JPH0156394B2 - - Google Patents

Info

Publication number
JPH0156394B2
JPH0156394B2 JP59116357A JP11635784A JPH0156394B2 JP H0156394 B2 JPH0156394 B2 JP H0156394B2 JP 59116357 A JP59116357 A JP 59116357A JP 11635784 A JP11635784 A JP 11635784A JP H0156394 B2 JPH0156394 B2 JP H0156394B2
Authority
JP
Japan
Prior art keywords
ice
receiver
sea
thickness
water pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59116357A
Other languages
Japanese (ja)
Other versions
JPS60260871A (en
Inventor
Nobuyoshi Yashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP59116357A priority Critical patent/JPS60260871A/en
Publication of JPS60260871A publication Critical patent/JPS60260871A/en
Publication of JPH0156394B2 publication Critical patent/JPH0156394B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/885Meteorological systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は海氷域における氷厚をその海象及び気
象に関係なく常時安全に計測可能な氷厚自動計測
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an automatic ice thickness measurement method that can safely measure the ice thickness in sea ice areas at all times regardless of the sea conditions and weather.

〔従来技術〕[Prior art]

冬期結氷する寒冷水域、または流氷海域などに
設置される海洋石油開発用の掘削装置を搭載した
リグその他の海洋構造物を流氷等から保護するた
め、その周辺の流氷の厚さを測定するためには、
従来、氷盤の上を歩いて行き、ドリルで流氷に穴
をあけて物理的に測るか、あるいは飛行機または
ヘリコプターで流氷の上部のプロフイールを測る
方法等があつたが、これらの方法は、海象及び気
象が厳しい場合、あるいは、冬期や夜間の暗い時
には危険で、計測は不可能であるという問題があ
つた。
To protect rigs and other offshore structures equipped with drilling equipment for offshore oil exploration that are installed in cold waters that freeze in winter or in drifting ice areas from drifting ice, etc., and to measure the thickness of the surrounding drift ice. teeth,
Conventionally, there were methods such as walking on the ice floe and physically measuring a hole in the ice floe with a drill, or measuring the profile of the upper part of the ice floe by plane or helicopter, but these methods were based on oceanographic data. Another problem was that it was dangerous and impossible to measure when the weather was severe, or during winter or when it was dark at night.

〔発明の目的〕[Purpose of the invention]

そこで本発明は、前記従来の問題点を解消し、
海象及び気象また夜間に関係なく、常時連続的
に、かつ安全に氷厚を計測可能とすることを目的
としたものである。
Therefore, the present invention solves the above-mentioned conventional problems, and
The objective is to be able to measure ice thickness continuously and safely at all times, regardless of sea conditions, weather, or night time.

〔発明の構成〕[Structure of the invention]

前記目的を達成するための本発明に係る氷厚の
自動計測方法は、 (a) 上面に超音波発信器及びその受信機を装備す
ると共に、前記発信器及び受信器より水深のあ
る位置に、海面からの水深をその水圧で測定す
る水圧計を設けた浮力体を準備する。
The automatic ice thickness measurement method according to the present invention for achieving the above object includes: (a) equipping an upper surface with an ultrasonic transmitter and its receiver, and installing an ultrasonic wave transmitter and a receiver at a position deeper than the transmitter and the receiver; Prepare a buoyant body equipped with a water pressure gauge that measures the water depth from the sea surface using its water pressure.

(b) 前記浮力体を、氷圧を測定しようとする海域
の海底より所定の水深の海中にあらかじめ浮設
しておく。
(b) The buoyant body is floated in advance at a predetermined depth below the sea floor in the sea area where ice pressure is to be measured.

(c) そして前記水圧計及び受信器からの計測デー
タを有線または無線により遠隔受信して氷圧を
計測することを特徴とする方法である。
(c) The method is characterized in that the ice pressure is measured by remotely receiving measurement data from the water pressure gauge and the receiver by wire or wirelessly.

前記のように海面と浮力体に設けた水圧計との
間の水深のデータと、この浮力体上に設けた発信
器及び受信器と氷の裏面との間の距離のデータを
利用して海水中に没している氷の厚さを遠隔操作
で計測することができる。
As mentioned above, sea water is measured using the water depth data between the sea surface and the water pressure gauge installed on the buoyant body, and the distance data between the transmitter and receiver installed on the buoyant body and the back side of the ice. The thickness of submerged ice can be measured remotely.

そして前記海水中に没している氷厚と、海面上
に浮上している氷の厚さを加算すれば、正確な氷
の厚さを計測することができるが、この海面に浮
上している氷の厚さは海水中に没している部分よ
り遥かに薄いものであると共に、推定も可能であ
るので、前記計測装置を使用したデータによつて
かなり正確な氷厚を測定することができる。
Then, by adding the thickness of the ice submerged in the seawater and the thickness of the ice floating above the sea surface, it is possible to accurately measure the thickness of the ice. The thickness of the ice is much thinner than the part submerged in seawater, and it is also possible to estimate it, so it is possible to measure the ice thickness fairly accurately using the data obtained using the measurement device mentioned above. .

〔実施例〕 以下図面を参照して本発明の方法を適用して氷
厚を測定している一実施例を説明するが、まず第
1図の海洋石油開発用の掘削装置1Aを搭載した
作業船1は、第2図及び第3図に示すごとく、そ
の周囲に放射状に配設された係留索2及びアンカ
3で係留されており、そこに海面W上を矢印F方
向から流氷4が押し寄せてくるものとする。
[Example] An example in which the method of the present invention is applied to measure ice thickness will be described below with reference to the drawings. As shown in Figs. 2 and 3, the ship 1 is moored with mooring lines 2 and anchors 3 arranged radially around the ship, and drift ice 4 is pushed onto the sea surface W from the direction of the arrow F. shall come.

そこで、氷厚を計測しようとするこの作業船1
の周辺の海域の海底Bより所定の水深Hに位置す
るように、浮力体5を、各アンカー3とそれぞれ
の係留索2とを連結するコネクター6部分にそれ
ぞれワイヤー7によつて海中で浮設している。
Therefore, this work boat 1 is trying to measure ice thickness.
A buoyant body 5 is floated in the sea by a wire 7 at a connector 6 portion connecting each anchor 3 and each mooring line 2 so as to be located at a predetermined water depth H from the seabed B in the sea area around the area. are doing.

次に、この浮力体5には、第4図に示すごと
く、水圧計8を取付けてあり、海面Wからその水
圧計8までの水海h1を測定した水圧で換算するよ
うになつている。
Next, as shown in Fig. 4, a water pressure gauge 8 is attached to this buoyant body 5, and the water sea h1 from the sea level W to the water pressure gauge 8 is converted by the measured water pressure. .

また、この浮力体5の上面には、超音波発信器
9及びその受信器10が装備されており、更に、
この浮力体5には水圧計8及び受信器10の計測
データを有線あるいは無線で送信するデータ送信
装置11と、上記各装置の電源用のバツテリー1
2とが設けられている。
Further, an ultrasonic transmitter 9 and its receiver 10 are installed on the upper surface of the buoyant body 5, and further,
This buoyant body 5 includes a data transmitting device 11 that transmits measured data from a water pressure gauge 8 and a receiver 10 by wire or wirelessly, and a battery 1 for powering each of the above devices.
2 is provided.

そこで、上記データ送信装置11から、例えば
本実施例のごとく、無線で送信されたデータは、
作業船1に設けられたデータ受信器13からデー
タ解析装置14に送られて、船上にて解析される
ようになつている。
Therefore, data transmitted wirelessly from the data transmitting device 11, for example, as in this embodiment, is
The data is sent from a data receiver 13 provided on the work boat 1 to a data analysis device 14 and analyzed on board.

その際、海面Wより下部の氷厚xは、第4図に
示すごとく、水圧計8と超音波発信器9との垂直
距離をh3とし、超音波発信器9及び受信器10に
より計測された流氷4の底面から超音波発信器9
までの垂直距離をh2とすれば、x=h1−(h2+h3
となり、流氷4の全体氷厚は、x÷流氷4の比
重、で求められる。
At that time, the ice thickness x below the sea level W is measured by the ultrasonic transmitter 9 and the receiver 10, with the vertical distance between the water pressure gauge 8 and the ultrasonic transmitter 9 being h3 , as shown in FIG. Ultrasonic transmitter 9 from the bottom of the drift ice 4
If the vertical distance to
Therefore, the total ice thickness of the drift ice 4 is determined by x÷specific gravity of the drift ice 4.

〔発明の効果〕〔Effect of the invention〕

本発明に係る氷厚自動計測方法は、 (a) 上面に超音波発信器9及びその受信機10を
装備すると共に、前記発信器9及び受信機10
より水深の深い位置に、海面からの水深をその
水圧で測定する水圧計8を設けた浮力体5を準
備する。
The automatic ice thickness measurement method according to the present invention includes: (a) an ultrasonic transmitter 9 and its receiver 10 are equipped on the upper surface;
A buoyant body 5 equipped with a water pressure gauge 8 for measuring the water depth from the sea surface using its water pressure is prepared at a deeper water position.

(b) そしてこの浮力体5を、氷圧を測定しようと
する海域の海底Bより所定の水深の海中にあら
かじめ浮設しておく。
(b) This buoyant body 5 is floated in advance at a predetermined depth below the seabed B in the sea area where ice pressure is to be measured.

(c) そして前記水圧計8及び受信器10からの計
測データを有線または無線により遠隔受信して
氷圧を計測するものである。
(c) Ice pressure is measured by remotely receiving measurement data from the water pressure gauge 8 and receiver 10 by wire or wirelessly.

前記のような手段を採用することによつて無人
の浮力体を利用して氷厚を常時、連続的に計測で
きる共に、同時にその計測データを船上で解析す
ることができるので、流氷の状態やその危険を迅
速に予知することができる。
By adopting the above-mentioned method, it is possible to constantly and continuously measure the ice thickness using an unmanned floating body, and at the same time, the measurement data can be analyzed on board the ship, so it is possible to analyze the condition of the drift ice. The danger can be quickly predicted.

従つて、本発明は、特にリグ等の海洋構造物を
流氷などから保護する上に有効である。
Therefore, the present invention is particularly effective in protecting marine structures such as rigs from drift ice.

また、海象及び気象また夜間に関係なく、安全
に氷厚計測が可能になるという利点もある。
Another advantage is that ice thickness can be measured safely regardless of sea conditions, weather, or night time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を適用した作業船周辺の
海氷の氷厚を測定している実施例を示す側面図で
あり、第2図は第1図の係留状態を示す平面図、
第3図は第2図の拡大斜視図、第4図は第1図の
浮力体周辺の拡大側面図である。 4……流氷、5……浮力体、8……水圧計、9
……超音波発信器、10……受信器、11……デ
ータ送信装置、13……データ受信器、H……所
定の水深、B……海底、W……海面、x……氷
厚、h1……海面からの水深。
FIG. 1 is a side view showing an example of measuring the thickness of sea ice around a work boat using the method of the present invention, and FIG. 2 is a plan view showing the moored state of FIG.
3 is an enlarged perspective view of FIG. 2, and FIG. 4 is an enlarged side view of the vicinity of the buoyant body shown in FIG. 1. 4... Drift ice, 5... Buoyant body, 8... Water pressure gauge, 9
... Ultrasonic transmitter, 10 ... Receiver, 11 ... Data transmitter, 13 ... Data receiver, H ... Predetermined water depth, B ... Seabed, W ... Sea surface, x ... Ice thickness, h 1 ...Water depth from sea surface.

Claims (1)

【特許請求の範囲】[Claims] 1 上面に超音波発信器9及びその受信機10を
装備すると共に、前記発信器9及び受信器10よ
り水深の深い位置に、海面からの水深をその水圧
で測定する水圧計8を設けた浮力体5を、氷圧を
測定しようとする海域の海底より所定の水深の海
中にあらかじめ浮設し、前記水圧計8及び受信器
10からの計測データを有線または無線により遠
隔受信して氷圧を計測することを特徴とする氷圧
自動計測方法。
1 A buoyancy device equipped with an ultrasonic transmitter 9 and its receiver 10 on the upper surface, and a water pressure gauge 8 installed at a position deeper than the transmitter 9 and receiver 10 to measure the water depth from the sea surface using its water pressure. The body 5 is floated in advance at a predetermined depth below the sea floor of the sea area where ice pressure is to be measured, and the ice pressure is measured by remotely receiving measurement data from the water pressure gauge 8 and receiver 10 by wire or wirelessly. An automatic ice pressure measurement method characterized by measuring ice pressure.
JP59116357A 1984-06-08 1984-06-08 Automatic ice thickness measuring method Granted JPS60260871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59116357A JPS60260871A (en) 1984-06-08 1984-06-08 Automatic ice thickness measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59116357A JPS60260871A (en) 1984-06-08 1984-06-08 Automatic ice thickness measuring method

Publications (2)

Publication Number Publication Date
JPS60260871A JPS60260871A (en) 1985-12-24
JPH0156394B2 true JPH0156394B2 (en) 1989-11-29

Family

ID=14684956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59116357A Granted JPS60260871A (en) 1984-06-08 1984-06-08 Automatic ice thickness measuring method

Country Status (1)

Country Link
JP (1) JPS60260871A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002760B2 (en) * 2006-10-17 2012-08-15 独立行政法人港湾空港技術研究所 Unmanned floating material monitoring buoy, floating material monitoring system and floating material monitoring method
US8299931B2 (en) 2009-08-31 2012-10-30 Zoe Eggleston Ice safety device
CN112284271B (en) * 2020-11-11 2022-04-15 黄河水利委员会黄河水利科学研究院 Device for measuring thickness of ice layer of river channel on line

Also Published As

Publication number Publication date
JPS60260871A (en) 1985-12-24

Similar Documents

Publication Publication Date Title
US7316196B2 (en) Method and apparatus for handling mooring lines
CA2772259C (en) Ice data collection system
US4033277A (en) Underhull quick disconnect mooring system
KR102311739B1 (en) Structure of a ocean observation buoy resistant to waves
CN112706878A (en) Universal umbrella-shaped sand-settling large ship and marine platform fixing device
WO2014023925A1 (en) Survey apparatus and methods for collecting sensor data in a body of water
CN209274837U (en) A kind of polar season ice formation punctual and duly communication subsurface buoy
JPH0156394B2 (en)
WO2010062184A2 (en) System and method for anchor monitoring and verification
US4586452A (en) Underwater tow system and method
GB1580790A (en) Underwater drilling apparatus and method
JPS5926913B2 (en) Stability control method for ocean research vessel and position detection device for stability control
KR101145504B1 (en) System for checking buried materials using a boat
JPH077371Y2 (en) Floating pier structure
CN114966711B (en) Manned submersible vehicle-oriented seawater depth determination method and system
JPS59184087A (en) Mooring device for floating structure
JP2755834B2 (en) Underwater strip body installation device
RU53455U1 (en) UNDERWATER DEPTH METER
WO2021145775A1 (en) Method for deployment of ocean seabed node
CN115320785A (en) Method for fixing floating platform by using mooring cable
CN2641628Y (en) Thermohaline chain distributor
RU2030720C1 (en) Gear testing floor objects for effects of underwater explosion
EP0045653A1 (en) Mooring of floating structures
Kristoftersen et al. A pilot project for shallow drilling in the Arctic
JPS5911472B2 (en) How to install a retractable mooring buoy