JPH0157065B2 - - Google Patents

Info

Publication number
JPH0157065B2
JPH0157065B2 JP56022382A JP2238281A JPH0157065B2 JP H0157065 B2 JPH0157065 B2 JP H0157065B2 JP 56022382 A JP56022382 A JP 56022382A JP 2238281 A JP2238281 A JP 2238281A JP H0157065 B2 JPH0157065 B2 JP H0157065B2
Authority
JP
Japan
Prior art keywords
curing
cement
aggregate
granules
curing box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56022382A
Other languages
Japanese (ja)
Other versions
JPS57140362A (en
Inventor
Takeshi Kuroda
Kenji Shimaji
Toyosaku Mito
Haruya Nishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Cement Co Ltd
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP2238281A priority Critical patent/JPS57140362A/en
Publication of JPS57140362A publication Critical patent/JPS57140362A/en
Publication of JPH0157065B2 publication Critical patent/JPH0157065B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/021Agglomerated materials, e.g. artificial aggregates agglomerated by a mineral binder, e.g. cement

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は不焼成な人工骨材の製造方法に関
し、とくにセメント硬化時の発生熱だけで不焼成
人工骨材を製造する方法に係わるものである。 従来、焼成法によらない不焼成人工骨材の製造
法には、骨材原料と水とセメントとからなる混合
物を適宜な大きさの粒状物に造粒し、その後これ
を大気にさらしながら放置して養生する放置養生
と、水蒸気雰囲気でこれを養生する蒸気養生の方
法がよく知られている。しかしながら、前者の方
法では、養生に長時間を要し、このため広大な用
地を必要とする。また天候、季節等の環境条件に
大きく左右されて均一な骨材が得がたいという問
題があつた。一方後者は、短期間で高強度の骨材
が得られるけれども、この場合は別途に加熱装置
と燃料費を要し、製品のコスト高をまねいてい
た。 そこで、本発明者らは、上記の如き従来の人工
骨材製法のそれぞれに存在していた問題点を共に
解消した新規な人工骨材の製法を種々研究してき
たものであるが、その結果発明者らは、人工骨材
の製造時に骨材原料中に配合したセメントの自己
発熱の利用に着目し、これを用いた人工骨材の養
生を行なう新規な人工骨材の製法を完成したもの
である。即ち本発明は、骨材原料と水とセメント
とからなる混合物を適宜な粒径の粒状物に造粒
し、これを断熱性でしかも水分の逸散を防止する
ようにした構造の養生箱に充填し、その後これを
そのまま放置してセメント硬化時の発生熱だけで
養生することを特徴とするものである。 以下に本発明を説明する。 まず、骨材原料に水、セメントを加え、これを
常法に従つて十分混合する。骨材原料としては石
灰石、粘土、スラグ、フライアツシユその他の1
種または2種以上を用い、これを得ようとする骨
材の粒径に応じ適宜の粒度に予め調整しておく。
またセメントとしては、普通ポルトランドセメン
トの他早強ポルトランドセメント、アルミナセメ
ント等任意のものが使用できる。これらとセメン
トとの混合比は、大体骨材原料100重量部に対し
て、セメント5〜50部とし、これを十分混合す
る。セメントが5部より少ないと十分な結合強度
が得られず、また50部より大きいと経済性を損な
う。次にこの混合物に適量の水を加え、加圧成形
法や転動造粒法の各種の造粒法で適宜な大きさの
粒状物に造粒する。この造粒の際の粒径は、細骨
材の場合は5mm径以下とし、また粗骨材の場合は
5mm以上大体30mm以下とする。次に、こうして出
来た粒状物をすばやく養生箱に充填して、これを
水和反応させ、ひきつづき硬化養生させる。即
ち、前記粒状物を断熱壁を有ししかも水分の逸散
を防止するようにした構造の養生箱に粒状物を投
入して所定の強度発現をまつてこの養生箱より出
来上つた骨材を取出す。ここに用いる養生箱は、
この中に充填した粒状物の硬化に伴なう発生熱が
外部へ発散しないような断熱層をその側壁に有
し、かつ水分が逸散しないような構造のものを用
いる。なお、この養生箱の形状、大きさは任意で
よい。ここにおける養生箱を例示すれば図に示す
通りである。同図においては養生箱の全体を示
し、容器2とその上部に設けられた上蓋3とから
なる。容器2は、内部に粒状物4を充填する空所
があり、その側壁5に断熱材6を充填している。
また、上蓋3は上記容器2に密着して嵌合するよ
うになつていて、外部に熱、水分が逸散しないよ
うになつている。ここに用いる断熱材には、例え
ばポリウレタンフオーム、スチレンフオーム等の
有機発泡材料、パーライト、断熱れんが、ガラス
繊維、石綿、シリカ繊維等の無機材料の単独ある
いは複数が用いられる。なお、ここに用いられる
断熱材は、内部に充填した粒状物が高温を発熱す
るため、その温度に十分耐える材料を用いなけれ
ばならない。また、養生箱は必要に応じ補強材そ
の他を用いてその構造を強固にしておく。 また、養生箱は断熱材を用いないで側壁に空気
層を設け、同様の断熱効果を得るようにしてもよ
い。 本発明は以上のように、予めセメントを結合剤
として造粒した骨材用の粒状物を、断熱性で密閉
型構造の養生箱に入れて、ここで硬化時に発生す
る水和反応熱を略余すところなく利用して養生す
るので、従来の人工骨材の製造方法と比較して燃
料費を一切必要とせず骨材が得られるようになつ
た。更にこの発明では密閉型で水分の逸散を防止
したので、得られる製品はあたかも水蒸気雰囲気
で養生したような高強度のものを得ることができ
る。 以下に本発明の実施例について説明する。 実施例 1 第1表にここに用いた普通セメントを、また第
2表に骨材原料として用いたフライアツシユを示
す。上記の普通セメントとフライアツシユを配合
比(50:50)として十分混合した。次いで、この
混合物をパン型ペレタイザー(直径700φmm、深
さ150mm)に入れ、この混合物の全量に対して約
20%の水を散水し続け、約5〜20φmmの粒径の粒
状物を造粒した。造粒後、ただちに別に準備した
養生箱の中へ略いつぱいになるように約25Kg投入
して養生した。なおここで用いる養生箱は第1図
に示す構造の養生箱を用い、その大きさは、内部
直径300φmm、内部高さが400mmの円筒状で、その
側壁に約70〜100mmの厚みで発泡スチレンを挿入
したものである。 なお、比較のため、前述した粒状物の一部を50
℃(相対湿度45%)の乾燥室内に入れて乾燥養生
した。また他に粒状物の一部を1日間20℃湿空
(相対湿度90%以上)養生後20℃水中養生に供し
た。
The present invention relates to a method for manufacturing unfired artificial aggregate, and particularly to a method for manufacturing unfired artificial aggregate using only the heat generated during hardening of cement. Conventionally, the method of producing unfired artificial aggregate without using a firing method involves granulating a mixture of aggregate raw materials, water, and cement into granules of an appropriate size, and then leaving them exposed to the atmosphere. Two methods are well known: leave-on curing, in which the material is left to cure, and steam curing, in which it is cured in a steam atmosphere. However, the former method requires a long time for curing and therefore requires a vast amount of land. Another problem was that it was difficult to obtain uniform aggregate because it was greatly affected by environmental conditions such as weather and season. On the other hand, although the latter method allows high-strength aggregate to be obtained in a short period of time, it requires a separate heating device and fuel costs, leading to high product costs. Therefore, the present inventors have conducted various research into new methods for producing artificial aggregates that solve the problems that existed in each of the conventional methods for producing artificial aggregates as described above, and as a result, they have developed an invention. They focused on the use of self-heating of the cement mixed into the aggregate raw material during the production of artificial aggregate, and completed a new method for producing artificial aggregate that uses this heat to cure the artificial aggregate. be. That is, the present invention involves granulating a mixture of aggregate raw materials, water, and cement into granules of appropriate particle size, and then granulating the granules into a curing box with a structure that is heat insulating and prevents moisture from escaping. It is characterized in that it is filled with cement and then left as it is to cure using only the heat generated during cement hardening. The present invention will be explained below. First, water and cement are added to the aggregate raw material, and the mixture is thoroughly mixed according to a conventional method. Aggregate raw materials include limestone, clay, slag, flyash, and other materials.
The seed or two or more types are used and the particle size is adjusted in advance to an appropriate particle size depending on the particle size of the aggregate to be obtained.
Further, as the cement, any cement such as ordinary Portland cement, early strength Portland cement, alumina cement, etc. can be used. The mixing ratio of these and cement is approximately 5 to 50 parts by weight of cement to 100 parts by weight of the aggregate raw material, and the mixture is thoroughly mixed. If the amount of cement is less than 5 parts, sufficient bonding strength cannot be obtained, and if it is more than 50 parts, economic efficiency will be impaired. Next, an appropriate amount of water is added to this mixture, and the mixture is granulated into granules of appropriate size using various granulation methods such as pressure molding and rolling granulation. The particle size during this granulation is 5 mm or less in the case of fine aggregate, and 5 mm or more and approximately 30 mm or less in the case of coarse aggregate. Next, the granules thus produced are quickly filled into a curing box, subjected to a hydration reaction, and then hardened and cured. That is, the granules are put into a curing box that has a heat insulating wall and has a structure that prevents moisture from escaping, and the aggregate produced from the curing box is put into a curing box that has a predetermined strength. Take it out. The curing box used here is
It has a heat insulating layer on its side wall to prevent the heat generated by the curing of the granules filled therein from dissipating to the outside, and has a structure that prevents moisture from escaping. Note that the shape and size of this curing box may be arbitrary. An example of the curing box here is as shown in the figure. In the figure, reference numeral 1 indicates the entire curing box, which consists of a container 2 and a top lid 3 provided on the top thereof. The container 2 has a cavity in which the granular material 4 is filled, and a side wall 5 of the cavity is filled with a heat insulating material 6.
Further, the upper lid 3 is adapted to fit tightly into the container 2, so that heat and moisture are not dissipated to the outside. The heat insulating material used here may be one or more of organic foam materials such as polyurethane foam and styrene foam, and inorganic materials such as perlite, insulation bricks, glass fiber, asbestos, and silica fiber. Note that the heat insulating material used here must be made of a material that can withstand high temperatures because the granules filled inside generate heat. In addition, the structure of the curing box should be strengthened by using reinforcing materials or other materials as necessary. Alternatively, the curing box may be provided with an air layer on the side wall without using a heat insulating material to obtain a similar heat insulating effect. As described above, the present invention involves placing granules for aggregate, which have been granulated in advance using cement as a binder, into a curing box with an insulating and closed structure, in which the heat of hydration reaction generated during hardening is absorbed. Since all of the waste is utilized and cured, aggregates can now be obtained without any fuel costs compared to conventional methods of producing artificial aggregates. Furthermore, since the present invention uses a closed mold to prevent moisture from escaping, the resulting product can have high strength as if it had been cured in a steam atmosphere. Examples of the present invention will be described below. Example 1 Table 1 shows the ordinary cement used here, and Table 2 shows the fly ash used as the aggregate raw material. The above ordinary cement and fly ash were thoroughly mixed at a mixing ratio of 50:50. Next, put this mixture into a pan-shaped pelletizer (diameter 700φmm, depth 150mm), and add approximately
By continuing to sprinkle 20% water, granules having a particle size of about 5 to 20 mm were granulated. Immediately after granulation, approximately 25 kg of the pellets were put into a separately prepared curing box until it was almost full, and then cured. The curing box used here has the structure shown in Figure 1, and its size is cylindrical with an internal diameter of 300 mm and an internal height of 400 mm.The side walls are lined with foamed styrene with a thickness of about 70 to 100 mm. is inserted. For comparison, some of the granules mentioned above were
It was placed in a drying room at ℃ (relative humidity 45%) for dry curing. In addition, a part of the granular material was cured for one day at 20°C in a humid air (relative humidity of 90% or more) and then cured in water at 20°C.

【表】【table】

【表】 この結果、粒状物を養生箱に投入約5時間後か
らセメント硬化に伴なつて激しく発熱が起こり、
約1日間温度上昇が続く。最高時の温度は約70℃
であり、室温より約50℃高い蓄熱昇温を示した。
これによつて得られた骨材の点圧強度は、養生箱
で3日間養生して得られる骨材が98Kg/cm2を示し
た。一方、20℃水中養生の場合は、7日材令で60
Kg/cm2、28日材令で92Kg/cm2を示した。また50℃
乾燥養生(相対湿度45%)の場合、3日材令で12
Kg/cm2であつた。こうしたことからみれば、従来
20℃水中養生で28日間も要して達成できる強度
を、本発明によると、わずか3日間で達成できる
ことになる。さらに相対湿度が45%と低い湿度の
乾燥養生では、蓄熱昇温時と同程度の50℃の温度
中で養生しても著しく強度発現が小さい。 なお、骨材の絶乾比重の測定は、養生箱で養生
して得られた骨材及び乾燥養生して得られた骨材
については骨材の強度測定時に、また水中養生し
て得られた骨材は7日材令品について、JIS
A1135に準じて行なつた。強度試験はペレツトの
上下から加圧して行ない、破損時の荷重をペレツ
ト球の中心を通る断面積で除した値で表した。 実施例 2 普通セメント及びフライアツシユは実施例1と
同様に第1表及び第2表に示すものを使用した。
普通セメントとフライアツシユの比が(20:80)
である外は実施例1と同様にして人工骨材を得
た。この結果、水中養生で得られる骨材は、7日
材令で24Kg/cm2、28材令で34Kg/cm2の点圧強度で
あるのに、養生箱で養生されて得られる骨材は、
1日材令で22Kg/cm2、3日材令で45Kg/cm2の高強
度のものが得られた。このときの蓄熱温度上昇
は、セメント量が少ないため約20℃であつた。し
かしながら、この程度のわずかな発熱でも著しい
効果があらわれた。また絶乾比重は1.6g/c.c.で
あつた。 実施例 3 普通セメント及びフライアツシユは実施例1と
同様のものを用い、これを混合比(20:80)と
し、以後実施例1と同様にして粒径5〜20mmの粒
状物を約2m3造粒した。このうち約半分の量1m3
を、内部直径が900φmm、内部高さが1240mm、側
壁の断熱材部分の厚みが200mmの養生箱へいつぱ
いになるように投入して養生を行ない、一方残り
の粒状物は室内中に山積み状態にして自然放置し
て養生を行なつた。この結果、養生箱で養生され
て得られる骨材は46Kg/cm2の値を示した。一方、
室内に放置養生して得られる人工骨材の点圧強度
は、28日材令で中心部は41Kg/cm2となるが、表面
部では29Kg/cm2の値を示し、かなりのバラツキが
生ずる。なお、室内温度は約15〜20℃であつた。
また、室内山積物の中心部は最高で30℃までしか
昇温しなかつたが、一方本発明の場合は45℃であ
つた。絶乾比重は両者共1.6Kg/であつた。
[Table] As a result, approximately 5 hours after the granules were put into the curing box, intense heat generation occurred as the cement hardened.
The temperature continues to rise for about 1 day. The maximum temperature is approximately 70℃
The heat storage temperature increased approximately 50°C above room temperature.
The point pressure strength of the aggregate thus obtained was 98 Kg/cm 2 after curing for 3 days in a curing box. On the other hand, in the case of water curing at 20℃, 60%
Kg/cm 2 , 92Kg/cm 2 at 28 days old. Also 50℃
In the case of dry curing (45% relative humidity), 12
It was Kg/ cm2 . From this perspective, conventional
According to the present invention, the strength that can be achieved by curing in water at 20°C for 28 days can be achieved in just 3 days. Furthermore, when dry curing is performed at a relative humidity as low as 45%, the strength development is extremely low even when curing at a temperature of 50°C, which is about the same as when the heat storage temperature is raised. In addition, the absolute dry specific gravity of aggregates was measured when measuring the strength of aggregates obtained by curing in curing boxes and aggregates obtained by dry curing, and when measuring the absolute dry specific gravity of aggregates obtained by curing in water. Aggregate is 7 days old, JIS
It was carried out in accordance with A1135. The strength test was carried out by applying pressure from above and below the pellet, and the load at breakage was expressed as the value divided by the cross-sectional area passing through the center of the pellet sphere. Example 2 As in Example 1, the ordinary cement and fly ash shown in Tables 1 and 2 were used.
The ratio of ordinary cement to fly ash is (20:80)
An artificial aggregate was obtained in the same manner as in Example 1 except for the following. As a result, aggregate obtained by curing in water has a point pressure strength of 24 Kg/cm 2 at 7-day age and 34 Kg/cm 2 at 28-day age, but aggregate obtained by curing in a curing box has a ,
A material with high strength of 22 Kg/cm 2 at 1-day age and 45 Kg/cm 2 at 3-day age was obtained. The heat storage temperature rise at this time was approximately 20°C due to the small amount of cement. However, even this slight amount of heat generation had a significant effect. Moreover, the absolute dry specific gravity was 1.6 g/cc. Example 3 The same ordinary cement and fly ash as in Example 1 were used, the mixing ratio was set to 20:80, and granules with a particle size of 5 to 20 mm were made in the same manner as in Example 1 to about 2 m3 . It was grainy. Approximately half of this amount is 1 m 3
The granules were placed in a curing box with an internal diameter of 900φmm, an internal height of 1240mm, and a sidewall insulation material thickness of 200mm, so that they were completely filled to the brim, while the remaining granules were piled up inside the room. I left it alone to cure. As a result, the aggregate obtained by curing in the curing box showed a value of 46 kg/cm 2 . on the other hand,
The point pressure strength of artificial aggregate obtained by leaving it to cure indoors is 41 kg/cm 2 at the center after 28 days of age, but it shows a value of 29 kg/cm 2 at the surface, which shows considerable variation. . Note that the room temperature was approximately 15 to 20°C.
Furthermore, the temperature of the center of the indoor pile only rose to 30°C at maximum, whereas in the case of the present invention, the temperature was 45°C. The bone dry specific gravity of both was 1.6 kg/.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明方法の1実施例に用いる養生箱の部
分断面図を示す。 …養生箱、2…容器、3…上蓋、4…粒状
物、5…側壁、6…断熱材。
The figure shows a partial sectional view of a curing box used in one embodiment of the method of the present invention. 1 ...Curing box, 2...Container, 3...Top lid, 4...Particles, 5...Side wall, 6...Insulating material.

Claims (1)

【特許請求の範囲】[Claims] 1 骨材原料と水とセメントからなる混合物を適
宜な粒径の粒状物に造粒し、これを断熱性でしか
も水分の逸散を防止するようにした構造の養生箱
に充填し、その後これをそのまま放置してセメン
ト硬化時の発生熱だけで養生することを特徴とす
る人工骨材の製造方法。
1 A mixture consisting of aggregate raw materials, water, and cement is granulated into granules of appropriate particle size, and this is packed into a curing box with a structure that is insulating and prevents moisture from escaping. A method for producing artificial aggregate characterized by leaving it as is and curing it only with the heat generated when cement hardens.
JP2238281A 1981-02-18 1981-02-18 Manufacture of artificial bone material Granted JPS57140362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2238281A JPS57140362A (en) 1981-02-18 1981-02-18 Manufacture of artificial bone material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2238281A JPS57140362A (en) 1981-02-18 1981-02-18 Manufacture of artificial bone material

Publications (2)

Publication Number Publication Date
JPS57140362A JPS57140362A (en) 1982-08-30
JPH0157065B2 true JPH0157065B2 (en) 1989-12-04

Family

ID=12081094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2238281A Granted JPS57140362A (en) 1981-02-18 1981-02-18 Manufacture of artificial bone material

Country Status (1)

Country Link
JP (1) JPS57140362A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172661A (en) * 1984-09-17 1986-04-14 加藤 明彦 Manufacture of artificial lightweight aggregate
JPS6177650A (en) * 1984-09-25 1986-04-21 加藤 明彦 Method of enhancing artificial aggregate using cement

Also Published As

Publication number Publication date
JPS57140362A (en) 1982-08-30

Similar Documents

Publication Publication Date Title
US2676892A (en) Method for making unicellular spherulized clay particles and articles and composition thereof
US4086098A (en) Composition of matter comprising cellular aggregate distributed in a binder
US4268317A (en) Lightweight insulating structural concrete
US4780144A (en) Method for producing a building element from a fly ash comprising material and building element formed
US2880101A (en) Manufacture of steam-cured light-weight concrete
JPS6283386A (en) Heat insulator for organism generating silica
US4555448A (en) Biogenetic silica insulation
EP0560837B1 (en) Lightweight aggregate
JPH0157065B2 (en)
JPS5844627B2 (en) Manufacturing method of fireproof insulation material
CA1077181A (en) Composition of matter comprising cellular aggregate distributed in a binder
JPH03252375A (en) Production of water-penetrable construction material containing coal ash
US4166750A (en) Anhydrite concrete and method for preparing building elements
US1761108A (en) Method for the manufacture of cellular building materials
US4123285A (en) Foamed ceramic element
US4307199A (en) Process for making heat insulating firebricks
JPS60191074A (en) Manufacture of inorganic cured body
SU1573009A1 (en) Method of manufacturing hollow unburned aggregate
JP2017057105A (en) Method for producing cement hardened body for humidity conditioning and the same hardened body
US1623989A (en) Ice concrete
US3362837A (en) Dense heat insulating and nonabsorbent concrete
JPH1033979A (en) Method of manufacturing humidity control material
JPS6310110B2 (en)
US3956003A (en) Spherical aggregates
US1749508A (en) Process of making porous products