JPH0155537B2 - - Google Patents

Info

Publication number
JPH0155537B2
JPH0155537B2 JP9382382A JP9382382A JPH0155537B2 JP H0155537 B2 JPH0155537 B2 JP H0155537B2 JP 9382382 A JP9382382 A JP 9382382A JP 9382382 A JP9382382 A JP 9382382A JP H0155537 B2 JPH0155537 B2 JP H0155537B2
Authority
JP
Japan
Prior art keywords
shaft
cavity
capacitor
bellows
tuning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9382382A
Other languages
Japanese (ja)
Other versions
JPS58212032A (en
Inventor
Hisaaki Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP9382382A priority Critical patent/JPS58212032A/en
Publication of JPS58212032A publication Critical patent/JPS58212032A/en
Publication of JPH0155537B2 publication Critical patent/JPH0155537B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/18Resonators
    • H01J23/20Cavity resonators; Adjustment or tuning thereof
    • H01J23/207Tuning of single resonator

Description

【発明の詳細な説明】 本発明は、直進形多空胴クライストロンの空胴
の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of the cavity of a linear multi-cavity klystron.

直進形多空胴クライストロンは、電子ビームを
発生させる電子銃部、電子ビームとの間で高周波
動作を行なう複数個の空胴部、高周波電力を空胴
に結合させる入力及び出力結合部、電子ビームを
捕捉するコレクタ部、電子ビームを集束させる磁
界発生装置等が主な構成要素である。以下、本発
明に係わる空胴部についてのみ述べる。
A linear multi-cavity klystron consists of an electron gun section that generates an electron beam, multiple cavities that perform high-frequency operation with the electron beam, an input and output coupling section that couples high-frequency power to the cavity, and an electron beam. The main components are a collector section that captures the electron beam, a magnetic field generator that focuses the electron beam, etc. Hereinafter, only the cavity portion according to the present invention will be described.

従来の直進形クライストロンの空胴の構造例を
第1図及び第2図a,bに示す。まず第1図につ
いて説明すると、1が電子ビーム、2がドリフト
管の一部をなし高周波作用間隙を構成するための
凸部、3が空胴壁、4が可動壁(別名誘導板)、
5がベローズ、6がシヤフト、7が5と6を連結
する部材を示す。このような構成において、シヤ
フト6を図中aまたはbの方向に動かすと、誘導
板4はシヤフト6と一体で空胴壁3と接触しなが
ら移動する。シヤフト6がaの方向に動くと空胴
の共振周波数は下がり、6の方向に動くと共振周
波数は上る。
Examples of the cavity structure of a conventional linear klystron are shown in FIGS. 1 and 2a and 2b. First of all, referring to FIG. 1, 1 is an electron beam, 2 is a convex part that forms part of the drift tube and constitutes a high-frequency action gap, 3 is a cavity wall, 4 is a movable wall (also known as a guide plate),
5 is a bellows, 6 is a shaft, and 7 is a member connecting 5 and 6. In such a configuration, when the shaft 6 is moved in the direction a or b in the figure, the guide plate 4 moves integrally with the shaft 6 while contacting the cavity wall 3. When the shaft 6 moves in the direction a, the resonant frequency of the cavity decreases, and when the shaft 6 moves in the direction 6, the resonant frequency increases.

次に第2図a,bについて説明すると、同じ記
号で示すものは第1図と同じものを示し、8が三
ケ月状断面の容量板を示す。本図においてもシヤ
フト6は同図に示すc方向またはd方向に動かさ
れる。シヤフト6がc方向に動くと空胴の共振周
波数が上り、d方向に動くと共振周波数が下る。
第1図の方法はL同調、第2図の方法はC同調と
いわれるものである。
Next, referring to FIGS. 2a and 2b, the same symbols indicate the same parts as in FIG. 1, and numeral 8 indicates a capacitor plate having a crescent-shaped cross section. Also in this figure, the shaft 6 is moved in the c direction or the d direction shown in the figure. When the shaft 6 moves in the c direction, the resonant frequency of the cavity increases, and when the shaft 6 moves in the d direction, the resonant frequency decreases.
The method shown in FIG. 1 is called L tuning, and the method shown in FIG. 2 is called C tuning.

さて、上記の従来構造の空胴においては次のよ
うな問題点が考えられる。第1図のL同調方式の
場合、空胴壁3に対し誘導板4を電気的接触を保
ちながら移動させることが難かしい。通常は接触
部にフインガーあるいはスプリングを用いるが、
空胴で発生する電力が大きくなると、これらが熱
的に耐えられなくなることもある。第2図のC同
調方式の場合、同調効果を高めるためには容量板
8と凸部2にかなり近づけなければならないが、
空胴の電力が高いと両者間の高周波放電の問題、
あるいは容量板8の熱容量不足の問題が発生す
る。また三ケ月状断面の容量板8は原理的に作用
空隙を囲む円周の半分以下の形状しかとり得ない
から実質的に大きな同調効果は期待できない。
Now, the following problems can be considered in the cavity of the above-mentioned conventional structure. In the case of the L tuning method shown in FIG. 1, it is difficult to move the guide plate 4 with respect to the cavity wall 3 while maintaining electrical contact. Usually, fingers or springs are used for the contact part, but
As the power generated in the cavities increases, they may become thermally unsustainable. In the case of the C tuning method shown in Fig. 2, the capacitor plate 8 and convex portion 2 must be fairly close to each other in order to enhance the tuning effect.
If the power of the cavity is high, the problem of high frequency discharge between the two,
Alternatively, a problem arises in which the heat capacity of the capacitor plate 8 is insufficient. Furthermore, since the capacitor plate 8 having a crescent-shaped cross section can in principle have a shape that is only half or less of the circumference surrounding the working gap, a substantially large tuning effect cannot be expected.

以上述べたような従来構造の欠点に顧み、本発
明の目的は新しいタイプの空胴同調方式を提供す
ることである。
In view of the above-mentioned drawbacks of conventional structures, it is an object of the present invention to provide a new type of cavity tuning scheme.

本発明による空胴の構造を第3図a,bに示
す。第3図において、1〜3及び5〜7は第1
図、第2図と同じものを示す。9は作用空隙を囲
むリング状の容量子を示す。e,fはシヤフト6
の右端の移動方向を示す。シヤフト中央部に示す
P点は、シヤフト右端がe,f方向に移動する場
合のシヤフトの回転中心軸位置を示す。この位置
は原理的にベローズ5のほぼ中央部に設定されて
いることが望ましい。このような構成において、
シヤフト6がf方向に動いた場合、容量子9は図
中点線で示したように変位するから空胴の同調周
波数は上る。逆にシヤフト6がe方向に動けば同
調周波数は下る。
The structure of the cavity according to the invention is shown in FIGS. 3a and 3b. In Figure 3, 1 to 3 and 5 to 7 are the first
Figure 2 shows the same thing as Figure 2. 9 indicates a ring-shaped capacitor surrounding the working gap. e, f are shaft 6
Indicates the direction of movement of the right end. A point P shown at the center of the shaft indicates the position of the rotation center axis of the shaft when the right end of the shaft moves in directions e and f. In principle, it is desirable that this position be set approximately at the center of the bellows 5. In such a configuration,
When the shaft 6 moves in the f direction, the capacitor 9 is displaced as shown by the dotted line in the figure, so the tuning frequency of the cavity increases. Conversely, if the shaft 6 moves in the e direction, the tuned frequency will decrease.

本発明の第1の特徴は容量板を従来の三ケ月状
から完全な円環状に変更したことにある。そして
第2の特徴は容量板の変位方向を従来のビームと
垂直方向から本質的に水平方向に変更したことに
ある。
The first feature of the present invention is that the capacitor plate is changed from the conventional crescent shape to a complete annular shape. The second feature is that the direction of displacement of the capacitive plate has been changed from the conventional direction perpendicular to the beam to essentially horizontal.

次に本発明を実施した場合の効果について述べ
る。本発明においては容量板と凸部2との対向面
積が従来の2〜5倍に増えているから、他の条件
を一定とすれば、容量板と凸部2との距離をひろ
げることができ高周波放電のトラブルが起りにく
くなる。また円環状の容量子を中空状にすれば、
従来の三ケ月構造に較べ、容量子自身の水冷構造
を容易に構成できるという非常に大きな長所があ
る。更にまた、容量子と凸部2との径方向距離を
一定の条件で考えれば、本発明においては容量可
変効果が従来の2〜5倍になるから、容量子の変
位が少なくても従来と同じ同調範囲をカバーでき
ることになる。このことはベローズの変形範囲を
狭めるからベローズの長期くりかえし使用に除し
ての“ひろう”を軽減させベローズの信頼性向上
に役立つ。また周波数変更を短時間のうちに行な
える可能性もでてくる。
Next, the effects obtained when the present invention is implemented will be described. In the present invention, the opposing area between the capacitor plate and the protrusion 2 is increased by 2 to 5 times compared to the conventional one, so if other conditions are held constant, the distance between the capacitor plate and the protrusion 2 can be increased. High frequency discharge troubles are less likely to occur. Also, if the annular capacitor is made hollow,
Compared to the conventional three-moon structure, this has a great advantage in that the water cooling structure of the capacitor itself can be easily constructed. Furthermore, if the radial distance between the capacitor and the convex portion 2 is considered under constant conditions, the capacitance variable effect in the present invention is 2 to 5 times that of the conventional one, so even if the displacement of the capacitor is small, it is still better than the conventional one. This means that the same tuning range can be covered. This narrows the range of deformation of the bellows, thereby reducing the "swelling" caused by repeated use of the bellows over a long period of time, which helps improve the reliability of the bellows. It also becomes possible to change the frequency within a short period of time.

第3図は本発明を原理的に示したものであり、
その実用化に当つてはいくつかの変形が考えられ
る。例えば容量子は単なる銅パイプを単層あるい
は複層に丸めて作つてその中に水を通すようにす
れば非常に簡単な容量子が得られる。勿論この場
合にはシヤフト6内部には水の往復路を設け、容
量子と接触する必要がある。また、第4図に示す
ようにベローズ5の代りにダイアフラム10を用
いてもよいのは明らかである。また、ベローズの
長さを大きくとつてP点を作用間隙から遠ざけ、
容量子の移動方向をビーム方向とより平行的にさ
せることも考えられる。
FIG. 3 shows the principle of the present invention,
Several modifications can be considered for its practical use. For example, a very simple capacitor can be obtained by simply rolling a copper pipe into a single layer or multiple layers and allowing water to pass through it. Of course, in this case, it is necessary to provide a reciprocating path for water inside the shaft 6 so that the water comes into contact with the capacitor. It is also obvious that a diaphragm 10 may be used in place of the bellows 5 as shown in FIG. In addition, by increasing the length of the bellows and moving the P point away from the action gap,
It is also conceivable to make the moving direction of the capacitor more parallel to the beam direction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図a,bは従来の空胴構造を示す
図、第3図a,b、第4図は本発明による空胴構
造を示す図である。 1……電子ビーム、2……ドリフト管凸部、3
……空胴壁、4……誘導板、5……ベローズ、6
……シヤフト、7……連結部材、8,9……容量
板、10……ダイアフラム、P……シヤフト回転
中心位置。
1, 2a and 2b are views showing conventional cavity structures, and FIGS. 3a and 3b, and 4 are views showing cavity structures according to the present invention. 1...Electron beam, 2...Drift tube convex part, 3
...Cavity wall, 4...Guidance plate, 5...Bellows, 6
... Shaft, 7 ... Connection member, 8, 9 ... Capacity plate, 10 ... Diaphragm, P ... Shaft rotation center position.

Claims (1)

【特許請求の範囲】 1 空胴共振器の作用間隙を囲む円環状の容量子
がシヤフトを介してベローズあるいはダイアフラ
ムにより空胴壁の一部に固定され、前記容量子は
前記シヤフト上のある一点Pを回転中心としてビ
ーム軸にほぼ沿つて移動できるように構成された
ことを特徴とするクライストロン用空胴共振器。 2 前記P点が前記ベローズのほぼ中央部に設定
されたことを特徴とする特許請求の範囲第1項記
載のクライストロン用空胴共振器。
[Claims] 1. An annular capacitor surrounding the working gap of a cavity resonator is fixed to a part of the cavity wall by a bellows or a diaphragm via a shaft, and the capacitor is fixed at a certain point on the shaft. A cavity resonator for a klystron, characterized in that it is configured to be movable substantially along a beam axis with P as the center of rotation. 2. The cavity resonator for a klystron according to claim 1, wherein the point P is set approximately at the center of the bellows.
JP9382382A 1982-06-01 1982-06-01 Cavity resonator for klystron Granted JPS58212032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9382382A JPS58212032A (en) 1982-06-01 1982-06-01 Cavity resonator for klystron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9382382A JPS58212032A (en) 1982-06-01 1982-06-01 Cavity resonator for klystron

Publications (2)

Publication Number Publication Date
JPS58212032A JPS58212032A (en) 1983-12-09
JPH0155537B2 true JPH0155537B2 (en) 1989-11-24

Family

ID=14093115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9382382A Granted JPS58212032A (en) 1982-06-01 1982-06-01 Cavity resonator for klystron

Country Status (1)

Country Link
JP (1) JPS58212032A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299003A (en) * 1992-04-23 1993-11-12 Yazaki Corp Fusible link

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299003A (en) * 1992-04-23 1993-11-12 Yazaki Corp Fusible link

Also Published As

Publication number Publication date
JPS58212032A (en) 1983-12-09

Similar Documents

Publication Publication Date Title
US2278210A (en) Electron discharge device
US3940721A (en) Cavity resonator having a variable resonant frequency
US3293480A (en) Pole piece and collector assembly for high frequency electron discharge device with cooling ribs
JPH0155537B2 (en)
US3078385A (en) Klystron
US4002957A (en) Trimmable fixed hermetically sealed capacitor
US5646585A (en) Tunable cavity resonator for a multi-cavity klystron
JP4467394B2 (en) Variable frequency magnetron
JPS5840732A (en) Manufacture of high power klystron
US2807745A (en) Isolation of radio frequency losses in oscillator and wave guide systems
US3227917A (en) Cavity resonator with flexible means forming both hermetic seal and pivot point
JPH0155538B2 (en)
EP0594832A4 (en) Tm01x mode (x 0) klystron resonant cavity.
US3411028A (en) Cavity resonator tuner for velocity modulation tubes
US2904719A (en) Electron discharge devices and electrical resonators therefor
JPH0636692A (en) Multi-cavity klystron
US3297908A (en) Tuning apparatus for klystrons
US2438784A (en) Tuner for ultra high frequencies
JPH0612993A (en) Multicavity type klystron
JPS5845133B2 (en) Daiden Ryoku Klystron
JP2541035Y2 (en) Tuning mechanism for high power klystron
JP2007234344A (en) Microwave tube
JPS58214249A (en) Cavity resonator for klystron
US2501095A (en) Electron tube of the velocity modulation type
JPS5842579B2 (en) microwave tube