JPH0154985B2 - - Google Patents

Info

Publication number
JPH0154985B2
JPH0154985B2 JP56123586A JP12358681A JPH0154985B2 JP H0154985 B2 JPH0154985 B2 JP H0154985B2 JP 56123586 A JP56123586 A JP 56123586A JP 12358681 A JP12358681 A JP 12358681A JP H0154985 B2 JPH0154985 B2 JP H0154985B2
Authority
JP
Japan
Prior art keywords
protein
amino acids
transglutaminase
proteins
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56123586A
Other languages
Japanese (ja)
Other versions
JPS5828234A (en
Inventor
Hideo Chiba
Ryuzo Sasaki
Koji Ikura
Masaaki Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP56123586A priority Critical patent/JPS5828234A/en
Publication of JPS5828234A publication Critical patent/JPS5828234A/en
Publication of JPH0154985B2 publication Critical patent/JPH0154985B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、トランスグルタミナーゼを用いて食
用タンパク質にアミノ酸類を酵素化学的に結合さ
せ、栄養価の補強されたタンパク素材を製造する
方法に関する。 従来、天然のタンパク質に栄養上不足している
アミノ酸を補強するにはタンパク質にアミノ酸を
単純に添加混合する方法が行われていた。しか
し、このようにして得られたアミノ酸添加タンパ
ク質は、食品や飼料への加工処理に際し流失損耗
が大きく、このためアミノ酸は必要量の何割増か
の量をあらかじめ見越して適量添加されねばなら
なかつた。また、アミノ酸を単純添加すると食品
にアミノ酸特有の味やにおいが付着し、このため
タンパク素材としての用途が限定されていた。さ
らに、アミノ酸添加タンパク質は食品加工や調理
の過程で加熱や冷凍によつてアミノ酸が損傷を受
け、また保存中にアミノ酸が変化又は分解したり
することがあつた。 本発明は、上記欠点のない栄養補強されたタン
パク質を提供することを目的とする。すなわち、
本発明は、食料又は飼料用の天然タンパク質又は
(及び)その分解物とアミノ酸類との混合物に、
トランスグルタミナーゼを作用させて、酵素化学
反応によりタンパク質又は(及び)その分解物に
アミノ酸類を導入することを特徴とする栄養の補
足強化されたタンパク素材の製造方法である。 本発明によれば、各種のタンパク質と各種のア
ミノ酸類とを組合わせて所望の栄養補強されたア
ミノ酸結合タンパク素材を製造することができ、
また本発明の製品はアミノ酸類が化学的に結合し
ているから、加工処理時の流出損耗がなく、異
味、異臭の付着もなく、保存時における分解もな
い。さらに、本発明では酵素が使用されるので結
合反応は効率的に行われる。 本発明で使用される原料は食料又は飼料用の天
然タンパク質であつて、例えば牛乳カゼイン、大
豆タンパク質、小麦グルテン、牛肉タンパク質、
魚肉タンパク質、米タンパク質、トウモロコシタ
ンパク質などの動植物性タンパク質を挙げること
ができる。また、タンパク質分解物、例えば前記
タンパク質のプロテアーゼ分解物等も原料として
使用される。 タンパク質に結合させるアミノ酸としては種種
のものが使用可能であるが、特にタンパク質につ
いて栄養上その補足強化が問題となる例えばメチ
オニン、シスチン、システイン、リジン、トリプ
トフアン等を好適に使用することができる。アミ
ノ酸誘導体例えばカルボキシル基をメチル又はエ
チル化した誘導体が使用される。ただし、リジン
の場合はε−アミノ基がタンパク質と結合するの
で誘導体にする必要がない。 これらのタンパク質等とアミノ酸類との混合物
にトランスグルタミナーゼを作用させる。この酵
素化学反応においてはタンパク質又はその分解物
のグルタミン残基のアミド基とアミノ酸類のアミ
ノ基との間で下記のように脱アンモニアが起る。 A−(CH22−CONH2+H2N−R −NH3 ―――→ A−(CH22−CO−NH−R (ただし A:ペプチド鎖 R:アミノ酸残部) トランスグルタミナーゼはカルシウム依存性の
アシル転移反応を触媒する酵素であり、タンパク
質又はその分解物中のグルタミン残基のアミノ基
(アシル供与体)と種々の化合物中のアミノ基
(アシル受容体)との間にアミド結合を形成させ
る。トランスグルタミナーゼはコネランらの方法
〔Connellan et al,J.Biol.Chem.246,1093
(1971)〕に従つてモルモツトの肝臓から得られ、
他に牛などの血液からも得られる。 本発明の方法はトランスグルタミナーゼを用い
てタンパク質分子へアミノ酸類を導入する酵素反
応である。トランスグルタミナーゼは前記のよう
にカルシウム依存性なので、導入反応はカルシウ
ムの存在が必要であり、通常塩化カルシウムの共
存下で行われる。所望により、トランスグルタミ
ナーゼを活性化し、また安定化するために還元剤
例えばジチオスレイトール、システイン、グルタ
チオン、メルカプトエタノール等を添加すること
ができる。 一般にタンパク質1〜10部を水1000部に分散し
た液に、アミノ酸類2〜10部、塩化カルシウム
0.6部及びトランスグルタミナーゼ0.02〜0.10部を
添加する。反応はPH6〜8.5,120〜40℃で撹拌し
ながら行う。反応時間は2〜10時間である。 反応終了後、反応液を通常の方法で処理して目
的物を取得する。例えば限外過装置による透析
後、噴霧乾燥に付すか、酸やアルコールによつて
タンパク質を沈殿させ、沈殿物を水に溶解または
分散して噴霧乾燥に付す。トランスグルタミナー
ゼ活性は上記操作における透析又は沈殿の過程で
停止する。 アミノ酸類の導入量は、反応条件例えば反応時
間、カルシウム濃度等を変えることにより適宜調
整することができる。例えば導入されるアミノ酸
の量と反応時間との関係は下記第1〜2表のとお
りである。
The present invention relates to a method for producing a protein material with enhanced nutritional value by enzymatically bonding amino acids to an edible protein using transglutaminase. Conventionally, in order to supplement amino acids that are nutritionally deficient in natural proteins, the method used was to simply add and mix amino acids to proteins. However, the amino acid-added proteins obtained in this way are subject to significant wash-off and wastage during processing into food and feed, and for this reason, amino acids must be added in appropriate amounts by anticipating in advance a percentage of the required amount. . Furthermore, when amino acids are simply added, the taste and odor characteristic of amino acids are attached to foods, which limits their use as protein materials. Furthermore, the amino acids of amino acid-added proteins may be damaged by heating or freezing during food processing or cooking, and the amino acids may change or decompose during storage. The present invention aims to provide a fortified protein that does not have the above-mentioned disadvantages. That is,
The present invention provides a mixture of natural protein or (and) its decomposition products and amino acids for food or feed.
This is a method for producing a protein material with enhanced nutritional supplementation, which is characterized in that amino acids are introduced into protein or/and its decomposition product by the action of transglutaminase and an enzymatic chemical reaction. According to the present invention, a desired nutritionally enriched amino acid-binding protein material can be produced by combining various proteins and various amino acids,
In addition, since the products of the present invention have amino acids chemically bonded, there is no leakage and loss during processing, there is no foul taste or odor, and there is no decomposition during storage. Furthermore, since enzymes are used in the present invention, the binding reaction is carried out efficiently. The raw materials used in the present invention are natural proteins for food or feed, such as milk casein, soybean protein, wheat gluten, beef protein,
Examples include animal and vegetable proteins such as fish protein, rice protein, and corn protein. Further, protein decomposition products, such as protease decomposition products of the above-mentioned proteins, are also used as raw materials. Various types of amino acids can be used as the amino acids to be bound to proteins, and for example, methionine, cystine, cysteine, lysine, tryptophan, etc., for which nutritional supplementation is particularly important for proteins, can be preferably used. Amino acid derivatives, such as derivatives in which the carboxyl group is methylated or ethylated, are used. However, in the case of lysine, the ε-amino group binds to proteins, so there is no need to make it into a derivative. Transglutaminase is allowed to act on a mixture of these proteins and amino acids. In this enzymatic chemical reaction, deammonia occurs between the amide group of the glutamine residue of the protein or its decomposition product and the amino group of the amino acid as described below. A-(CH 2 ) 2 -CONH 2 +H 2 N-R -NH 3 ---→ A-(CH 2 ) 2 -CO-NH-R (A: peptide chain R: amino acid residue) Transglutaminase is a calcium It is an enzyme that catalyzes a dependent acyl transfer reaction, and forms an amide bond between the amino group (acyl donor) of a glutamine residue in a protein or its degradation product and the amino group (acyl acceptor) in various compounds. to form. Transglutaminase was determined by the method of Connellan et al. [Connellan et al, J.Biol.Chem.246, 1093]
(1971)] from guinea pig liver;
It can also be obtained from the blood of cows and other animals. The method of the present invention is an enzymatic reaction that uses transglutaminase to introduce amino acids into protein molecules. As described above, transglutaminase is calcium dependent, so the introduction reaction requires the presence of calcium, and is usually carried out in the presence of calcium chloride. If desired, reducing agents such as dithiothreitol, cysteine, glutathione, mercaptoethanol, etc. can be added to activate and stabilize transglutaminase. Generally, 1 to 10 parts of protein is dispersed in 1000 parts of water, 2 to 10 parts of amino acids, and calcium chloride.
Add 0.6 parts and 0.02-0.10 parts of transglutaminase. The reaction is carried out with stirring at pH 6-8.5 and 120-40°C. Reaction time is 2-10 hours. After the reaction is completed, the reaction solution is treated in a conventional manner to obtain the target product. For example, after dialysis using an ultrafiltration device, the protein is subjected to spray drying, or the protein is precipitated with acid or alcohol, and the precipitate is dissolved or dispersed in water and then subjected to spray drying. Transglutaminase activity is stopped during the dialysis or precipitation process in the above procedure. The amount of amino acids introduced can be adjusted as appropriate by changing reaction conditions such as reaction time and calcium concentration. For example, the relationship between the amount of amino acid introduced and the reaction time is shown in Tables 1 and 2 below.

【表】【table】

【表】【table】

【表】 本発明によれば、各種タンパク質への各種の所
望アミノ酸の導入が可能であり、アミノ酸組成に
おいてバランスのとれた優れた栄養価を有するタ
ンパク素材を得ることができる。本発明の製品
は、下表に示すとおり、アミノ酸を単純添加した
従来品に比しタンパク効率と品質において優れて
いる。
[Table] According to the present invention, it is possible to introduce various desired amino acids into various proteins, and it is possible to obtain a protein material having a well-balanced amino acid composition and excellent nutritional value. As shown in the table below, the products of the present invention are superior in protein efficiency and quality compared to conventional products that simply add amino acids.

【表】【table】

【表】【table】

【表】 上記第3〜5表中アミノ酸量の単位は、アミノ
酸g/タンパク質窒素gであり、タンパク効率
は、体重増加量/摂取タンパク質量で示されるも
のである。官能評価は、男10名、女10名、合計20
名について味と臭のパネルテストを行つた結果か
ら得られた。 以下、本発明を実施例により説明する。 実施例 1 小麦グルテン100gを10Kgの水に分散させた。
PH7.5に調製した後、塩化カルシウムを6g、ジ
チオスレイトールを15g添加した。 これにリジンを30g、トランスグルタミナーゼ
を0.2g加えた。加温して37℃に保ち、ゆるやか
に撹拌しながら5時間反応させた。 これを限外過装置で透析した後、噴霧乾燥し
て、リジン強化小麦グルテン85gを得た。得られ
た強化小麦グルテンはわずかに黄色味をおびた白
色粉末であり、出発原料の小麦グルテンの性状と
大差なかつた。導入されたリジン量は小麦グルテ
ン1g当り83mgであつた。 実施例 2 牛乳カゼイン100gを10Kgの水に溶解し、PH7.5
にした。これに塩化カルシウム6g、メチオニン
エチルエステル100g、トランスグルタミナーゼ
0.3gを加えた。37℃に保ちゆるやかに撹拌しな
がら5時間反応させた。これを限外過装置で透
析した後、噴霧乾燥して、白色のメチオニン強化
牛乳カゼイン83gを得た。メチオニンの導入量は
カゼイン1g当り24mgであつた。
[Table] In Tables 3 to 5 above, the unit of amino acid amount is g of amino acid/g of protein nitrogen, and protein efficiency is expressed as body weight gain/amount of protein intake. Sensory evaluation: 10 men, 10 women, total 20
This was obtained from the results of a taste and odor panel test. The present invention will be explained below using examples. Example 1 100g of wheat gluten was dispersed in 10Kg of water.
After adjusting the pH to 7.5, 6 g of calcium chloride and 15 g of dithiothreitol were added. To this, 30 g of lysine and 0.2 g of transglutaminase were added. The mixture was heated and maintained at 37°C, and the mixture was reacted for 5 hours with gentle stirring. This was dialyzed using an ultrafiltration device and then spray-dried to obtain 85 g of lysine-enriched wheat gluten. The obtained fortified wheat gluten was a white powder with a slight yellow tinge, and its properties were not significantly different from the starting material wheat gluten. The amount of lysine introduced was 83 mg per gram of wheat gluten. Example 2 Dissolve 100g of milk casein in 10Kg of water and adjust the pH to 7.5.
I made it. Add to this 6g of calcium chloride, 100g of methionine ethyl ester, and transglutaminase.
Added 0.3g. The mixture was kept at 37°C and reacted for 5 hours with gentle stirring. This was dialyzed using an ultrafiltration device and then spray-dried to obtain 83 g of white methionine-enriched milk casein. The amount of methionine introduced was 24 mg per gram of casein.

Claims (1)

【特許請求の範囲】[Claims] 1 食料又は飼料用の天然タンパク質又は(及
び)その分解物とアミノ酸類との混合物にトラン
スグルタミナーゼを作用させて酵素化学反応によ
りタンパク質又は(及び)その分解物にアミノ酸
類を導入することを特徴とする栄養の補足強化さ
れたタンパク素材の製造方法。
1. It is characterized by introducing amino acids into the protein or (and) its decomposition product through an enzymatic chemical reaction by allowing transglutaminase to act on a mixture of natural protein for food or feed or (and) its decomposition product and amino acids. A method for producing nutritionally supplemented and fortified protein materials.
JP56123586A 1981-08-08 1981-08-08 Preparation of protein raw ingredient Granted JPS5828234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56123586A JPS5828234A (en) 1981-08-08 1981-08-08 Preparation of protein raw ingredient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56123586A JPS5828234A (en) 1981-08-08 1981-08-08 Preparation of protein raw ingredient

Publications (2)

Publication Number Publication Date
JPS5828234A JPS5828234A (en) 1983-02-19
JPH0154985B2 true JPH0154985B2 (en) 1989-11-21

Family

ID=14864254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56123586A Granted JPS5828234A (en) 1981-08-08 1981-08-08 Preparation of protein raw ingredient

Country Status (1)

Country Link
JP (1) JPS5828234A (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2705024B2 (en) * 1987-07-02 1998-01-26 マルハ株式会社 Food manufacturing method
JPH0267771U (en) * 1988-11-11 1990-05-22
US4950496A (en) * 1989-04-28 1990-08-21 Sylvia Schur Fortified and flavored gluten-based food product
US5061508A (en) * 1989-04-28 1991-10-29 Sylvia Schur Fortified and flavored gluten-based food product
US6039901A (en) * 1997-01-31 2000-03-21 Givaudan Roure Flavors Corporation Enzymatically protein encapsulating oil particles by complex coacervation
JP3656094B2 (en) 1997-08-19 2005-06-02 味の素株式会社 Pickle for meat processing
NO308763B1 (en) 1998-04-08 2000-10-30 Nutreco Aquaculture Res Ct As Procedure for the production of feed for carnivorous animals, in particular for farmed fish, with the modification of protein structure into preformed pellets, beads and similar pre-particles / pieces to obtain dimensional stability, strength and strength h
AU4262399A (en) * 1998-05-14 1999-11-29 Dsm N.V. Use of protein cross-linking enzymes in ruminant feed
DE19838189A1 (en) * 1998-08-24 2000-03-02 Basf Ag Stable powdered vitamin and carotenoid preparations and process for their preparation
US6974592B2 (en) 2002-04-11 2005-12-13 Ocean Nutrition Canada Limited Encapsulated agglomeration of microcapsules and method for the preparation thereof
US8034372B2 (en) * 2003-03-05 2011-10-11 Nestec, Ltd. Dietary supplement for athletic pets
JP3824082B2 (en) * 2003-03-13 2006-09-20 孝明 武部 Method for producing soy milk card
US9968120B2 (en) 2006-05-17 2018-05-15 Dsm Nutritional Products Ag Homogenized formulations containing microcapsules and methods of making and using thereof
ITMI20062080A1 (en) * 2006-10-30 2008-04-30 Consiglio Nazionale Ricerche TREATMENT OF CEREAL FLOURS FOR FOOD CONSUMPTION BY CELIAC PATIENTS
EP2124905B1 (en) 2007-01-10 2016-09-07 DSM Nutritional Products AG Microcapsules including pea protein
IT1396014B1 (en) * 2009-10-12 2012-11-09 Ipafood Srl PRODUCTION OF SOLUBLE GLUTEN BY ENZYMATIC TREATMENT OF FLOUR
CN116172118B (en) * 2022-12-21 2024-02-09 江南大学 Soybean protein isolate calcium procoagulant gel and preparation method and application thereof

Also Published As

Publication number Publication date
JPS5828234A (en) 1983-02-19

Similar Documents

Publication Publication Date Title
JPH0154985B2 (en)
JP3651003B2 (en) Stabilized transglutaminase and enzyme preparation containing the same
EP0379606B2 (en) Novel transglutaminase
US8092987B2 (en) Mucosa tissue preserved with heating and hydrogen peroxide or phosphoric acid
JP2000515003A (en) Method for obtaining protein hydrolyzate
Yamashita et al. Synthesis and characterization of a glutamic acid enriched plastein with greater solubility
JPWO2008120798A1 (en) Enzyme preparation for adhesion and method for producing adhesive-molded food
JP2008523803A (en) Modified proteins with altered aggregation properties
JPS5926636B2 (en) Protein modification method
YAMASHITA et al. Enzymatic Modification of Proteins in Foodstuffs Part II. Nutritive Properties of Soy Plastein and its Bio-utility Evaluation in Rats
Cartus D-amino acids and cross-linked amino acids in food
Potier et al. Comparison of digestibility and quality of intact proteins with their respective hydrolysates
JPH04126039A (en) Functional peptide
JP2650366B2 (en) Solid fat and its production method
EP1070457A1 (en) Soluble composition on the basis of carob germ
JP2556109B2 (en) Material for meat grain
JP2782849B2 (en) Vegetable protein powder and method for producing tofu using the same
JP2590373B2 (en) New surimi and its manufacturing method
Marshall et al. Exothermic transitions of glycinin determined by differential scanning calorimetry
US2155417A (en) Manufacture of protein composition
JP2611368B2 (en) Method for producing protein assembly
EP0830820B1 (en) Preparation of a vegetable milk powder
JP2000050844A (en) Enzyme preparation for bonding food and production of bond-shaped
JPH067091A (en) Production of protein raw material having improved nutritive value
Kumagai Chemical and enzymatic protein modifications and functionality enhancement