JPH0155396B2 - - Google Patents

Info

Publication number
JPH0155396B2
JPH0155396B2 JP57158817A JP15881782A JPH0155396B2 JP H0155396 B2 JPH0155396 B2 JP H0155396B2 JP 57158817 A JP57158817 A JP 57158817A JP 15881782 A JP15881782 A JP 15881782A JP H0155396 B2 JPH0155396 B2 JP H0155396B2
Authority
JP
Japan
Prior art keywords
hot water
prime mover
heat exchanger
heating
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57158817A
Other languages
Japanese (ja)
Other versions
JPS5949466A (en
Inventor
Hiroshi Yuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOGATA GASU REIBO GIJUTSU KENKYU KUMIAI
Original Assignee
KOGATA GASU REIBO GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOGATA GASU REIBO GIJUTSU KENKYU KUMIAI filed Critical KOGATA GASU REIBO GIJUTSU KENKYU KUMIAI
Priority to JP57158817A priority Critical patent/JPS5949466A/en
Publication of JPS5949466A publication Critical patent/JPS5949466A/en
Publication of JPH0155396B2 publication Critical patent/JPH0155396B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Central Air Conditioning (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、原動機を駆動源とした圧縮機を有
し冷暖房を行う冷凍サイクルと、上記原動機から
の回収熱を蓄える貯湯槽とを備えた原動機駆動冷
暖房機に関するものである。 電動機によつて冷凍サイクルの圧縮機を駆動す
る冷暖房機に代わるものとして、原動機によつて
圧縮機を駆動する冷暖房機が知られている。この
ような原動機駆動冷暖房機は、原動機の排熱をそ
の冷却水で回収し、回収した熱を貯湯槽に蓄え、
給湯に利用している。このため、原動機の効率は
電動機に比べて低いが、原動機の排熱を回収して
いるので、1次エネルギ換算の成績係数が大きい
という利点がある。したがつて、原動機駆動冷暖
房機を効率よく運転するためには、原動機からの
排熱を蓄える貯湯槽を具備させることが必要条件
となつている。 そして、給湯負荷は季節、居住形態などによつ
て異なるが、冷暖房運転のみによつて生じる原動
機の排熱だけで、貯湯槽内の給湯水が沸き上がり
温度に達することが好ましい。この場合には、貯
湯だけを目的とした原動機の運転の必要がなく、
したがつて、給湯のための燃料費は不要である。
しかし、春秋のような中間期には冷暖房運転の必
要がほとんどないため、給湯水を貯湯するための
原動機の運転を行わなければならず、また夏期あ
るいは冬期でも、冷暖房運転がない日あるいはそ
の負荷が少ない日は、1日の給湯負荷をまかなう
だけの温水を蓄えることができないので、貯湯の
ための専用運転をする必要があり、このような貯
湯専用運転時間の比率は年間を通じると相当大き
いことが知られている。 この場合の給湯負荷をまかなうためには、熱ポ
ンプを形成する冷凍サイクルを切換えて貯湯槽内
の熱交換器に高圧冷媒を循環させ、室外熱交換器
を蒸発器として運転したり、別個に備えて補助熱
源で貯湯槽内の給湯水を沸き上がり温度まで加熱
している。しかし、いずれにしても貯湯専用運転
を行うことは、燃料消費量の増大をきたすため、
上記専用運転時間を短くすることが必要である。 この発明は、上述した事情に鑑みてなされたも
ので、余剰熱処理熱交換器で原動機停止時に原動
機冷却水すなわち循環水へ外気から吸熱して貯湯
するように構成することで、上述のような冷暖房
運転がなく、原動機の排熱だけで給湯負荷をまか
なうことができない場合に、原動機の貯湯専用運
転を短時間にし、少ない燃料消費量で貯湯槽内の
水が沸き上がり温度まで加熱できる原動機駆動冷
暖房給湯機を提供することを目的としている。 以下、この発明の実施例を図面によつて説明す
る。 第1図はこの発明の一実施例による冷媒および
温水のサイクル図である。第1図中、1は内燃機
関を用いた原動機であり、冷凍サイクルは、上記
原動機1で駆動される圧縮機2、四方切換弁3、
室外熱交換器4、絞り機構5および室内熱交換器
6を基本要素として構成されている。また、上記
原動機1に設けた冷却水ジヤケツト7、温水のよ
うな熱媒体搬送手段である循環ポンプ8、排熱回
収熱交換器9、上記室外熱交換器4と一体または
近接してこの熱交換器用送風機15による送風路
に設けた余剰熱処理熱交換器10および貯湯槽1
1で、給湯機能要素の主要部が構成されている。
12,13は温水流路を切換えるための電磁弁、
16は貯湯槽11を加熱する補助熱源である。 以上のように構成された冷暖房給湯機では、通
常の冷暖房運転に伴う貯湯の場合には、電磁弁1
2が閉じ電磁弁13が開いており、循環ポンプ8
の駆動によつて搬送される温水は、貯湯槽11内
の水と熱交換し、電磁弁13を通つて原動機1に
戻り、さらに排熱回収熱交換器9を経て、再び貯
湯槽11に向う循環を行う。このような運転を継
続して貯湯槽11内の温度が沸き上がり温度に達
すると、電磁弁13を閉じ電磁弁12を開いて余
剰熱処理熱交換器10を通して原動機1の排熱を
回収した温水を循環させ、その温度を低下させた
後、原動機1の冷却水ジヤケツト7に戻す。 以上は通常の原動機の運転による冷房または暖
房運転の場合であり、余剰熱が発生するような場
合は、給湯負荷を十分にまかなうことができるの
で、問題がない。 しかし、原動機の排熱量は冷暖房運転時間に従
属するものであり、冷暖房負荷が50%程度の部分
負荷運転では、給湯負荷の小さい夏期でも貯湯量
が不足し、冬期には大幅に不足する。このような
場合に、この発明の一実施例では原動機1を駆動
することなく貯湯運転を行う。すなわち、貯湯槽
11内の水温および外気温度を温度検知手段(図
示しない)によつて検出し、貯湯槽11内の水温
が外気温度より低い場合には、余剰熱処理熱交換
器10で原動機冷却水へ外気から吸熱し、この場
合には、電磁弁12を開き電磁弁13を閉じて、
貯湯槽11を出た温水が電磁弁12を通つて余剰
熱処理熱交換器10に入り、ここで循環水の温度
を昇温させ、原動機1に戻り、再び貯湯槽11に
入ることで貯湯水の温度を上昇させる運転を行
う。 このような運転による試験結果を下表に示す。
The present invention relates to a motor-driven air-conditioning/heating machine that includes a refrigeration cycle that has a compressor using the motor as a drive source and performs air conditioning and heating, and a hot water storage tank that stores heat recovered from the motor. 2. Description of the Related Art As an alternative to air conditioners in which a compressor of a refrigeration cycle is driven by an electric motor, air conditioners in which a compressor is driven by a prime mover are known. Such a motor-driven air conditioner/heater recovers exhaust heat from the motor using its cooling water, stores the recovered heat in a hot water storage tank,
It is used for hot water supply. Therefore, although the efficiency of the prime mover is lower than that of an electric motor, it has the advantage of having a large coefficient of performance in terms of primary energy because the exhaust heat of the prime mover is recovered. Therefore, in order to efficiently operate a motor-driven air conditioner/heater, it is necessary to provide a hot water storage tank for storing exhaust heat from the motor. Although the hot water supply load varies depending on the season, the type of residence, etc., it is preferable that the hot water in the hot water storage tank boils and reaches the temperature using only the exhaust heat of the prime mover generated only by the heating and cooling operation. In this case, there is no need to operate the prime mover for the sole purpose of storing hot water;
Therefore, fuel costs for hot water supply are unnecessary.
However, during the intermediate seasons such as spring and autumn, there is almost no need for air conditioning operation, so the prime mover for storing hot water must be operated. On days when hot water is low, it is not possible to store enough hot water to cover the daily hot water supply load, so it is necessary to operate exclusively for hot water storage, and the proportion of operation time dedicated to hot water storage is quite large throughout the year. It is known. In order to cover the hot water supply load in this case, the refrigeration cycle that forms the heat pump can be switched to circulate high-pressure refrigerant to the heat exchanger in the hot water storage tank, and the outdoor heat exchanger can be operated as an evaporator, or a separate The hot water in the hot water storage tank is heated to boiling temperature using an auxiliary heat source. However, in any case, operating exclusively for hot water storage will increase fuel consumption, so
It is necessary to shorten the dedicated operation time. This invention has been made in view of the above-mentioned circumstances, and is configured to absorb heat from the outside air into the motor cooling water, that is, circulating water, and store hot water when the motor is stopped using a surplus heat treatment heat exchanger. When there is no operation and the hot water supply load cannot be covered by the exhaust heat of the prime mover, the prime mover is operated exclusively for hot water storage for a short period of time, and the water in the hot water storage tank can be heated to boiling temperature with low fuel consumption. The purpose is to provide water heaters. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a refrigerant and hot water cycle diagram according to an embodiment of the present invention. In FIG. 1, 1 is a prime mover using an internal combustion engine, and the refrigeration cycle includes a compressor 2 driven by the prime mover 1, a four-way switching valve 3,
It is constructed using an outdoor heat exchanger 4, a throttle mechanism 5, and an indoor heat exchanger 6 as basic elements. In addition, a cooling water jacket 7 provided in the prime mover 1, a circulation pump 8 which is a means for conveying a heat medium such as hot water, an exhaust heat recovery heat exchanger 9, and a heat exchanger integrated with or close to the outdoor heat exchanger 4 are provided. Excess heat treatment heat exchanger 10 and hot water storage tank 1 provided in the air passage by the manual blower 15
1 constitutes the main part of the hot water supply functional element.
12 and 13 are solenoid valves for switching the hot water flow path;
16 is an auxiliary heat source that heats the hot water storage tank 11. In the air-conditioning/heating water heater configured as described above, when storing hot water associated with normal air-conditioning/heating operation, the solenoid valve 1
2 is closed, solenoid valve 13 is open, and circulation pump 8
The hot water conveyed by the drive exchanges heat with the water in the hot water storage tank 11, returns to the prime mover 1 through the solenoid valve 13, and then passes through the exhaust heat recovery heat exchanger 9 and returns to the hot water storage tank 11. Do a cycle. When the temperature inside the hot water storage tank 11 rises and reaches the temperature by continuing such operation, the solenoid valve 13 is closed, the solenoid valve 12 is opened, and the hot water recovered from the exhaust heat of the prime mover 1 is passed through the surplus heat treatment heat exchanger 10. After being circulated and its temperature reduced, it is returned to the cooling water jacket 7 of the prime mover 1. The above is a case of normal cooling or heating operation by the prime mover, and if surplus heat is generated, there is no problem because the hot water supply load can be sufficiently covered. However, the amount of exhaust heat from the prime mover is dependent on the heating and cooling operation time, and in partial load operation where the heating and cooling load is around 50%, the amount of stored hot water is insufficient even in the summer when the hot water supply load is low, and there is a significant shortage in the winter. In such a case, in one embodiment of the present invention, hot water storage operation is performed without driving the prime mover 1. That is, the water temperature in the hot water storage tank 11 and the outside air temperature are detected by a temperature detection means (not shown), and if the water temperature in the hot water storage tank 11 is lower than the outside air temperature, the surplus heat treatment heat exchanger 10 removes the prime mover cooling water. In this case, the solenoid valve 12 is opened and the solenoid valve 13 is closed.
The hot water leaving the hot water storage tank 11 passes through the solenoid valve 12 and enters the surplus heat treatment heat exchanger 10, where the temperature of the circulating water is increased, returns to the prime mover 1, and enters the hot water storage tank 11 again to increase the temperature of the stored hot water. Perform operation to raise the temperature. The test results from such operation are shown in the table below.

【表】 ただし、沸き上がり温度は80℃とした。 そして、貯湯槽への給水温度は1日の間ではあ
まり変化がなくほぼ一定であるが、外気温度の変
化は比較的大きく、朝、夕と昼間で5〜10deg程
度の差があるため、循環水温度を外気温度近くま
で余剰熱処理熱交換器で加熱できることにより、
年平均で10%以上の燃料費の低減が可能であると
いう結果が得られ、第2図から経済的な効果が実
証されている。この場合に、太陽光の照射がある
と、余剰熱処理熱交換器、室外熱交換器などが輻
射熱を吸収して外気温度より高くなるため、循環
水温度が外気温度よりも高くなることがあり、余
剰熱処理熱交換器は日射がある場所に設置するこ
とが好ましい。 また、当然ながら外気からの吸熱貯湯は、外気
温度と貯湯槽内の水との温度差が小さいと、上述
した外気から吸熱する貯湯運転を長時間行つて
も、貯湯熱量があまり増大せず、貯湯効果が低下
する。したがつて、予め定めた温度差、具体的に
は約1〜2degの温度差を条件として外気から吸
熱する貯湯運転を行うことが好ましい。 さらに、外気から吸熱する貯湯運転時には、室
外熱交換器用送風機の運転を行い、余剰熱処理熱
交換器による循環水への吸熱効果を向上させるこ
とが好ましい。 第2図はこの発明の他の実施例を示す。第2図
中、第1図と同一符号は同一部分を示し、17は
原動機1の冷却水ジヤケツト7、排熱回収熱交換
器9を側路する側路管、18は側路管17に設け
た常閉の電磁弁である。 そして、原動機1の部分負荷運転中は、原動機
1、排熱回収熱交換器9は当接外気温度より高く
なつているが、貯湯槽1内の循環水温度は外気温
度より低い場合が多くある。また、外気から吸熱
する貯湯運転時には、原動機1、排熱回収熱交換
器9は単なる循環路であり、循環水の抵抗となる
だけで、水を循環させる必要がない。そこで、こ
れらの場合には、上記側路管17、電磁弁18な
どの制御手段を用い、電磁弁18を開いて側路管
17に循環水を通し、原動機1、排熱回収熱交換
器9を通る循環水量を調節することで、外気によ
る吸熱効果を向上させるものである。 なお、第2図に示す実施例の上述した以外の構
成および基本動作は、第1図に示すものと同様で
あるから、説明を省略する。 以上説明したように、この発明の原動機駆動冷
暖房給湯機は、余剰熱処理熱交換器を利用して、
原動機停止時に循環水に外気から吸熱して貯湯す
ることにより、給湯専用の運転時間を短縮し、年
間の燃料消費量を低減させることができる。ま
た、原動機の効率、冷凍サイクルの成績係数が大
きくなると、原動機へのガスインプツト
(Kcal/b)が小さくなつても排気量も小さくな
り、これは機器の効率面からは好ましいが、排熱
による給湯の面からは給湯負荷を満足させること
ができなくなり、尖頭負荷時の湯切れが生じ易く
なるが、このような欠点をこの発明のものは解消
できるという効果がある。
[Table] However, the boiling temperature was 80℃. The temperature of the water supplied to the hot water tank does not change much during the day and is almost constant, but the outside temperature changes relatively large, with a difference of about 5 to 10 degrees in the morning, evening, and daytime. By being able to heat the water to a temperature close to the outside temperature using a surplus heat treatment heat exchanger,
The results show that it is possible to reduce fuel costs by more than 10% on average per year, and the economic effect is proven as shown in Figure 2. In this case, if there is sunlight irradiation, the surplus heat treatment heat exchanger, outdoor heat exchanger, etc. absorb radiant heat and become higher than the outside air temperature, so the circulating water temperature may become higher than the outside air temperature. It is preferable to install the surplus heat treatment heat exchanger in a place that receives sunlight. Naturally, in hot water storage that absorbs heat from outside air, if the temperature difference between the outside air temperature and the water in the hot water storage tank is small, even if the above-mentioned hot water storage operation that absorbs heat from outside air is performed for a long time, the amount of stored hot water will not increase much. The hot water storage effect decreases. Therefore, it is preferable to perform a hot water storage operation that absorbs heat from the outside air under a predetermined temperature difference, specifically, a temperature difference of about 1 to 2 degrees. Furthermore, during the hot water storage operation that absorbs heat from the outside air, it is preferable to operate the outdoor heat exchanger blower to improve the heat absorption effect on the circulating water by the surplus heat treatment heat exchanger. FIG. 2 shows another embodiment of the invention. In FIG. 2, the same symbols as in FIG. 1 indicate the same parts, 17 is a side pipe that bypasses the cooling water jacket 7 of the prime mover 1 and the exhaust heat recovery heat exchanger 9, and 18 is a side pipe installed in the side pipe 17. It is a normally closed solenoid valve. During partial load operation of the prime mover 1, the temperature of the prime mover 1 and the exhaust heat recovery heat exchanger 9 is higher than the outside air temperature, but the temperature of the circulating water in the hot water storage tank 1 is often lower than the outside air temperature. . Further, during the hot water storage operation that absorbs heat from the outside air, the prime mover 1 and the exhaust heat recovery heat exchanger 9 are just a circulation path and serve as resistance to the circulating water, and there is no need to circulate the water. Therefore, in these cases, using control means such as the side pipe 17 and the solenoid valve 18, the solenoid valve 18 is opened to allow circulating water to pass through the side pipe 17, and the prime mover 1 and the exhaust heat recovery heat exchanger 9 are By adjusting the amount of circulating water that passes through the system, the heat absorption effect of the outside air is improved. Note that the configuration and basic operation of the embodiment shown in FIG. 2 other than those described above are the same as those shown in FIG. 1, so explanations thereof will be omitted. As explained above, the prime mover-driven air conditioning/heating/water heater of the present invention utilizes the surplus heat treatment heat exchanger,
By absorbing heat from the outside air into the circulating water and storing hot water when the prime mover is stopped, the operating time dedicated to hot water supply can be shortened and annual fuel consumption can be reduced. Additionally, as the efficiency of the prime mover and the coefficient of performance of the refrigeration cycle increase, the displacement will also decrease even if the gas input (Kcal/b) to the prime mover decreases. Although this is desirable from the standpoint of equipment efficiency, From this point of view, it becomes impossible to satisfy the hot water supply load, and hot water runs out easily at peak loads, but the present invention has the advantage of being able to overcome these drawbacks.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による原動機駆動
冷暖房給湯機を示す概略構成図、第2図はこの発
明の他の実施例による原動機駆動冷暖房給湯機を
示す概略構成図である。 1……原動機、2……圧縮機、3……四方切換
弁、4……室外熱交換器、5……絞り機構、6…
…室内熱交換器、7……冷却水ジヤケツト、8…
…循環ポンプ、9……排熱回収熱交換器、10…
…余剰熱処理熱交換器、12,13……電磁弁、
15……室外熱交換器用送風機、16……補助熱
源、17……側路管、18……電磁弁。なお、図
中同一符号は同一または相当部分を示す。
FIG. 1 is a schematic configuration diagram showing a motor-driven cooling/heating/water heater according to an embodiment of the present invention, and FIG. 2 is a schematic diagram showing a motor-driven cooling/heating/water heater according to another embodiment of the invention. DESCRIPTION OF SYMBOLS 1... Prime mover, 2... Compressor, 3... Four-way switching valve, 4... Outdoor heat exchanger, 5... Throttle mechanism, 6...
...Indoor heat exchanger, 7...Cooling water jacket, 8...
...Circulation pump, 9...Exhaust heat recovery heat exchanger, 10...
... Surplus heat treatment heat exchanger, 12, 13 ... Solenoid valve,
15...Blower for outdoor heat exchanger, 16...Auxiliary heat source, 17...Side pipe, 18...Solenoid valve. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 原動機を駆動源とした圧縮機を有し冷暖房を
行う冷凍サイクルと、上記原動機からの回収熱を
蓄える貯湯槽とを備えた原動機駆動冷暖房機にお
いて、冷暖房運転時の貯湯槽内の温度が沸き上が
り温度に達した時に原動機からの回収熱を外気に
放熱する余剰熱処理熱交換器を備え、この熱交換
器で原動機停止時に原動機冷却水へ外気から吸熱
して貯湯するように構成したことを特徴とする原
動機駆動冷暖房給湯機。 2 外気温度と貯湯槽内温度との差が予め設定し
た温度差以上の時に余剰熱処理熱交換器による吸
熱貯湯を行うようにした特許請求の範囲第1項記
載の原動機駆動冷暖房給湯機。 3 余剰熱処理熱交換器を室外熱交換器用送風機
の風路に配設し、この送風機を余剰熱処理熱交換
器による吸熱貯湯時に駆動させるようにした特許
請求の範囲第1項または第2項記載の原動機駆動
冷暖房給湯機。 4 原動機の冷却水の循環路に原動機を側路する
側路管およびこれを開閉する電磁弁を有するもの
などの制御手段を設け、原動機を側路して余剰熱
処理熱交換器による吸熱貯湯を行うようにした特
許請求の範囲第1項、第2項または第3項記載の
原動機駆動冷暖房給湯機。
[Scope of Claims] 1. In a motor-driven air-conditioning/heating machine equipped with a refrigeration cycle that has a compressor using the motor as a drive source and performs air-conditioning and heating, and a hot-water storage tank that stores the heat recovered from the motor, the hot-water storage during air-conditioning/heating operation is provided. Equipped with a surplus heat treatment heat exchanger that radiates the heat recovered from the prime mover to the outside air when the temperature inside the tank reaches the boiling temperature, and when the prime mover is stopped, this heat exchanger absorbs heat from the outside air to the prime mover cooling water and stores hot water. A motor-driven air-conditioning, heating, and water heater characterized by comprising: 2. The prime mover-driven air-conditioning/heating water heater according to claim 1, wherein the heat-absorbing hot water storage is performed by the surplus heat treatment heat exchanger when the difference between the outside air temperature and the temperature inside the hot water storage tank is greater than or equal to a preset temperature difference. 3. The surplus heat treatment heat exchanger is disposed in the air path of an outdoor heat exchanger blower, and the blower is driven when the surplus heat treatment heat exchanger absorbs heat and stores hot water, according to claim 1 or 2. Motor-driven heating, cooling, and water heater. 4 A control means such as a bypass pipe that bypasses the prime mover and a solenoid valve that opens and closes the bypass pipe is installed in the cooling water circulation path of the prime mover, and the prime mover is bypassed and hot water is absorbed and stored by the surplus heat treatment heat exchanger. A motor-driven air-conditioning/heating water heater according to claim 1, 2, or 3.
JP57158817A 1982-09-14 1982-09-14 Prime mover driving air-conditioning hot-water supply machine Granted JPS5949466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57158817A JPS5949466A (en) 1982-09-14 1982-09-14 Prime mover driving air-conditioning hot-water supply machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57158817A JPS5949466A (en) 1982-09-14 1982-09-14 Prime mover driving air-conditioning hot-water supply machine

Publications (2)

Publication Number Publication Date
JPS5949466A JPS5949466A (en) 1984-03-22
JPH0155396B2 true JPH0155396B2 (en) 1989-11-24

Family

ID=15680009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57158817A Granted JPS5949466A (en) 1982-09-14 1982-09-14 Prime mover driving air-conditioning hot-water supply machine

Country Status (1)

Country Link
JP (1) JPS5949466A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141430A (en) * 1985-12-14 1987-06-24 Tokyo Gas Co Ltd Apparatus for supplying heat in heat pump heating, cooling, and hot water supply system with internal combustion engine
AT411880B (en) * 1998-01-13 2004-07-26 Fronius Int Gmbh CONTROL DEVICE FOR A WELDING MACHINE

Also Published As

Publication number Publication date
JPS5949466A (en) 1984-03-22

Similar Documents

Publication Publication Date Title
US4165037A (en) Apparatus and method for combined solar and heat pump heating and cooling system
US4409796A (en) Reversible cycle heating and cooling system
US5239838A (en) Heating and cooling system having auxiliary heating loop
US5320166A (en) Heat pump system with refrigerant isolation and heat storage
US5226594A (en) Hot water storage tank heat exchanger system
US4738305A (en) Air conditioner and heat dispenser
JP2736278B2 (en) Closed space heating device and space heating method
WO2008130306A1 (en) A solar assisted heat pump system
CA1044477A (en) Air conditioning system having compressor-expander in pressurized closed loop system with solar assist and thermal storage
JP2006090689A (en) Solar hot water supply system with heat pump heat source unit
JPS6155018B2 (en)
US4163369A (en) Air-to-air heat pump
JPS6029861B2 (en) Solar heating/cooling/water heating equipment
JPH06509636A (en) Fuel-burning heat pump device
JPH0155396B2 (en)
JPH076727B2 (en) Thaw and cold storage using heat pump
JPS594853A (en) Space heating and hot water supply system utilizing solar heater
JP3654017B2 (en) Multi-function heat pump system
JPS6256426B2 (en)
JPH0338595Y2 (en)
GB1566411A (en) Air condtitioning systems with solar assist
JPS6322427Y2 (en)
JPS6018895B2 (en) Solar heat pump air conditioner
JPS624847Y2 (en)
JPS5892737A (en) Air conditioner with hot water supply and floor heating performance