JPH0154942B2 - - Google Patents

Info

Publication number
JPH0154942B2
JPH0154942B2 JP57005143A JP514382A JPH0154942B2 JP H0154942 B2 JPH0154942 B2 JP H0154942B2 JP 57005143 A JP57005143 A JP 57005143A JP 514382 A JP514382 A JP 514382A JP H0154942 B2 JPH0154942 B2 JP H0154942B2
Authority
JP
Japan
Prior art keywords
constant current
voltage
circuit
secondary battery
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57005143A
Other languages
Japanese (ja)
Other versions
JPS58123332A (en
Inventor
Hironobu Sakagami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP57005143A priority Critical patent/JPS58123332A/en
Publication of JPS58123332A publication Critical patent/JPS58123332A/en
Publication of JPH0154942B2 publication Critical patent/JPH0154942B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、充電器に用いられ、2次電池の過充
電を防止する過充電防止回路に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an overcharge prevention circuit used in a charger to prevent overcharging of a secondary battery.

充電器としては、交流電源を整流した直流出力
を駆動電源として動作するインバータを備え、こ
のインバータの発振トランスの出力巻線に誘起さ
れる電圧を整流してNi−Cd電池のような2次電
池を急速充電するものがある。なお、この種の急
速充電器では、一定の周波数でインバータを動作
させる発振周波数制御手段と、上記インバータの
スイツチング用トランジスタのコレクタ電流のピ
ーク値を一定化するコレクタ電流制御手段とを備
え、交流電源の電圧が異なる場合にも使用できる
ようにしたものがある。
The charger is equipped with an inverter that operates using a DC output obtained by rectifying an AC power source as a driving power source, and rectifies the voltage induced in the output winding of the oscillation transformer of this inverter to charge a secondary battery such as a Ni-Cd battery. There are some that charge quickly. Note that this type of quick charger is equipped with an oscillation frequency control means for operating the inverter at a constant frequency, and a collector current control means for making constant the peak value of the collector current of the switching transistor of the inverter, and is equipped with an AC power source. There are some types that can be used even when the voltages are different.

ところで、この種の2次電池の急速充電を行う
充電器では、2次電池に流す充電電流が大きいた
め、2次電池が過充電になる直前に何等かの制御
をかけて、充電電流を小さくしたり、あるいは2
次電池への充電電流の供給を停止したりして、2
次電池の過充電を防止する必要がある。なおま
た、上述の充電器は交流電源の電圧が異なる場合
にも使用されるため、交流電源の電圧が変化した
場合にも影響を受けることなく、確実に2次電池
の過充電を防止する必要がある。
By the way, with this type of charger that rapidly charges secondary batteries, the charging current that flows through the secondary battery is large, so just before the secondary battery becomes overcharged, some kind of control is applied to reduce the charging current. or 2
2. Stopping the supply of charging current to the next battery.
It is necessary to prevent overcharging of the battery. Furthermore, since the above-mentioned charger is used even when the voltage of the AC power supply varies, it is necessary to reliably prevent overcharging of the secondary battery without being affected by changes in the voltage of the AC power supply. There is.

本発明は上述の点に鑑みて為されたものであ
り、その目的とするところは、2次電池の過充電
を防止することができ、しかも交流電源の電圧が
変化した場合にも影響を受けない過充電防止回路
を提供することにある。
The present invention has been made in view of the above-mentioned points, and its purpose is to prevent overcharging of a secondary battery, and to prevent the overcharging of a secondary battery from being affected even when the voltage of an AC power source changes. The purpose is to provide an overcharge prevention circuit.

第1図乃至第3図に本発明の一実施例を示す。
なお、第1図に本実施例の概略構成を示すブロツ
ク図を示し、第2図にその具体回路を示す。本実
施例の充電器は、交流電源ACを整流した直流出
力を駆動電源として動作するトランジスタインバ
ータ2を備え、このインバータ2の発振トランス
Tの出力巻線L3の高周波出力を整流して2次電
池3を充電するものである。ここで、インバータ
2の駆動電源は交流電源ACを整流回路1で整流
(あるいは、整流平滑)して得ている。インバー
タ2は、トランジスタQ3からなるスイツチ部5
と、発振トランスTの1次巻線L1からなる電力
交換部4と、帰還巻線L2に誘起される電圧をト
ランジスタQ3のベースに正帰還する帰還回路部
6と、出力巻線L3に誘起される電圧を整流して
2次電池3を充電する2次出力整流回路部8とか
ら構成されている。
An embodiment of the present invention is shown in FIGS. 1 to 3.
Incidentally, FIG. 1 shows a block diagram showing a schematic configuration of this embodiment, and FIG. 2 shows its specific circuit. The charger of this embodiment includes a transistor inverter 2 that operates using a DC output obtained by rectifying an AC power source AC as a driving power source. This is for charging the battery 3. Here, the driving power for the inverter 2 is obtained by rectifying (or rectifying and smoothing) an alternating current power supply AC in a rectifier circuit 1. The inverter 2 includes a switch section 5 consisting of a transistor Q3 .
, a power exchange section 4 consisting of the primary winding L1 of the oscillation transformer T, a feedback circuit section 6 that positively feeds back the voltage induced in the feedback winding L2 to the base of the transistor Q3 , and an output winding L. The secondary output rectifier circuit section 8 rectifies the voltage induced in the secondary battery 3 and charges the secondary battery 3.

ところで、この充電器では交流電源ACの電圧
が異なる場合にも一定の充電電池で2次電池3を
充電することができるようにスイツチング制御手
段20を設けてある。このスイツチング制御手段
20はコンデンサC8と抵抗R6とからなるCR回路
15の定数に応じた基準周波数としてののこぎり
波を発生する発振回路22と、発振回路22の出
力をパルス波に整形するTフリツプフロツプ25
と、このTフリツプフロツプ25の出力を保持す
るホールド回路27と、このホールド回路27の
出力でオン、オフするトランジスタ29とを備
え、上記構成で交流電源ACの電圧に関係なくイ
ンバータ2の発振周波数を一定にする発振周波数
一定化手段を構成してある。また、このスイツチ
ング制御手段20は抵抗R11〜R13からなりトラ
ンジスタQ3のコレクタ電流IIP(ピーク値)を検出
するセンサー回路16と、このセンサー回路16
の出力を基準電圧Vrefと比較する比較回路26
と、この比較回路26の出力でオン、オフするト
ランジスタ28とを備え、これら構成でトランジ
スタQ3のコレクタ電流のピーク値を一定に制御
するコレクタ電流一定化手段を構成してある。つ
まり、交流電源ACの電圧が異なつて駆動電源の
電圧が変化するとインバータ1の発振周波数が変
化する。そこで、上記発振周波数一定化手段を設
けてインバータ2で発振周波数を一定にしてあ
る。また、このように発振周波数を一定にしても
駆動電源の電圧の変化でトランジスタQ3のコレ
クタ電流IIPが変化する。そこで、コレクタ電流
一定化手段によりコレクタ電流のピーク値を一定
にし、これにより交流電源ACの電圧の変化に関
係なく、インバータ2の出力巻線L3に誘起され
る電圧を一定にし、2次電池3の充電電流が一定
となるようにしてある。なお、第1図の2重の破
線で囲む構成は集積化した部分を示し、図中の〇
印で囲んだ数字はIC14の端子ピンの番号を示
している。このIC14は、発振トランスTの4
次巻線L4に誘起される電圧を整流平滑して直流
電圧を作成する電源回路9の出力で動作し、内部
の安定化電源回路21で電源回路9からの出力電
圧を安定化し、さらに基準電圧回路23で基準電
圧を作成して各部に電源を供給してある。また、
比較回路26の基準電圧Vrefは基準電圧回路2
3の出力を分圧して得ている。さらに、このスイ
ツチング制御手段20には、抵抗R7と発光ダイ
オードD7よりなり2次電池3の充電の完了を表
示する充電完了表示回路18を設けてあり、この
充電完了表示回路18の発光ダイオードD7は基
準電圧の供給状態に応じて点灯するようになつて
いる。なおまた、IC14は低電圧保護回路24
を備えている。
Incidentally, this charger is provided with a switching control means 20 so that the secondary battery 3 can be charged with a fixed rechargeable battery even when the voltage of the AC power source AC varies. This switching control means 20 includes an oscillation circuit 22 that generates a sawtooth wave as a reference frequency according to the constant of a CR circuit 15 consisting of a capacitor C 8 and a resistor R 6 , and a T circuit that shapes the output of the oscillation circuit 22 into a pulse wave. flipflop 25
, a hold circuit 27 that holds the output of this T flip-flop 25, and a transistor 29 that is turned on and off by the output of this hold circuit 27. With the above configuration, the oscillation frequency of the inverter 2 can be controlled regardless of the voltage of the AC power supply AC. An oscillation frequency constant means is configured to keep the oscillation frequency constant. The switching control means 20 also includes a sensor circuit 16 which is composed of resistors R 11 to R 13 and which detects the collector current I IP (peak value) of the transistor Q 3 ;
Comparison circuit 26 that compares the output of
and a transistor 28 which is turned on and off by the output of the comparator circuit 26, and these structures constitute a collector current constant means for controlling the peak value of the collector current of the transistor Q3 to be constant. That is, when the voltage of the AC power source AC changes and the voltage of the drive power source changes, the oscillation frequency of the inverter 1 changes. Therefore, the oscillation frequency constant means is provided to keep the oscillation frequency constant using the inverter 2. Further, even if the oscillation frequency is kept constant in this way, the collector current I IP of the transistor Q 3 changes due to a change in the voltage of the drive power source. Therefore, the collector current constantization means makes the peak value of the collector current constant, thereby making the voltage induced in the output winding L3 of the inverter 2 constant regardless of changes in the voltage of the AC power supply AC, and The charging current of No. 3 is kept constant. Note that the configuration surrounded by double broken lines in FIG. 1 indicates an integrated part, and the numbers surrounded by circles in the figure indicate the numbers of the terminal pins of the IC 14. This IC14 is the 4th part of the oscillation transformer T.
It operates with the output of the power supply circuit 9, which rectifies and smoothes the voltage induced in the next winding L4 to create a DC voltage.The internal stabilizing power supply circuit 21 stabilizes the output voltage from the power supply circuit 9, and further stabilizes the output voltage from the power supply circuit 9. A reference voltage is created in a voltage circuit 23 and power is supplied to each part. Also,
The reference voltage Vref of the comparison circuit 26 is the reference voltage circuit 2.
It is obtained by dividing the output of 3. Further, this switching control means 20 is provided with a charging completion display circuit 18 that is made up of a resistor R 7 and a light emitting diode D 7 and displays the completion of charging of the secondary battery 3. D7 is designed to light up depending on the supply state of the reference voltage. Furthermore, the IC 14 is a low voltage protection circuit 24.
It is equipped with

この充電器では2次電池3の過充電を防止する
本発明に係る過充電防止回路19を設けてある。
この過充電防止回路19を、2次電池3に抵抗
R14を介して第1の定電流を供給する第1の定電
流供給手段と、上記インバータ2のトランジスタ
に供給される起動電流をバイパスして第1の定電
流よりも大きな第2の定電流を上記直列回路に供
給する第2の定電流供給手段と、上記第1の定電
流供給手段から第1の定電流が供給されている直
列回路の両側電圧から2次電池3が充電完了を示
す第1の所定電圧以上に充電されたことを検知し
て、第1の定電流供給手段による直列回路への定
電流の供給を停止させると共に、第2の定電流手
段により上記直列回路に定電流を供給させ、上記
第2の定電流供給手段から第2の定電流が供給さ
れている直列回路の両端電圧から2次電池が上記
第1の所定値よりも低い第2の所定電圧に低下し
たことを検知して、第2の定電流手段による直列
回路への定電流の供給を停止させると共に、第1
の定電流供給手段により上記直列回路に定電流を
供給させる充電完了検知手段とで構成してある。
ここで、この過充電防止回路19は、具体的に
は、抵抗R3とコンデンサC7とツエナーダイオー
ドZ1からなり整流回路1の出力を安定化して定電
圧を得る定電圧回路12と、この定電圧回路12
の出力を電源としてスイツチング動作するトラン
ジスタQ1,Q2とを備えている。なお、トランジ
スタQ2はトランジスタQ1のオン、オフによりス
イツチング制御され、トランジスタQ1とは逆動
作する。そして、この過充電防止回路19は、抵
抗R14と2次電池3との直列回路の両端電圧が低
く、トランジスタQ1のエミツタ電位がベース電
位からベース・エミツタ間電圧を引いた値以下で
あるとき、トランジスタQ1がオンとなり、逆に
上記直列回路の両端電圧が高く、トランジスタ
Q1のエミツタ電位がベース電位からベース・エ
ミツタ間電圧を引いた値以上であるとき、トラン
ジスタQ1はオフとなる。つまり、トランジスタ
Q1が2次電池3の充電完了状態を検知する充電
完了電圧検出手段として働く。また、トランジス
タQ1と定電圧回路12とで上記直列回路に第1
の定電流を供給する第1の定電流供給手段を構成
し、トランジスタQ2と定電圧回路12とで直列
回路に第2の定電流を供給する第2の定電流供給
手段を構成してある。なお、上記定電圧回路12
からダイオードD1及び抵抗R4を介してインバー
タ2のトランジスタQ3に起動電流を供給するよ
うにしてある。ところで、トランジスタQ2と抵
抗R14との接続点と定電圧回路12のアースライ
ンとの間に接続されたツエナーダイオードZDは、
抵抗R14と2次電池3との直列回路の両端に過電
圧が印加された場合に、上記過電圧をクランプし
て過充電防止回路19を保護する保護回路であ
り、このツエナーダイオードZDには過電圧印加時
以外には電流が流れることはなく、よつて過充電
防止回路18の動作には関係しない。また、上述
のように過充電防止回路19の動作に応じて抵抗
R14と2次電池3との直列回路に供給する定電流
を変えてあるのは、この電流により抵抗R14の両
端に発生する電圧により直列回路の両端電圧を変
化させ、過充電防止回路19が所謂チヤタリング
動作を起こさないように過充電防止回路19をヒ
ステリシス動作させるためである。つまり、トラ
ンジスタQ1がオンのときには、第1の定電流を
抵抗R14と2次電池3との直列回路に流し、この
ときの直列回路の両端電圧(厳密にはエミツタ電
位)をトランジスタQ1がベース電位と比較して
2次電池3の充電完了を検知し、一旦充電完了が
検知されたときには、トランジスタQ2から上記
第1の定電流よりも大きな第2の定電流を直列回
路に流し、このとき抵抗R14の両端電圧が高くな
ることによりインバータ2の動作を停止した直後
に直列回路の僅かな両端電圧の低下により、トラ
ンジスタQ1がオンして過充電防止回路19によ
るインバータ2の動作停止状態が解除されること
がないようにしたものである。なお、抵抗R14
上述のように過充電防止回路19をヒステリシス
動作させるための他、2次電池3毎に異なる電池
電圧に対して過充電防止回路19の動作がばらつ
くことを防止する調整抵抗としての機能と、2次
電池3の充電状態に応じて第1及び第2の定電流
供給手段による電流が大幅に変化しないようにす
る電流制限抵抗としての機能とを備えている。ま
た、上述の第1及び第2の定電流供給手段により
直列回路に供給される電流は2次電池3の電池電
圧に応じて変化し、厳密な意味では定電流ではな
い。しかし、上述したように2次電池3の充電状
態による電流変化は抵抗R14の働きで小さくなつ
ており、また直列回路には交流電源ACの電圧の
変動に対しても出力電圧が一定である定電圧回路
12により電流が供給してあるので、交流電源
ACの電圧が変動した場合に対して直列回路に供
給される電流は変化しない。よつて、第1及び第
2の定電流供給手段により直列回路に供給される
電流は一定と言つて差し支えない。なお、この過
充電防止回路19の出力は、スイツチング制御手
段20の出力とオア回路(ワイヤドオア)10で
オアをとつてインバータ2に入力してある。
This charger is provided with an overcharge prevention circuit 19 according to the present invention that prevents overcharging of the secondary battery 3.
This overcharge prevention circuit 19 is connected to the secondary battery 3 with a resistor.
a first constant current supply means that supplies a first constant current via R 14 ; and a second constant current larger than the first constant current that bypasses the starting current supplied to the transistor of the inverter 2. The secondary battery 3 indicates that charging is completed from the voltages on both sides of the series circuit to which the first constant current is supplied from the second constant current supply means that supplies the voltage to the series circuit, and the first constant current supply means from the first constant current supply means. When it is detected that the voltage has been charged to a voltage higher than the first predetermined voltage, the first constant current supply means stops supplying constant current to the series circuit, and the second constant current means supplies a constant current to the series circuit. is supplied, and the voltage across the series circuit to which the second constant current is supplied from the second constant current supply means drops to a second predetermined voltage of the secondary battery that is lower than the first predetermined value. Detecting this, the second constant current means stops supplying constant current to the series circuit, and the first constant current means stops supplying constant current to the series circuit.
and charging completion detection means for causing the constant current supply means to supply a constant current to the series circuit.
Here, this overcharge prevention circuit 19 specifically includes a constant voltage circuit 12 that stabilizes the output of the rectifier circuit 1 and obtains a constant voltage, which is composed of a resistor R 3 , a capacitor C 7 , and a Zener diode Z 1 ; Constant voltage circuit 12
It has transistors Q 1 and Q 2 that perform switching operations using the output of the transistor Q 1 and Q 2 as a power source. Note that the transistor Q2 is controlled by switching by turning on and off the transistor Q1 , and operates in the opposite direction to that of the transistor Q1 . In this overcharge prevention circuit 19, the voltage across the series circuit of the resistor R 14 and the secondary battery 3 is low, and the emitter potential of the transistor Q 1 is less than or equal to the value obtained by subtracting the base-emitter voltage from the base potential. When transistor Q 1 turns on, the voltage across the series circuit is high, and transistor Q1 turns on.
When the emitter potential of Q 1 is greater than or equal to the base potential minus the base-emitter voltage, transistor Q 1 is turned off. In other words, transistor
Q1 functions as a charging completion voltage detection means for detecting the charging completion state of the secondary battery 3. In addition, the transistor Q 1 and the constant voltage circuit 12 connect the first transistor to the series circuit.
The transistor Q2 and the constant voltage circuit 12 constitute a second constant current supply means that supplies a second constant current to the series circuit. . Note that the constant voltage circuit 12
A starting current is supplied from the inverter 2 to the transistor Q 3 of the inverter 2 via the diode D 1 and the resistor R 4 . By the way, the Zener diode Z D connected between the connection point between the transistor Q 2 and the resistor R 14 and the ground line of the constant voltage circuit 12 is
This is a protection circuit that clamps the overvoltage and protects the overcharge prevention circuit 19 when an overvoltage is applied across the series circuit of the resistor R 14 and the secondary battery 3 . No current flows except when it is applied, and therefore has no relation to the operation of the overcharge prevention circuit 18. In addition, as described above, the resistance
The reason why the constant current supplied to the series circuit of R 14 and the secondary battery 3 is changed is that the voltage generated across the resistor R 14 due to this current changes the voltage across the series circuit, and the overcharge prevention circuit 19 This is to cause the overcharge prevention circuit 19 to operate in hysteresis so that the overcharge prevention circuit 19 does not cause a so-called chattering operation. That is, when the transistor Q 1 is on, the first constant current is passed through the series circuit of the resistor R 14 and the secondary battery 3, and the voltage across the series circuit (strictly speaking, the emitter potential) at this time is applied to the transistor Q 1. detects the completion of charging of the secondary battery 3 by comparing it with the base potential, and once the completion of charging is detected, a second constant current larger than the first constant current flows from the transistor Q 2 to the series circuit. At this time, immediately after the operation of the inverter 2 is stopped due to the increase in the voltage across the resistor R14 , the transistor Q1 is turned on due to a slight drop in the voltage across the series circuit, and the overcharge prevention circuit 19 stops the operation of the inverter 2. This is to prevent the operation stop state from being canceled. Note that the resistor R 14 is used not only to cause the overcharge prevention circuit 19 to operate in hysteresis as described above, but also to serve as an adjustment resistor to prevent the operation of the overcharge prevention circuit 19 from varying due to different battery voltages for each secondary battery 3. It also has a function as a current limiting resistor that prevents the currents from the first and second constant current supply means from changing significantly depending on the state of charge of the secondary battery 3. Further, the current supplied to the series circuit by the first and second constant current supply means described above changes depending on the battery voltage of the secondary battery 3, and is not a constant current in the strict sense. However, as mentioned above, the current change due to the state of charge of the secondary battery 3 is reduced by the action of the resistor R14 , and the series circuit has a constant output voltage even when the voltage of the AC power supply AC changes. Since current is supplied by the constant voltage circuit 12, the AC power supply
The current supplied to the series circuit does not change when the AC voltage changes. Therefore, it can be safely said that the current supplied to the series circuit by the first and second constant current supply means is constant. The output of the overcharge prevention circuit 19 is ORed with the output of the switching control means 20 by an OR circuit (wired OR) 10 and input to the inverter 2.

以下、本実施例の動作を説明する。今、交流電
源ACが供給されると、定電圧回路12からイン
バータ2のトランジスタQ3のベースに起動電流
が供給され、トランジスタQ3がオンし、このと
きに発振トランスTの1次巻線L1に流れる電流
により帰還巻線L2に誘起される電圧をトランジ
スタQ3のベースに正帰還することにより、トラ
ンジスタQ3のオン状態を深くする。ここで、本
実施例ではインバータ2の発振周波数を一定に制
御する発振周波数一定化手段と、コレクタ電流の
ピーク値を一定化するコレクタ電流一定化手段と
をスイツチング制御手段20に設けてあるので、
トランジスタQ3をオフする時点に達したとき、
あるいはトランジスタQ3のコレクタ電流が所定
値に達したとき、発振周波数一定化手段及びコレ
クタ電流一定化手段のいずれかの出力でトランジ
スタQ3がオフされる。このようにトランジスタ
Q3がオフされると、1次巻線L1の両端電圧の極
性が一瞬に反転し、帰還巻線L2にトランジスタ
Q3を逆バイアス電圧が誘起され、この逆バイア
ス電圧によりトランジスタQ3がオフ状態に保持
される。また、このようにトランジスタQ3がオ
フされたときには、出力巻線L3にも電圧が誘起
されるので、この電圧により2次電池3はダイオ
ードD2を介して充電される。そして、帰還巻線
L3に誘起されたトランジスタQ3を逆バイアスす
るエネルギが消費された後で、スイツチング制御
手段20のインバータ2の発振周波数を一定化す
る発振周波数一定化手段の出力がローレベルとな
つたとき、定電圧回路12から上述のようにトラ
ンジスタQ3をオンする起動電流が供給され、以
降は上述と同様の動作を繰り返す。このようにし
てインバータ2の発振周波数及びトランジスタ
Q3のコレクタ電流をスイツチング制御手段20
で一定化すれば、交流電源ACの電圧が異なる場
合にも2次電池3の充電電池を一定にすることが
でき、諸外国においてもこの充電器を用いること
ができる。
The operation of this embodiment will be explained below. Now, when the AC power supply AC is supplied, a starting current is supplied from the constant voltage circuit 12 to the base of the transistor Q 3 of the inverter 2, the transistor Q 3 is turned on, and at this time, the primary winding L of the oscillation transformer T By positively feeding back the voltage induced in the feedback winding L2 by the current flowing through the transistor Q3 to the base of the transistor Q3 , the ON state of the transistor Q3 is deepened. Here, in this embodiment, since the switching control means 20 is provided with an oscillation frequency constant means for controlling the oscillation frequency of the inverter 2 to be constant, and a collector current constant means for keeping the peak value of the collector current constant,
When we reach the point where we turn off transistor Q3 ,
Alternatively, when the collector current of the transistor Q3 reaches a predetermined value, the transistor Q3 is turned off by the output of either the oscillation frequency constant means or the collector current constant means. Transistor like this
When Q3 is turned off, the polarity of the voltage across the primary winding L1 is instantaneously reversed, and the transistor is connected to the feedback winding L2.
A reverse bias voltage is induced across Q3 , and this reverse bias voltage holds transistor Q3 in an off state. Further, when the transistor Q 3 is turned off in this manner, a voltage is also induced in the output winding L 3 , so that the secondary battery 3 is charged via the diode D 2 by this voltage. And the return winding
After the energy for reverse biasing the transistor Q 3 induced by L 3 is consumed, when the output of the oscillation frequency constant means for constant the oscillation frequency of the inverter 2 of the switching control means 20 becomes a low level, A starting current is supplied from the constant voltage circuit 12 to turn on the transistor Q3 as described above, and thereafter the same operation as described above is repeated. In this way, the oscillation frequency of inverter 2 and the transistor
Switching control means 20 for collector current of Q3
If the voltage is made constant, the charging battery of the secondary battery 3 can be kept constant even when the voltage of the AC power supply AC is different, and this charger can be used in other countries as well.

ここで、上述の動作は2次電池3が充電完了す
る前の動作であり、このとき抵抗R14と2次電池
3との直列回路の両端電圧はトランジスタQ1
オフする電圧よりも低くなつているので、トラン
ジスタQ2がオフで、過充電防止回路19は動作
しない。この場合には充電状態に応じて第3図a
に示すように2次電池3の電圧V0が徐々に上昇
し、上記直列回路の両端電圧も徐々に上昇する。
そして、2次電池3が完全に充電されると、第3
図aの上側の破線で示す充電完了を示す判定電圧
に2次電池3の電圧が達し、トランジスタQ1
オフになり、トランジスタQ2がオンする。よつ
て、定電圧回路12からトランジスタQ3に供給
される起動電流がトランジスタQ2によりバイパ
スされ、インバータ2の動作は停止される。この
とき、抵抗R14と2次電池3との直列回路に供給
される定電流はトランジスタQ2を介して供給さ
れるために増加し、抵抗R14の両端電圧が高くな
り、結果的に直列回路の両端電圧が高くなる。つ
まり、これはトランジスタQ1のベース電位と比
較されるコレクタ電位が上げられることを意味
し、見掛け上は第3図a中の下側の破線で示すよ
うに、2次電池3の充電完了を判定する電圧が低
く下げられたと同じになる。よつて、2次電池3
の電圧が僅かに低下しただけで、過充電防止回路
19の動作が解除されることがなく、過充電防止
回路19が安定に動作する。なお、ここで2次電
池3は自然放電等によつて第3図aに示すように
電圧V0が低下する。このようにして電池電圧V0
が図中の下側の破線で示す電圧よりも低くなつた
ときには、トランジスタQ1がオンして、トラン
ジスタQ2がオフし、過充電防止回路19のイン
バータ2の動作停止状態が解除され、上述と充電
完了前の同様にインバータ2が発振動作を開始
し、電池3の充電が再開される。以後は、インバ
ータ2の発振及び停止動作を繰り返す。なお、例
えば抵抗R14の抵抗値を調整して、トランジスタ
Q3のオン期間を定常時の1/2〜1/5位にすれば、
上述の2次電池3の充電完了後に2次電池3が過
充電されることはない。
Here, the above operation is an operation before charging of the secondary battery 3 is completed, and at this time, the voltage across the series circuit of the resistor R 14 and the secondary battery 3 becomes lower than the voltage that turns off the transistor Q 1 . Therefore, transistor Q 2 is off and overcharge prevention circuit 19 does not operate. In this case, depending on the state of charge,
As shown in the figure, the voltage V 0 of the secondary battery 3 gradually increases, and the voltage across the series circuit also gradually increases.
When the secondary battery 3 is fully charged, the 3rd battery
When the voltage of the secondary battery 3 reaches the determination voltage indicating completion of charging, which is indicated by the upper broken line in FIG. Therefore, the starting current supplied from the constant voltage circuit 12 to the transistor Q3 is bypassed by the transistor Q2 , and the operation of the inverter 2 is stopped. At this time, the constant current supplied to the series circuit of resistor R 14 and secondary battery 3 increases because it is supplied via transistor Q 2 , and the voltage across resistor R 14 increases, resulting in The voltage across the circuit increases. In other words, this means that the collector potential compared to the base potential of transistor Q 1 is raised, which apparently indicates the completion of charging of the secondary battery 3, as shown by the lower broken line in Figure 3a. It is the same as if the voltage to be judged was lowered. Therefore, secondary battery 3
Even if the voltage of the overcharge prevention circuit 19 slightly decreases, the operation of the overcharge prevention circuit 19 is not canceled, and the overcharge prevention circuit 19 operates stably. Note that the voltage V 0 of the secondary battery 3 decreases as shown in FIG. 3a due to natural discharge or the like. In this way the battery voltage V 0
When the voltage becomes lower than the voltage indicated by the lower broken line in the figure, transistor Q 1 is turned on and transistor Q 2 is turned off, and the inverter 2 of the overcharge prevention circuit 19 is released from the stopped state, and the above-mentioned process is completed. The inverter 2 starts the oscillation operation in the same manner as before charging is completed, and charging of the battery 3 is restarted. Thereafter, the oscillation and stopping operations of the inverter 2 are repeated. For example, by adjusting the resistance value of resistor R14 , the transistor
If the on period of Q 3 is set to 1/2 to 1/5 of the steady state,
The secondary battery 3 will not be overcharged after the charging of the secondary battery 3 described above is completed.

第4図乃至第6図は他の実施例を示し、本実施
例ではインバータ2のトランジスタQ3の起動電
流を定電圧ダイオードCRDを用いて供給するよ
うにしたものである。この場合、定電流ダイオー
ドCRDは起動回路11として働くと共に、トラ
ンジスタQ2と共に第2の定電流供給手段を構成
することになる。なお、定電流ダイオードCRD
は第6図に示すように、入力電圧Vが変わつても
出力電流Iが略一定となる特性を有するものであ
る。本実施例は上記第1の実施例と同様に動作す
る。
4 to 6 show another embodiment, in which the starting current of the transistor Q3 of the inverter 2 is supplied using a constant voltage diode CRD. In this case, the constant current diode CRD functions as the starting circuit 11, and together with the transistor Q2 constitutes the second constant current supply means. In addition, constant current diode CRD
As shown in FIG. 6, the output current I has a characteristic that the output current I remains substantially constant even if the input voltage V changes. This embodiment operates in the same manner as the first embodiment.

本発明は上述のように、2次電池に抵抗を介し
て第1の定電流を供給する第1の定電流供給手段
と、上記インバータのトランジスタに供給される
起動電流をバイパスして第1の定電流よりも大き
な第2の定電流を上記直列回路に供給する第2の
定電流供給手段とを備えているので、抵抗と2次
電池との直列回路に定電流を流して2次電池の充
電状態を検知することができ、このため交流電源
の電圧が変化しても2次電池の充電検知状態にば
らつきを生じず、交流電源の電圧の変化の影響を
受けずに確実に2次電池の充電状態を検知するこ
とができる。しかも、充電完了検知手段を備え、
第1の定電流供給手段から第1の定電流が供給さ
れている直列回路の両端電圧から2次電池が充電
完了を示す第1の所定電圧以上に充電されたこと
を充電完了検知手段が検知して、第1の定電流供
給手段による直列回路への定電流の供給を停止さ
せると共に、第2の定電流手段により上記直列回
路に定電流を供給させ、上記第2の定電流供給手
段から第2の定電流が供給されている直列回路の
両端電圧から2次電池が上記第1の所定値よりも
低い第2の所定電圧に低下したことを充電完了検
知手段が検知して、第2の定電流手段による直列
回路への定電流の供給を停止させると共に、第1
の定電流供給手段により上記直列回路に定電流を
供給させているので、過充電防止回路の充電完了
を検知する第1の所定値と2次電池の自然放電で
2次電池が充電完了電圧以下に低下したことを検
知する第2の所定値との電圧幅、つまりはヒステ
リシス量を電源電圧の変動に関係なく一定にで
き、従つて2次電池の過充電を安定に防止するこ
とができる。
As described above, the present invention includes a first constant current supply means that supplies a first constant current to the secondary battery via a resistor, and a first constant current supply means that bypasses the starting current supplied to the transistor of the inverter. and a second constant current supply means for supplying a second constant current larger than the constant current to the series circuit, so that the constant current is passed through the series circuit of the resistor and the secondary battery to supply the secondary battery with a second constant current larger than the constant current. The state of charge can be detected, so even if the voltage of the AC power supply changes, there will be no variation in the state of charge detection of the secondary battery. The charging status of the battery can be detected. Moreover, it is equipped with a charging completion detection means,
The charging completion detection means detects that the secondary battery has been charged to a voltage equal to or higher than the first predetermined voltage indicating the completion of charging from the voltage across the series circuit to which the first constant current is supplied from the first constant current supply means. Then, the first constant current supply means stops supplying constant current to the series circuit, and the second constant current supply means supplies constant current to the series circuit, and the second constant current supply means stops supplying constant current to the series circuit. The charging completion detection means detects that the voltage across the series circuit to which the second constant current is supplied has decreased to a second predetermined voltage lower than the first predetermined value, and the second The supply of constant current to the series circuit by the constant current means of the first circuit is stopped, and the first
Since a constant current is supplied to the series circuit by the constant current supply means, the secondary battery is lower than the charging completion voltage due to the first predetermined value for detecting the completion of charging of the overcharge prevention circuit and the natural discharge of the secondary battery. The voltage width with respect to the second predetermined value for detecting a decrease in voltage, that is, the amount of hysteresis, can be kept constant regardless of fluctuations in the power supply voltage, and therefore overcharging of the secondary battery can be stably prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロツク図、第2
図は同上の具体回路図、第3図a,bは同上の動
作説明図、第4図は同上の他の実施例のブロツク
図、第5図は同上の具体回路図、第6図は同上の
定電流ダイオードの特性図である。 2はインバータ、3は2次電池、12は電源回
路、19は過充電防止回路、20はスイツチング
制御手段、Q1〜Q3はトランジスタ、CRDは定電
流ダイオード、Tは発振トランス、L2は出力巻
線、R14は抵抗を示す。
FIG. 1 is a block diagram of one embodiment of the present invention, and FIG.
The figure is a concrete circuit diagram of the same as the above, Figures 3a and b are operation explanatory diagrams of the same as the above, Figure 4 is a block diagram of another embodiment of the same as the above, Figure 5 is a concrete circuit diagram of the same as the above, and Figure 6 is the same as the above. FIG. 2 is a characteristic diagram of a constant current diode. 2 is an inverter, 3 is a secondary battery, 12 is a power supply circuit, 19 is an overcharge prevention circuit, 20 is a switching control means, Q1 to Q3 are transistors, CRD is a constant current diode, T is an oscillation transformer, and L2 is Output winding, R 14 indicates resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 交流電源を整流した直流出力を駆動電源とし
て動作するインバータを備え、このインバータの
発振トランスの出力巻線に誘起される電圧を整流
して2次電池を充電すると共に、交流電源の電圧
が異なる場合にもインバータの発振周波数及びこ
のインバータのスイツチング用トランジスタに流
れるコレクタ電流のピーク値を一定に制御して、
2次電池を一定の充電電流で充電させるスイツチ
ング制御手段を備えた充電器に用いられる過充電
防止回路であつて、上記2次電池に抵抗を介して
第1の定電流を供給する第1の定電流供給手段
と、上記インバータのトランジスタに供給される
起動電流をバイパスして第1の定電流よりも大き
な第2の定電流を上記2次電池と抵抗からなる直
列回路に供給する第2の定電流供給手段と、上記
直列回路の両端電圧から2次電池の充電完了を検
知する充電完了検知手段とを備え、上記第1の定
電流供給手段から第1の定電流が供給されている
直列回路の両端電圧から2次電池が充電完了を示
す第1の所定電圧以上に充電されたことを上記充
電完了検知手段が検知し、このとき第1の定電流
供給手段による直列回路への定電流の供給を停止
させると共に、第2の定電流手段により上記直列
回路に定電流を供給させ、上記第2の定電流供給
手段から第2の定電流が供給されている直列回路
の両端電圧から2次電池が上記第1の所定値より
も低い第2の所定電圧に低下したことを上記充電
完了検知手段が検知して、第2の定電流手段によ
る直列回路への定電流の供給を停止させると共
に、第1の定電流供給手段により上記直列回路に
定電流を供給させて成ることを特徴とする過充電
防止回路。
1 Equipped with an inverter that operates using a DC output obtained by rectifying an AC power source as a driving power source, the voltage induced in the output winding of the oscillation transformer of this inverter is rectified to charge a secondary battery, and the voltage of the AC power source is different. In this case, the oscillation frequency of the inverter and the peak value of the collector current flowing through the switching transistor of this inverter are controlled to be constant,
An overcharge prevention circuit used in a charger equipped with a switching control means for charging a secondary battery with a constant charging current, the circuit comprising: a first constant current that supplies a first constant current to the secondary battery via a resistor; a constant current supply means, a second constant current supplying means for bypassing the starting current supplied to the transistor of the inverter and supplying a second constant current larger than the first constant current to the series circuit consisting of the secondary battery and the resistor; A series circuit comprising a constant current supply means and a charge completion detection means for detecting the completion of charge of the secondary battery from the voltage across the series circuit, and a first constant current is supplied from the first constant current supply means. The charging completion detection means detects from the voltage across the circuit that the secondary battery has been charged to a first predetermined voltage indicating completion of charging, and at this time, the first constant current supply means supplies a constant current to the series circuit. At the same time, the second constant current means supplies a constant current to the series circuit, and the voltage across the series circuit to which the second constant current is supplied from the second constant current supply means is 2. The charging completion detection means detects that the voltage of the next battery has decreased to a second predetermined voltage lower than the first predetermined value, and stops the supply of constant current to the series circuit by the second constant current means. In addition, an overcharge prevention circuit characterized in that a first constant current supply means supplies a constant current to the series circuit.
JP57005143A 1982-01-15 1982-01-15 Overcharge preventing circuit Granted JPS58123332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57005143A JPS58123332A (en) 1982-01-15 1982-01-15 Overcharge preventing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57005143A JPS58123332A (en) 1982-01-15 1982-01-15 Overcharge preventing circuit

Publications (2)

Publication Number Publication Date
JPS58123332A JPS58123332A (en) 1983-07-22
JPH0154942B2 true JPH0154942B2 (en) 1989-11-21

Family

ID=11603074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57005143A Granted JPS58123332A (en) 1982-01-15 1982-01-15 Overcharge preventing circuit

Country Status (1)

Country Link
JP (1) JPS58123332A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932329A (en) * 1982-08-14 1984-02-21 松下電工株式会社 Charging circuit
JPS6122731A (en) * 1984-07-10 1986-01-31 松下電工株式会社 Charger

Also Published As

Publication number Publication date
JPS58123332A (en) 1983-07-22

Similar Documents

Publication Publication Date Title
JPH0154942B2 (en)
US6788503B2 (en) Protecting circuit against short-circuit of output terminal of AC adapter
JP3267730B2 (en) Automatic voltage switching power supply circuit
JPS62107641A (en) Charge control circuit
KR920009671B1 (en) Charging control circuit of battery
JP3287039B2 (en) Switching power supply
KR830002001Y1 (en) Battery charge / discharge control circuit with improved discharge characteristics
KR200178919Y1 (en) High voltage circuit for ozone capacity proceed
JPH0866007A (en) Switching power supply
JPH082151B2 (en) Charging circuit
JPS6220773B2 (en)
JPS6319733Y2 (en)
JPH073804Y2 (en) Rechargeable battery charger
JPH06269135A (en) Charging circuit
JPS6362990B2 (en)
JPH049022B2 (en)
JPH0389815A (en) Battery charger
JPH0667128B2 (en) Charging circuit
JPS6335135A (en) Charging control circuit of charging type cleaner
JPH0714259B2 (en) Charging circuit
JPH0755029B2 (en) Charger
JPS608624A (en) Ignition device with timer circuit
JPH0714262B2 (en) Charging circuit
JPH06284587A (en) Charging apparatus
JPH0670461A (en) Inverter power supply circuit