in No. 4032430 is 3.45 to 3.55.
angstrom, Lc was 30-50 angstroms, and the preferential molecular orientation was 25-30°. In addition, 15 micron fibers are heated at 2°C per minute in air.
The material was heated to approximately 375°C at a speed of 375°C for thermosetting. The thermoset fiber was examined and the anisotropic state therein was approximately 100%. The thermoset fibers were carbonized at temperatures up to 1700° C. in an inert atmosphere according to conventional methods. The modulus of the carbonized fiber is approximately 193
gigapascal (28×10 6 psi), and the tensile strength was 1.88 gigapascal (273000 psi).

Claims (1)

【特許請求の範囲】 1 約100重量%の中間相を含有する中間相ピツ
チの製造方法において、 主として芳香族の有機成分の複合混合物からな
る炭素質残留物であり且つ従来行なわれている熱
的方式によつて中間相が広域を占めるピツチを形
成し得る前駆材料ピツチを選択し、 分子の少くとも75%が600〜1300の範囲内の分
子量を有し、分子の10%以下が600より小さい分
子量を有しそして分子の15%以下が1300より大き
い分子量を有する分子量分布を有する不溶性部分
が得られるまで前記前駆材料ピツチを石油エーテ
ルとトルエンとの1:2の混合物からなる溶媒で
抽出し、加熱は行なわず、 それにより前記不溶性部分、すなわち、前記中
間相ピツチを得ることを特徴とする方法。
[Scope of Claims] 1. A method for producing a mesophase pitch containing about 100% by weight of a mesophase, which is a carbonaceous residue consisting of a complex mixture of mainly aromatic organic components, and which has been subjected to conventional thermal treatment. Select a precursor pitch that can form a pitch in which the mesophase occupies a wide area according to the method, and at least 75% of the molecules have a molecular weight in the range of 600 to 1300, and no more than 10% of the molecules are smaller than 600. extracting the precursor pitch with a solvent consisting of a 1:2 mixture of petroleum ether and toluene until an insoluble fraction is obtained having a molecular weight and a molecular weight distribution in which not more than 15% of the molecules have a molecular weight greater than 1300; A method characterized in that no heating is carried out, thereby obtaining said insoluble portion, ie said mesophase pitch.
JP13363480A 1979-09-28 1980-09-25 Manufacture of intermediate phase pitch and carbon fiber Granted JPS5657881A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US7989179A 1979-09-28 1979-09-28

Publications (2)

Publication Number Publication Date
JPS5657881A JPS5657881A (en) 1981-05-20
JPH0157715B2 true JPH0157715B2 (en) 1989-12-07

Family

ID=22153460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13363480A Granted JPS5657881A (en) 1979-09-28 1980-09-25 Manufacture of intermediate phase pitch and carbon fiber

Country Status (3)

Country Link
EP (1) EP0026647B1 (en)
JP (1) JPS5657881A (en)
DE (1) DE3070671D1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125289A (en) * 1981-01-28 1982-08-04 Toa Nenryo Kogyo Kk Preparation of optically anisotropic carbonaceous pitch
US4402928A (en) * 1981-03-27 1983-09-06 Union Carbide Corporation Carbon fiber production using high pressure treatment of a precursor material
JPS588786A (en) * 1981-07-10 1983-01-18 Mitsubishi Oil Co Ltd Preparation of pitch as raw material for carbon fiber
US4464248A (en) * 1981-08-11 1984-08-07 Exxon Research & Engineering Co. Process for production of carbon artifact feedstocks
JPS5837084A (en) * 1981-08-28 1983-03-04 Toa Nenryo Kogyo Kk Optically anisotropic carbonaceous pitch having low softening point and production thereof
JPS5852386A (en) * 1981-09-24 1983-03-28 Mitsubishi Oil Co Ltd Preparation of raw material pitch for carbon fiber
JPS5936725A (en) * 1982-08-24 1984-02-29 Agency Of Ind Science & Technol Pitch composition for preparing carbon fiber
US4590055A (en) * 1982-08-24 1986-05-20 Director-General Of The Agency Of Industrial Science And Technology Pitch-based carbon fibers and pitch compositions and precursor fibers therefor
US4503026A (en) * 1983-03-14 1985-03-05 E. I. Du Pont De Nemours And Company Spinnable precursors from petroleum pitch, fibers spun therefrom and method of preparation thereof
CA1224604A (en) * 1983-03-28 1987-07-28 E. I. Du Pont De Nemours And Company Custom blended precursor for carbon artifact manufacture and methods of making same
DE3509861C2 (en) * 1984-03-26 1986-03-06 Idemitsu Kosan Co. Ltd., Tokio/Tokyo Pitch material for a carbon-containing molded body and process for its manufacture
DE3441727A1 (en) * 1984-11-15 1986-05-15 Bergwerksverband Gmbh, 4300 Essen METHOD FOR PRODUCING ANISOTROPIC CARBON FIBERS
JPH0670220B2 (en) * 1984-12-28 1994-09-07 日本石油株式会社 Carbon fiber pitch manufacturing method
US5259947A (en) * 1990-12-21 1993-11-09 Conoco Inc. Solvated mesophase pitches
JPH0517782A (en) * 1991-07-09 1993-01-26 Tonen Corp Liquid crystal pitch for producing carbon yarn having high compression strength and production of carbon yarn having high compression strength
RU2104293C1 (en) * 1992-06-04 1998-02-10 Коноко Инк. Method or preparing products from mesophase resin, products from solvated mesophase resin, and solvated mesophase resin
WO2019240949A1 (en) * 2018-06-15 2019-12-19 Exxonmobil Research And Engineering Company Modification of temperature dependence of pitch viscosity for carbon article manufacture
EP4277960A1 (en) * 2021-01-13 2023-11-22 ExxonMobil Technology and Engineering Company Methods for enhancing the formation of mesophase in pitch compositions derived from hydrocarbon feedstocks

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919387A (en) * 1972-12-26 1975-11-11 Union Carbide Corp Process for producing high mesophase content pitch fibers
US4208267A (en) * 1977-07-08 1980-06-17 Exxon Research & Engineering Co. Forming optically anisotropic pitches
US4219404A (en) * 1979-06-14 1980-08-26 Exxon Research & Engineering Co. Vacuum or steam stripping aromatic oils from petroleum pitch

Also Published As

Publication number Publication date
DE3070671D1 (en) 1985-06-27
JPS5657881A (en) 1981-05-20
EP0026647B1 (en) 1985-05-22
EP0026647A1 (en) 1981-04-08

Similar Documents

Publication Publication Date Title
JPH0157715B2 (en)
US4026788A (en) Process for producing mesophase pitch
US4032430A (en) Process for producing carbon fibers from mesophase pitch
US3974264A (en) Process for producing carbon fibers from mesophase pitch
US4209500A (en) Low molecular weight mesophase pitch
US4017327A (en) Process for producing mesophase pitch
US3976729A (en) Process for producing carbon fibers from mesophase pitch
JPH0341515B2 (en)
AU662644B2 (en) Process for producing solvated mesophase pitch and carbon artifacts therefrom
CA1153719A (en) Process for producing carbon fibers
EP0090475B1 (en) Mesophase pitch having ellipsoidal molecules and method for making the pitch
US3995014A (en) Process for producing carbon fibers from mesophase pitch
JPS6017846B2 (en) Carbon fiber manufacturing method
JPS621990B2 (en)
JPH0116878B2 (en)
JPH0258311B2 (en)
JPH0615724B2 (en) Carbonaceous pitch fiber
US5182010A (en) Mesophase pitch for use in the making of carbon materials
US4589975A (en) Method of producing a precursor pitch for carbon fiber
US4414096A (en) Carbon precursor by hydroheat-soaking of steam cracker tar
EP1294825A1 (en) Solvating component and solvent system for mesophase pitch
CA2238024C (en) Self-stabilizing pitch for carbon fiber manufacture
JP3018660B2 (en) Spinning pitch for carbon fiber and method for producing the same
JP2982406B2 (en) Method for producing spinning pitch for carbon fiber
JP2533487B2 (en) Carbon fiber manufacturing method