JPH0156818B2 - - Google Patents

Info

Publication number
JPH0156818B2
JPH0156818B2 JP55063134A JP6313480A JPH0156818B2 JP H0156818 B2 JPH0156818 B2 JP H0156818B2 JP 55063134 A JP55063134 A JP 55063134A JP 6313480 A JP6313480 A JP 6313480A JP H0156818 B2 JPH0156818 B2 JP H0156818B2
Authority
JP
Japan
Prior art keywords
ash
coal ash
coal
exhaust gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55063134A
Other languages
Japanese (ja)
Other versions
JPS56161822A (en
Inventor
Hayamizu Ito
Chiaki Nagai
Kunihiko Mori
Tadashi Shirakata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Kawasaki Motors Ltd
Original Assignee
Electric Power Development Co Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Kawasaki Jukogyo KK filed Critical Electric Power Development Co Ltd
Priority to JP6313480A priority Critical patent/JPS56161822A/en
Publication of JPS56161822A publication Critical patent/JPS56161822A/en
Publication of JPH0156818B2 publication Critical patent/JPH0156818B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chimneys And Flues (AREA)
  • Processing Of Solid Wastes (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、石炭だきボイラ排ガスを高ばいじん
系脱硝、空気予熱、低温集じんの順序で処理する
方法において、集じん装置捕集石炭灰を灰処理管
内に導入するとともに、この灰処理管内に石炭だ
きボイラの高温燃焼排ガスを吹き込んで、灰処理
管内で石炭灰中のアンモニウム化合物を輸送しな
がら熱分解せしめることにより、石炭灰中に含ま
れるアンモニウム化合物を効率よくかつ経済的に
除去することができ、かつ装置をコンパクト化す
ることができる方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method for treating coal-fired boiler exhaust gas in the order of high-dust denitrification, air preheating, and low-temperature dust collection. Ammonium compounds contained in coal ash are introduced into the ash processing pipe, and high-temperature combustion exhaust gas from a coal-fired boiler is blown into the ash processing pipe to thermally decompose the ammonium compounds in the coal ash while transporting them within the ash processing pipe. The present invention relates to a method that allows ammonium compounds to be removed efficiently and economically, and that allows for a compact device.

〔従来の技術〕[Conventional technology]

石炭だボイラの排ガスを高ばじんの状態でアン
モニア接触還元方式の脱硝装置に導入して脱硝
し、ついで排ガスを空気予熱器に導入して燃焼用
空気を予熱した後、排ガスを低温電気集じん機な
どの集じん装置に導入して除じんし、さらに排ガ
スを脱硫装置に導入して脱硫処理を施す場合、脱
硝装置よりのリークアンモニアと排ガス中に含ま
れる硫黄酸化物(以下、SOxと記す)との反応に
起因するアンモニウム化合物が集じん装置捕集石
炭灰中含まれる。このアンモニウム化合物は灰処
理設備のみならず石炭灰の投棄、利用などにも悪
影響を及ぼすことが予想される。もちろん脱硝装
置よりのリークアンモニアの低減が検討されてい
るが、不十分な結果しか得られてない現状で、こ
のためアンモニウム化合物対策が必要となる。
The exhaust gas from the coal boiler is introduced in a highly dusty state into an ammonia catalytic reduction type denitrification device to remove NOx, then the exhaust gas is introduced into an air preheater to preheat the combustion air, and then the exhaust gas is sent to a low-temperature electrostatic precipitator. When the exhaust gas is introduced into a dust collector such as a machine to remove dust, and then the exhaust gas is introduced into a desulfurization equipment for desulfurization treatment, the ammonia leaked from the denitrification equipment and the sulfur oxides (hereinafter referred to as SOx) contained in the exhaust gas are removed. ) is contained in the coal ash collected by the dust collector. This ammonium compound is expected to have an adverse effect not only on ash processing equipment but also on the dumping and utilization of coal ash. Of course, the reduction of leaked ammonia from the denitrification equipment is being considered, but the current results are insufficient, and therefore measures against ammonium compounds are needed.

集じん装置捕集石炭灰中に含まれるアンモニウ
ム化合物は、主として(NH42SO4、NH4HSO4
の形で存在する。アンモニウム化合物の石炭灰よ
りの除去方法として水洗法、熱分解法が考えられ
る。水洗法は硫安などのアンモニウム化合物の水
に対する溶解度が高く、高除去率が期待される
が、処理後の石炭灰に多量の水分が含まれるので
石炭灰の有効利用が難しく、またアンモニア(以
下、NH3と記す)を含む排水の処理が必要であ
るなどの不都合点を有している。一方、アンモニ
ウム化合物の熱分解は次式にしたがつて進行す
る。
The ammonium compounds contained in the coal ash collected by the dust collector are mainly (NH 4 ) 2 SO 4 and NH 4 HSO 4
It exists in the form of Possible methods for removing ammonium compounds from coal ash include water washing and thermal decomposition. The water washing method has high solubility of ammonium compounds such as ammonium sulfate in water, and is expected to have a high removal rate.However, since the coal ash after treatment contains a large amount of water, it is difficult to use the coal ash effectively. This method has disadvantages such as the need to treat wastewater containing NH3 (denoted as NH3). On the other hand, thermal decomposition of ammonium compounds proceeds according to the following formula.

(NH42SO4→NH3+NH4HSO4 NH4HSO4→NH3+SO3+H2O 〔発明が解決しようとする問題点〕 しかしながらアンモニウム化合物の熱分解には
かなりの高温を非要とし、このため多量の熱源を
供給しなければならなかつた。
(NH 4 ) 2 SO 4 →NH 3 +NH 4 HSO 4 NH 4 HSO 4 →NH 3 +SO 3 +H 2 O [Problem to be solved by the invention] However, thermal decomposition of ammonium compounds does not require significantly high temperatures. Therefore, a large amount of heat source had to be supplied.

石炭灰の脱アンモニアを実施し得る技術は、実
用的には熱分解以外にないのが現状であり、また
この熱分解反応は、350〜700℃の分解温度では、
高々数秒〜数10秒の滞留時間で完了することを本
発明者らは知見した。
At present, there is no practical technology for removing ammonia from coal ash other than thermal decomposition, and at decomposition temperatures of 350 to 700°C,
The present inventors have found that the process is completed within a residence time of several seconds to several tens of seconds at most.

一方、灰のハンドリングは空気輸送方式で実施
されており、現状では、輸送用の空気は常温であ
るが、圧輸送の所要時間が脱アンモニア反応の時
間より若干長くなつているのが一般的である。ま
た石炭灰は大量に発生し、大量処理を要するの
で、熱分解炉もコンパクトなものであることが望
ましい。
On the other hand, ash handling is carried out by pneumatic transportation, and although the air used for transportation is currently at room temperature, the time required for pressure transportation is generally slightly longer than the time required for the deammonification reaction. be. Furthermore, since coal ash is generated in large quantities and requires mass processing, it is desirable that the pyrolysis furnace be compact.

本発明はこれらの諸点に鑑み、上記の知見に基
づいてなされたもので、灰処理管内に高温燃焼排
ガスを吹き込んで脱アンモニアを実施することに
より、アンモニウム化合物の熱分解源を他に求め
ることなく、かつ大きなアンモニウム化合物熱分
解炉を設けることなく、すなわち、灰処理管が熱
分解炉の役割を果たすようにして、クローズドシ
ステムで省エネルギ化をはかることができる効率
的で経済的な石炭灰よりのアンモニウム化合物の
除去方法を提供することを目的とするものであ
る。
In view of these points, the present invention was made based on the above knowledge, and by blowing high-temperature combustion exhaust gas into the ash treatment pipe to perform deammonia, it is possible to remove ammonium compounds without seeking other sources of thermal decomposition. , and without installing a large ammonium compound pyrolysis furnace, i.e., the ash treatment pipe plays the role of a pyrolysis furnace, making it possible to save energy in a closed system, which is more efficient and economical than coal ash. An object of the present invention is to provide a method for removing ammonium compounds.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために、本発明の石炭灰
よりのアンモニウム化合物の除去方法は、図面に
示すように、石炭だきボイラ排ガスを高ばいじん
の状態でアンモニア接触還元方式の脱硝装置2に
導入して脱硝し、ついで排ガスを空気予熱器3に
導入して燃焼用空気を予熱した後、排ガスを低温
集じん装置4に導入して除じんする方法におい
て、前記脱硝装置2よりのリークアンモニアと排
ガス中の硫黄酸化物との反応に起因するアンモニ
ウム化合物を含む集じん装置捕集石炭灰を、空気
輸送方式の灰処理管12内に導入するとともに、
この灰処理管12内に石炭だきボイラ1の高温燃
焼排ガスを吹き込み石炭灰を輸送しつつ固気接触
させて石炭灰中のアンモニウム化合物を熱分解せ
しめた後、この灰処理管12よりの石炭灰を含む
分解ガスをこの灰処理管12の末端に接続された
固気分離器13に導入して分解ガスと石炭灰とを
分離し、石炭灰を冷却器17にて冷却した後灰処
理設備20に輸送し、分解ガスを脱硝装置前に戻
しアンモニア源として再利用するように構成した
ものである。
In order to achieve the above object, the method for removing ammonium compounds from coal ash according to the present invention involves introducing coal-fired boiler exhaust gas in a highly dusty state into an ammonia catalytic reduction type denitrification device 2, as shown in the drawing. In this method, the exhaust gas is introduced into the air preheater 3 to preheat the combustion air, and then the exhaust gas is introduced into the low-temperature dust collector 4 for dust removal. The coal ash collected by the dust collector containing ammonium compounds resulting from the reaction with sulfur oxides in the coal ash is introduced into the ash processing pipe 12 of the pneumatic conveyance type, and
High-temperature combustion exhaust gas from the coal-fired boiler 1 is blown into the ash processing pipe 12 to transport the coal ash and bring it into solid-gas contact to thermally decompose ammonium compounds in the coal ash. The cracked gas containing coal ash is introduced into the solid-gas separator 13 connected to the end of the ash processing pipe 12 to separate the cracked gas and coal ash, and the coal ash is cooled in the cooler 17 and then transferred to the ash processing equipment 20. The structure is such that the cracked gas is returned to the denitrification equipment and reused as an ammonia source.

〔作用〕[Effect]

集じん装置4より排出されるアンモニウム化合
物を含む集じん装置捕集石炭灰を石炭灰輸送管1
1を経て灰処理管12に投入するとともに、この
灰処理管12内に石炭だきボイラ1の高温燃焼排
ガスを導き、石炭灰を輪送しつつ固気接触させて
石炭灰中のアンモニウム化合物を熱分解せしめ
る。熱分解後の石炭灰と分解ガスは固気分離器1
3で分離され、分解ガスは脱硝装置2の前に戻し
NH3源として再利用する。石炭灰は冷却器17
にて冷却した後灰処理設備20に輸送する。
The coal ash collected by the dust collector containing ammonium compounds discharged from the dust collector 4 is transferred to the coal ash transport pipe 1.
At the same time, the high-temperature combustion exhaust gas from the coal-fired boiler 1 is introduced into the ash processing pipe 12, and the coal ash is brought into solid-gas contact while being conveyed, and the ammonium compounds in the coal ash are heated. Let it break down. Coal ash and cracked gas after pyrolysis are transferred to solid-gas separator 1
3, and the cracked gas is returned to the front of denitration equipment 2.
Reuse as NH3 source. Coal ash goes to cooler 17
After being cooled at the ash processing facility 20, the ash is transported to the ash processing facility 20.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明す
る。図面は本発明の方法を実施する装置の一例を
示すもので、石炭だきボイラ1の排ガスダクトに
アンモニア接触還元方式の脱硝触媒を移動床式ま
たは固定床式に充填した脱硝装置2、空気予熱器
3、電気電気集じん機などの集じん装置4、熱交
換器5、脱硫装置6および煙突7が直列に接続さ
れている。集じん装置としては電気集じん機の代
りに他の装置、たとえば砂、砂利、セラミツクス
などの粒塊状ろ過材をルーバ、金網、パンチング
メタルなどの支持体間に移動可能に充填してなる
グラベル式ろ過集じん装置、マルチサイクロン、
バツグフイルタなどを用いることも可能である。
8はボイラに設けられた節炭器、10は脱硝装置
の上流側に接続されたアンモニア供給管である。
Embodiments of the present invention will be described below based on the drawings. The drawing shows an example of a device for carrying out the method of the present invention, which includes a denitrification device 2 in which the exhaust gas duct of a coal-fired boiler 1 is filled with an ammonia catalytic reduction type denitrification catalyst in a moving bed type or fixed bed type, and an air preheater. 3. A dust collector 4 such as an electrostatic precipitator, a heat exchanger 5, a desulfurization device 6, and a chimney 7 are connected in series. Instead of an electrostatic precipitator, the dust collector may be replaced by another device, such as a gravel type, in which a granular filter material such as sand, gravel, or ceramics is movably filled between supports such as louvers, wire mesh, or punched metal. Filtration and dust collection equipment, multi-cyclone,
It is also possible to use a bug filter or the like.
Reference numeral 8 designates a economizer provided in the boiler, and reference numeral 10 designates an ammonia supply pipe connected to the upstream side of the denitrification device.

集じん装置4の下部に接続された石炭灰輸送管
11は灰処理管12の一端部に接続され、この灰
処理管12の他端(末端)部はマルチサイクロ
ン、バツグフイルタまたはこれらを組み合わせた
ものなどからなる固気分離器13に接続される。
固気分離器13の分解ガス出口は分解ガス管14
を介して脱硝装置2の上流側に接続され、固気分
離器13の下部は中間タンク15に連結される。
さらに中間タンク15の下部は石炭灰輸送管16
を介して冷却器17に接続され、この冷却器17
の石炭灰出口は石炭灰輸送管18を介して灰処理
設備20に接続される。また石炭だきボイラ1の
節炭器8の上流側または下流側に高温燃焼排ガス
管21を接続し、この排ガス管21を灰処理管1
2の一端部を接続する。なお排ガス管21に排ガ
ス加熱用補助炉22を接続して、排ガス温度が低
い場合に望ましい温度に昇温するように構成する
こともある。
A coal ash transport pipe 11 connected to the lower part of the dust collector 4 is connected to one end of an ash processing pipe 12, and the other end (end) of this ash processing pipe 12 is a multi-cyclone, bag filter, or a combination thereof. It is connected to a solid-gas separator 13 consisting of, etc.
The cracked gas outlet of the solid-gas separator 13 is the cracked gas pipe 14
The lower part of the solid-gas separator 13 is connected to the intermediate tank 15.
Furthermore, the lower part of the intermediate tank 15 is a coal ash transport pipe 16.
is connected to the cooler 17 via the cooler 17.
The coal ash outlet of is connected to ash processing equipment 20 via a coal ash transport pipe 18. In addition, a high-temperature combustion exhaust gas pipe 21 is connected to the upstream or downstream side of the economizer 8 of the coal-fired boiler 1, and this exhaust gas pipe 21 is connected to the ash processing pipe 1.
Connect one end of 2. Note that an auxiliary exhaust gas heating furnace 22 may be connected to the exhaust gas pipe 21 so as to raise the exhaust gas temperature to a desired temperature when the exhaust gas temperature is low.

上記のように構成された装置において、石炭だ
きボイラ排ガスを高ばいしん系脱硝、空気予熱、
低温集じん、脱硫からなるシステムにより処理す
る場合、集じん装置4より排出されるアンモニウ
ム化合物を含む集じん装置捕集石炭灰を石炭灰輸
送管11を経て灰処理管12に投入するととも
に、この灰処理管12内に石炭だきボイラ1の高
温燃焼排ガスを導き、石炭灰を輸送しつつ固気接
触させて石炭灰中のアンモニウム化合物を熱分解
せしめる。灰処理管12内の温度は250〜700℃、
好ましくは350〜700℃、さらに好ましくは350〜
500℃となるように調節される。灰処理管12内
での固気接触を十分に行わしめるため、灰処理管
12はある程度以上長くしなければならない。熱
分解後の石炭灰と分解ガスは固気分離器13で分
離され、分解ガスは脱硝装置2の前に戻しNH3
源として再利用する。石炭灰は冷却器17にて冷
却した後灰処理設備20に輸送する。なお石炭灰
輸送管11,16,18における輸送源としては
空気が用いられる。この場合圧送式、吸引式の何
れをも採用することが可能であるが、圧送式を採
用する方が好適である。
In the device configured as described above, coal-fired boiler exhaust gas is subjected to high nitrogen denitrification, air preheating,
When processing with a system consisting of low-temperature dust collection and desulfurization, the coal ash collected by the dust collector containing ammonium compounds discharged from the dust collector 4 is fed into the ash processing pipe 12 via the coal ash transport pipe 11, and this High-temperature combustion exhaust gas from the coal-fired boiler 1 is introduced into the ash processing pipe 12, and the coal ash is transported and brought into solid-gas contact to thermally decompose ammonium compounds in the coal ash. The temperature inside the ash processing tube 12 is 250 to 700°C,
Preferably 350~700℃, more preferably 350~
The temperature is adjusted to 500℃. In order to achieve sufficient solid-gas contact within the ash processing tube 12, the ash processing tube 12 must be longer than a certain degree. The coal ash and cracked gas after pyrolysis are separated in the solid-gas separator 13, and the cracked gas is returned to the front of the denitrification device 2 to become NH 3
Reuse as a source. The coal ash is cooled in a cooler 17 and then transported to an ash processing facility 20. Note that air is used as a transport source in the coal ash transport pipes 11, 16, and 18. In this case, it is possible to use either a pressure feeding type or a suction type, but it is more suitable to use a pressure feeding type.

本発明の方法を実施するに当たり、ストリツピ
ングしたNH3の再吸着は、非常に起こり易く、
少なくとも固気分離を250℃以上で実施すること
が必要である。したがつて固気分離工程、ついで
冷却工程の順序とすることが、本発明の方法にお
いて不可欠である。
In carrying out the method of the invention, readsorption of stripped NH 3 is very likely to occur;
It is necessary to perform at least solid-gas separation at 250°C or higher. Therefore, it is essential in the method of the present invention that the solid-gas separation step is followed by the cooling step.

また熱分解後の排ガス中には水蒸気が含まれる
ため、この水蒸気が灰に吸着されやすく、灰処理
設備20内の貯灰中に固着などのトラブルが発生
しやすい。とくに脱アンモニア灰にその傾向が顕
著であるので、固気分離の後に灰の冷却を実施す
ることにより、圧輸送時のハンドリングトラブル
を回避するとともに、灰を有効利用可能なグレー
ドのものにすることが可能となる。
Furthermore, since the exhaust gas after pyrolysis contains water vapor, this water vapor is likely to be adsorbed by the ash, and problems such as sticking may occur during ash storage in the ash processing equipment 20. This tendency is particularly noticeable with deammoniated ash, so by cooling the ash after solid-gas separation, handling troubles during pressure transportation can be avoided, and the ash can be made into a grade that can be used effectively. becomes possible.

また圧輸送時間を脱アンモニア反応の時間より
若干長くなるように構成すれば、熱分解温度を従
来の350℃以上に対し250℃以上に低温化すること
ができる。
Furthermore, by configuring the pressure transport time to be slightly longer than the deammonification reaction time, the thermal decomposition temperature can be lowered to 250°C or higher, compared to the conventional 350°C or higher.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように、灰処理管内で石炭灰を
輸送しつつ石炭灰中のアンモニウム化合物を熱分
解するものであるから、灰処理管がアンモニウム
化合物熱分解炉の役割を果たし、大型のアンモニ
ウム化合物熱分解炉が不要となり、この分だけ設
置面積が小さく、かつ装置全体がコンパクト化さ
れ安価になる。また固気分離工程の後に冷却工程
を設けているので、NH3の灰への再吸着、およ
び灰の固着を防止することができ、得られた灰を
そのまま有効利用可能なものとすることができ
る。
As described above, the present invention thermally decomposes ammonium compounds in coal ash while transporting coal ash within the ash processing pipe, so the ash processing pipe plays the role of an ammonium compound thermal decomposition furnace, and a large ammonium A compound thermal decomposition furnace is not required, and the installation area is reduced accordingly, and the entire device is made more compact and inexpensive. In addition, since a cooling process is provided after the solid-gas separation process, it is possible to prevent NH 3 from being re-adsorbed into the ash and from sticking to the ash, and the resulting ash can be effectively used as it is. can.

以上説明したように、本発明の方法によれば集
じん装置捕集石炭灰中に含まれるアンモニウム化
合物をきわめて効率よくかつ安価に熱分解できる
上に、分解ガスを脱硝装置のNH3源として再利
用することができ、かつ分解熱源を系外に求める
ことなく、系内の高温燃焼排ガスを使用すること
ができ、このためクローズドシステムで省エネル
ギ化をはかることができ、また処理ガス量の増大
など他の排ガス処理構成技術に及ぼす影響が殆ど
ないので、安定した石炭だきボイラ排ガス処理を
行うことができるなどの効果がある。
As explained above, according to the method of the present invention, ammonium compounds contained in coal ash collected by a dust collector can be thermally decomposed extremely efficiently and inexpensively, and the decomposed gas can be recycled as an NH 3 source in the denitration equipment. The high-temperature combustion exhaust gas within the system can be used without requiring a decomposition heat source outside the system, making it possible to save energy in a closed system and increase the amount of gas to be processed. Since this method has almost no effect on other exhaust gas treatment configuration technologies, such as stable coal-fired boiler exhaust gas treatment, it is effective.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の方法を実施する装置の一例を示
す系統的説明図である。 1……石炭だきボイラ、2……脱硝装置、3…
…空気予熱器、4……集じん装置、5……熱交換
器、6……脱硫装置、7……煙突、8……節炭
器、10……アンモニア供給管、11,16,1
8……石炭灰輸送管、12……灰処理管、13…
…固気分離器、14……分解ガス管、15……中
間タンク、17……冷却器、20……灰処理設
備、21……高温燃焼排ガス管、22……排ガス
加熱用補助炉。
The drawing is a systematic explanatory diagram showing an example of an apparatus for carrying out the method of the present invention. 1...Coal-fired boiler, 2...Denitration equipment, 3...
... Air preheater, 4 ... Dust collector, 5 ... Heat exchanger, 6 ... Desulfurization device, 7 ... Chimney, 8 ... Carbon economizer, 10 ... Ammonia supply pipe, 11, 16, 1
8...Coal ash transport pipe, 12...Ash processing pipe, 13...
... solid gas separator, 14 ... cracked gas pipe, 15 ... intermediate tank, 17 ... cooler, 20 ... ash processing equipment, 21 ... high temperature combustion exhaust gas pipe, 22 ... auxiliary furnace for heating exhaust gas.

Claims (1)

【特許請求の範囲】[Claims] 1 石炭だきボイラ排ガスを高ばいじんの状態で
アンモニア接触還元方式の脱硝装置2に導入して
脱硝し、ついで排ガスを空気予熱器3に導入して
燃焼用空気を予熱した後、排ガスを低温集じん装
置4に導入して除じんする方法において、前記脱
硝装置2よりのリークアンモニアと排ガス中の硫
黄酸化物との反応に起因するアンモニウム化合物
を含む集じん装置捕集石炭灰を、空気輸送方式の
灰処理管12内に導入するとともに、この灰処理
管内に石炭だきボイラ1の高温燃焼排ガスを吹き
込み石炭灰を輸送しつつ固気接触させて石炭灰中
のアンモニウム化合物を熱分解せしめた後、この
灰処理管12よりの石炭灰を含む分解ガスをこの
灰処理管の末端に接続された固気分離器13に導
入して分解ガスと石炭灰とを分離し、石炭灰を冷
却器17にて冷却した後灰処理設備20に輸送
し、分解ガスを脱硝装置2前に戻しアンモニア源
として再利用することを特徴とする石炭灰よりの
アンモニウム化合物の除去方法。
1 Coal-fired boiler exhaust gas in a highly dusty state is introduced into an ammonia catalytic reduction type denitrification device 2 for denitrification, then the exhaust gas is introduced into an air preheater 3 to preheat combustion air, and then the exhaust gas is passed through a low-temperature dust collector. In the method of removing dust by introducing it into the device 4, the coal ash collected by the dust collector containing ammonium compounds resulting from the reaction between the leaked ammonia from the denitrification device 2 and the sulfur oxide in the exhaust gas is transported by a pneumatic transport method. The coal ash is introduced into the ash processing pipe 12, and high-temperature combustion exhaust gas from the coal-fired boiler 1 is blown into the ash processing pipe to transport the coal ash and bring it into solid-gas contact to thermally decompose the ammonium compounds in the coal ash. The cracked gas containing coal ash from the ash processing pipe 12 is introduced into the solid-gas separator 13 connected to the end of the ash processing pipe to separate the cracked gas and coal ash, and the coal ash is passed through the cooler 17. A method for removing ammonium compounds from coal ash, which comprises transporting the coal ash to an ash processing facility 20 after cooling, and returning the decomposed gas to the front of the denitrification device 2 to reuse it as an ammonia source.
JP6313480A 1980-05-13 1980-05-13 Removal of ammonium compound from coal ash Granted JPS56161822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6313480A JPS56161822A (en) 1980-05-13 1980-05-13 Removal of ammonium compound from coal ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6313480A JPS56161822A (en) 1980-05-13 1980-05-13 Removal of ammonium compound from coal ash

Publications (2)

Publication Number Publication Date
JPS56161822A JPS56161822A (en) 1981-12-12
JPH0156818B2 true JPH0156818B2 (en) 1989-12-01

Family

ID=13220488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6313480A Granted JPS56161822A (en) 1980-05-13 1980-05-13 Removal of ammonium compound from coal ash

Country Status (1)

Country Link
JP (1) JPS56161822A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564826A (en) * 1978-11-10 1980-05-15 Mitsubishi Heavy Ind Ltd Treatment method for ash

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564826A (en) * 1978-11-10 1980-05-15 Mitsubishi Heavy Ind Ltd Treatment method for ash

Also Published As

Publication number Publication date
JPS56161822A (en) 1981-12-12

Similar Documents

Publication Publication Date Title
US4288420A (en) Removal of nitrogen oxides and sulfur oxides by ammonia
CN100589866C (en) Emission control systems and methods thereof
JPH11503221A (en) Waste heat treatment method and apparatus
EP0614690A1 (en) Treatment of incinerator exhaust gas
JP2977759B2 (en) Exhaust gas dry treatment method and apparatus
CN110484283A (en) A kind of coking residual heat integrative recovery process and system
JPH11114366A (en) Treatment of released gas in waste gas treating device for refuse incinerator
JPH0156818B2 (en)
JPS5959237A (en) Removal of ammonia from fly ash
JPS5855302Y2 (en) Coal ash processing equipment
JPH11104456A (en) Operation of waste gas treatment apparatus in waste incinerator
JPH11104453A (en) Setting of ammonia injection quantity in waste gas treatment apparatus of refuse incinerator
JP5299601B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
JP3086156B2 (en) RDF incineration / exhaust gas treatment equipment
JPS6332494B2 (en)
JP2001017833A (en) Method and device for dry treatment of exhaust gas
JP2000015057A (en) Treatment method and apparatus for incinerator exhaust gas
JP2000015058A (en) Treatment apparatus and method for incinerator exhaust gas
JPS5929024A (en) Method for removing ammonia from fly ash
JP2001000833A (en) Boiler flue gas treating device
JP2732220B2 (en) Method for heat treatment of solids generated during flue gas cleaning
JP7038589B2 (en) Gas processing equipment
JPS6357095B2 (en)
JPH05220339A (en) Method for removing nox, dust and hcl in waste gas
JPH08131775A (en) Dry treatment method for exhaust gas