JPH0154487B2 - - Google Patents

Info

Publication number
JPH0154487B2
JPH0154487B2 JP56078075A JP7807581A JPH0154487B2 JP H0154487 B2 JPH0154487 B2 JP H0154487B2 JP 56078075 A JP56078075 A JP 56078075A JP 7807581 A JP7807581 A JP 7807581A JP H0154487 B2 JPH0154487 B2 JP H0154487B2
Authority
JP
Japan
Prior art keywords
formwork
steel pipe
pipe pile
paint
formworks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56078075A
Other languages
Japanese (ja)
Other versions
JPS57193618A (en
Inventor
Tatsuaki Takeuchi
Yoshiaki Shimizu
Norio Shoji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP7807581A priority Critical patent/JPS57193618A/en
Publication of JPS57193618A publication Critical patent/JPS57193618A/en
Publication of JPH0154487B2 publication Critical patent/JPH0154487B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/0017Means for protecting offshore constructions
    • E02B17/0026Means for protecting offshore constructions against corrosion

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は海洋施設等支持用鋼管杭の防食工法に
関するもので、鋼管杭の外面に現地にて効率良く
しかも低コストで防食性に優れた被覆を施すこと
ができる方法を提供せんとするものである。 橋梁、シーバース、港湾施設等の海洋施設は一
般に海底に打設された鋼管杭に支持された構造と
なつているが、この支持用の鋼管杭中、特に潮の
干満により海面に浮沈する部分(以下干満帯と称
す)や波の飛沫等をかぶる部分(以下飛沫帯と称
す)は海水の影響で腐食し易く、このためこの部
分に防食被覆を施すという対策が採られている。
このような防食被覆の方法として、従来、杭の
周囲に現場でコンクリートを打設する工法、補
強材入りの合成樹脂製型枠(FRP型枠)によつ
てモルタルを打設する工法、杭の周囲に塗料を
塗装する工法が主として採用されている。このう
ち、の方法は、杭の周囲に型枠をめぐらしてこ
れにコンクリートを打設し、コンクリート硬化
後、型枠を取外すというものであるが、この工法
で得られるコンクリート被覆はその材質自体の防
食性能に問題があるだけでなく、クラツクが発生
し易く、このため厚みを相当大きなものとしなけ
ればならないという欠点があり、また施工の稚拙
が防食性能に大きな影響を及ぼすという難点があ
る。また前記の方法は鋼管杭の外周に補強材入
りの合成樹脂製の型枠を取付け、これにモルタル
を打設し、型枠自体とその内側のモルタルによつ
て防食被覆を構成せしめるようにしたものであ
り、モルタルの現場打設を定型、簡易化し、型枠
の耐食性、耐水性により、モルタル厚の低減を図
るようにしたものである。しかし、防食被覆の一
部を構成する型枠は合成樹脂製のものであるため
耐衝撃性が充分とは言えず、また型枠自体も決し
て安価なものではないためコスト高を招くという
難点がある。さらに前記の方法は、一般に塗料
をハケ、ローラ、スプレー等で杭表面に塗布する
ものであるが、この方式では、ある程度塗り重ね
ても1mm厚以上の塗膜を形成させることが難し
く、このため杭表面に達するような損傷を容易に
受けてしまうという欠点がある。また、防食被覆
は水中に没した部分についても行う必要がある
が、上記の方式では水中での塗布作業は容易でな
く、また水中硬化型塗料を用いて水中で塗布でき
たとしても、施工中、波浪等の影響により塗料が
水に流され易く、適正な被覆部の確保が難しい。 本発明は以上のような従来法の欠点に鑑み創案
されたもので、その基本的特徴とするところは次
の通りである。 すなわち、割型の型枠の内面に予め離型フイル
ムを設けておき、この型枠を、スペーサによつて
鋼管杭外周面との間で所定の空隙を有せしめるよ
うにして防食加工すべき鋼管杭の外周面に装着す
る。そして、この際、型枠の下部と鋼管杭外周面
とが、上部シール材が厚肉で下部シール材が薄肉
であり、且つ両シール材間の環状段部が型枠構成
部材で支持されるような圧縮型の弾性シール部材
でシールされるようにする。そしてこのような型
枠装着後、前記空隙に型枠下部から比重が1.5〜
2.0の液状の硬化性防食塗料を注入充填し、該防
食塗料硬化後、防食塗膜に接着した離型フイルム
から型枠本体を剥離させることにより鋼管杭から
型枠を取り外すものであり、このようにすること
により鋼管杭の外周面に効率良く、しかも強靭な
防食被覆を施すことができる。 以下本発明の基本構成の概略を第1図イないし
ハに基づいて説明すると、図は、鋼管杭1の干満
帯及び飛沫帯部分を本発明法によつて防食加工す
る場合を示すもので、aは水面を示す。本発明を
実施するには、まず構造物が既設のものである場
合には、杭表面に付着している貝殻、錆等を削り
落し、さらにジエツトタガネ、サンダー等のパワ
ーツールで仕上げた後、被覆を施す部分の外周
に、内面に離型フイルムを設けた割型の型枠2,
2を装着する。この型枠2,2は鋼、アルミニウ
ム等の軽金属、プラスチツクまたはFRP等によ
り製作されたもので、2つ割り、3つ割り等に分
割され、杭外周に装着された状態で各々がボルト
等により連結され一体的な筒状体に構成せしめら
れる。しかして、この際型枠2,2はスペーサ
(図示せず)によつて鋼管杭1外周面との間で所
定幅の空隙Sを有するようにして装着される。こ
れは鋼管杭1が真円度が悪く扁平していたり或い
はたわんでいたりしている場合でも前記空隙の幅
を一定に保持し、もつて形成される塗膜厚を均一
にせんとするためである。本発明法が目標とする
塗膜厚は10mm程度であるが、鋼管杭は一般にその
外径が1000mm(外径許容差:±10mm)以上のもの
が多く、しかもこのような鋼管杭に対して3000〜
5000mm程度の長さ防食被覆する必要があるため、
鋼管杭許容差内の形状不良によつても前記空隙S
の幅は極めて大きな影響を受けるからである。ま
た前記型枠2,2が装着された状態で、その下部
と鋼管杭1外周面とは圧縮型の弾性シール部材3
によりシールされた状態となる。なお、このシー
ル部は後述するような特定の構成を有している。
この弾性シール部材3は鋼管杭1外周面或いは型
枠2,2自体に予め設けられ、型枠2,2の装着
により圧縮され、塗料漏出を防止するための確実
なシールを形成する。なお、このようにして鋼管
杭1に装着された型枠2,2は、前記スペーサ及
びシール部材3により杭長手方向で保持された状
態にある。 この状態で前記空隙Sに硬化性の防食塗料を充
填する。即ち型枠2の下部には防食塗料の注入口
4が設けられており、防食塗料8はこの注入口4
から注入される。これは本工法で型枠2,2の上
部又は中間部の位置から防食塗料を注入すると、
空気が混入して塗膜に空気泡等が形成されるから
であり、このため防食塗料8を底部から押し上げ
るようにして注入するものである。 上記防食塗料としては、比重が1.5〜2.0程度の
ものが用いられる。通常型枠はその下部が没水し
た状態で取付けられるため、型枠2,2内には水
が残留することになる。そこで本発明では、比重
の大きい防食塗料を用い、この防食塗料8を注入
することにより、型枠2,2内の水を押し上げさ
せ、型枠2,2上端からオーバーフローせしめる
ことにより型枠2,2内の水を完全に排除して被
覆層を形成せしめることができる。 この防食塗料としては、常温硬化性の塗料が好
ましく、例えば特願昭56−17523号に示される如
き、分子量350〜420の液状ビスフエノールA型エ
ポキシ樹脂、ビスフエノールF型エポキシ樹脂、
脂肪族エポキシ樹脂のうち1種又は2種以上から
なるエポキシ樹脂と、タルク、バライト、炭酸カ
ルシウムのうち1種又は2種以上からなり必要に
より着色顔料を添加した充填剤と、前記エポキシ
樹脂を硬化せしめる水中硬化性の硬化剤とを混和
し、全体の比重を1.3以上としたものや、さらに
これに脂肪族ジグリシジルエーテル及び/又は芳
香族ジグリシジルエーテルからなる反希釈剤を混
和し、全体の比重を1.3以上としたものが採用さ
れる。 第1図ロにおいて、5は注入口4に接続された
塗装ホース、6は塗料容器、7はポンプであり、
ポンプ7にて塗料容器6から防食塗料8が空隙S
に圧送され、防食塗料8液面が型枠2,2上端に
達したところで充填作業が完了する。次いで防食
塗料8の硬化後、型枠2,2を取外すものであ
り、これによつて第1図ハに示すように前記空隙
Sの幅に対応した厚みを有する塗膜8′が形成せ
しめられる。 このようにして得られる防食塗料8による塗膜
8′は前記空隙S幅を調整することにより任意な
厚みに構成せしめることが可能である。 第2図ないし第7図は本発明法の実施例を示す
もので、使用される型枠2,2は2つ割りのもの
であり、薄鋼板あるいはFRP、塩化ビニル、ポ
リエチレン等の合成樹脂により構成される。この
型枠2,2は再使用に耐えるための適当な強度を
有する必要がある。例えば、FRP型枠の場合は
5mm程度の厚みを有するとともに、補強用リブ9
を周方向に設けたものが使用される。また型枠
2,2はその各接合部にフランジ10,10を有
し、該フランジ10,10を介してボルトナツト
で締結し得るようになつている。また前記型枠
2,2の下部が位置する杭周面には予め弾性シー
ル部材3が巻き付けられている。この弾性シール
部材3は上部の部材31と下部の部材32の上下
2段のシール構造となつており、両部材とも圧縮
可能な軟質発泡ゴム又は軟質プラスチツク等によ
り構成されている。ただ、上部の部材31は厚肉
(例えば空隙の幅が10mmの場合、15〜30mm)に構
成され、これが圧縮を受けることにより腐食等に
より生じた杭表面の凹凸に十分なじむようにして
いる。これに対して部材32は薄肉(3〜5mm)
に構成され、このような2段シール構造により確
実なシールを行うようになつている。しかして、
上記した割型の型枠2,2は、第2図に示すよう
にその下部が前記弾性シール部材3の位置にくる
ようにして杭外周に装着され、その対向するフラ
ンジ10,10各間にゴム又はプラスチツク製の
弾性シール部材11,11が介装され、ボルト1
2及びナツト13で締結固定せしめられる。また
この状態で前記弾性シール部材3は型枠2,2に
よつて圧縮され、確実なシールが形成される。 すなわち、型枠の空隙内に注入すべきエポキシ
樹脂等の塗料は粘性が低いためシールからの漏れ
を生じ易く、加えて、鋼管杭の防食加工部の長さ
は通常3000〜5000mm程度の長さがあり、この長さ
分の空隙内に充填される塗料の荷重が下部のシー
ル部にかかり、しかも空隙内には塗料を高圧で圧
入する必要があることから、型枠下部のシールは
確実になされる必要がある。 この点本発明では、厚肉の部材31と薄肉の部
材32とからなる上下2段のシール構造により確
実なシールが得られる。すなわち、このシール構
造では弾性シール部材3、とりわけ上部の厚肉の
部材31が大きな圧縮を受けることにより堅固な
シールが形成されるとともに、第5図に示される
ように、型枠本体下部の突部23(環状)が部材
31と32間の環状段部30を介して部材31を
支持することになる。この結果、部材31は塗料
の荷重に抗して突部23に支持され、そのシール
機能を維持することができるだけでなく、注入さ
れた塗料の荷重及び注入時の圧力により部材31
が上下方向で圧縮されるため、部材31と杭外面
及び型枠内面との面圧が高まり、これにより非常
に高度のシール性が確保できる。 なお、型枠2,2の上部はシールされておら
ず、防食塗料を注入する際に空気抜き、或いは水
抜きが行えるようになつている。 また型枠2,2がこのようにして装着された状
態で、型枠2,2の内周面と鋼管杭1外周面間に
は空隙Sが形成されるが、この空隙幅を杭の周方
向及び長手方向で一定に保つためスペーサ14が
使用される。即ち型枠2,2の周方向さらには長
手方向の適当な間隔をおいた位置に雌ネジ孔15
及び固定ナツト16を設け、これらにボルト17
を螺挿して、その先端を所望の間隙分型枠2,2
内側に突出させて杭表面に突接せしめるようにし
たものであり、これらがスペーサ14を構成して
いる。なお、ボルト17にはナツト18を取付
け、固定ナツト16とボルト17間のシールを確
実にしている。このスペーサ14によるクリアラ
ンスの保持は、例えば外径600mmの鋼管杭を3000
mmの長さに亘つて型枠2,2で覆う場合、型枠
2,2の中央部の周方向4ケ所程度で行えば十分
であるが、外径1000mm以上の杭となると、より多
くの箇所で行う必要があり、加えて型枠の長さが
大きい程長手方向の複数箇所でのクリアランスの
保持が必要となる。 なお、このスペーサ14は、必ずしも上記ボル
ト17等により構成せしめる必要はないが、ボル
トで構成せしめる場合には、第8図に示すように
ボルト先端部172を硬質の合成樹脂等で構成
し、これをバイオネツト構造にしてボルト本体1
71から着脱できるようにし、作業完了後はボル
ト本体171のみを取外すようにしてもよい。 また杭表面の所々に予め防食塗料と同材質或い
は同類のスペーサを接着し、しかる後型枠を取付
け空隙を形成させるようにしてもよい。 また、前記型枠2,2内周面には第6図に示す
ように予め離型フイルム19が設けられる。一般
に本工法に用いるような防食塗料は50Kg/cm2以上
の付着強度があり、しかも型枠面積が大きい(2
〜3m2以上)ため、型枠2,2内側に直接防食塗
料を注入した場合、塗料硬化後の型枠2,2の取
外しが極めて困難となる。このため本発明では、
型枠内面に予め離型フイルム19を設けておき、
この離型フイルム19を塗膜に接着させるように
し、型枠をこの離型フイルム19から剥離させる
ことにより離型させるようにしたものである。こ
の離型フイルム19としては、例えばポリエチレ
ン、ポリエステル等の合成樹脂フイルムが用いら
れ、このような場合、フイルムはシワの生じない
程度の剛性を必要とし、このため、ある程度の厚
みを有するもの(例えばポリエステルでは0.2〜
0.3mm程度)が使用される。そしてこのような離
型フイルム19は例えば型枠2,2の内面周方向
に適宜間隔をおいて貼着された両面接着テープ2
0等を介して型枠2,2の内周面に予め貼着せし
められる。 そして、上記したように型枠2,2が装着され
た状態で、型枠2,2下部の注入口4から空隙S
内に防食塗料8が注入され、その液面が型枠2,
2の上端に達したところで注入を止める。そして
防食塗料8を硬化させ、硬化後、前記型枠2,2
を取り外し、鋼管杭1の外面に防食被覆を形成せ
しめる。この離型の際、離型フイルム19は塗膜
8′に強固に付着しているので、型枠2,2は離
型フイルム19から剥すだけで足り、容易に取り
外すことができる。なお、この離型をより容易な
らしめるため、第7図で示すように対向する一方
のフランジ10にのみボルト穴21を設け、この
ボルト穴21にボルト22をねじ込み、その先端
により他方のフランジ10を押圧し、両型枠2,
2を引離すような力を与えるようにすることが可
能である。 なお、上記のようにして離型フイルム19を使
用することにより、得られる塗膜の表面を極めて
平滑なものとすることができる。 また前記スペーサ14が第8図に示すようなも
のである場合には、型枠2,2の取外しの際にボ
ルト本体171を回転させ、これをボルト先端1
72から離脱させるものであり、これによりボル
ト先端172はそのまま被覆に埋め込まれた状態
となる。またスペーサ14が第4図に示すような
場合には、型枠2,2の取外しの際にボルト17
を回転させて引き抜くものであるが、この場合に
はボルト17を引き抜いた後の塗膜8′には穴が
残ることになり、従つて、この穴は型枠2,2取
外しの後、パテ状の塗料により埋められる。 下記の表は、本発明工法によつて現地施工した
防食被覆の5年間暴露試験の結果を従来法のもの
と比較して示したものである。なお、本発明工法
では防食塗料として前記した特願昭56−17523号
に示される如き塗料を使用した。
The present invention relates to a corrosion protection method for steel pipe piles for supporting marine facilities, etc., and it is an object of the present invention to provide a method by which a coating with excellent corrosion resistance can be applied on-site to the outer surface of a steel pipe pile efficiently and at low cost. be. Marine facilities such as bridges, sea berths, and port facilities are generally supported by steel pipe piles driven into the seabed. The tidal zone (hereinafter referred to as the tidal zone) and the area that is exposed to wave spray (hereinafter referred to as the splash zone) are susceptible to corrosion due to the influence of seawater, and for this reason, a countermeasure is taken to apply an anti-corrosion coating to this area.
Conventionally, methods for providing such anti-corrosion coatings include pouring concrete on site around the piles, pouring mortar using synthetic resin formwork containing reinforcing material (FRP formwork), and placing concrete around the piles on-site. The method of painting the surrounding area with paint is mainly used. Among these methods, method (2) involves placing a formwork around the pile, pouring concrete into it, and removing the formwork after the concrete has hardened, but the concrete covering obtained by this method is similar to the material itself. Not only does it have a problem with anti-corrosion performance, but it also has the drawback of being prone to cracking, which requires a fairly large thickness, and also has the disadvantage that poor construction can have a large effect on anti-corrosion performance. In addition, in the method described above, a synthetic resin formwork containing reinforcing material is attached to the outer periphery of the steel pipe pile, mortar is poured into this, and the formwork itself and the mortar inside the formwork form an anti-corrosion coating. It is designed to simplify and standardize the on-site placement of mortar, and to reduce the mortar thickness due to the corrosion resistance and water resistance of the formwork. However, since the formwork that forms part of the anti-corrosion coating is made of synthetic resin, it cannot be said to have sufficient impact resistance, and the formwork itself is not cheap, resulting in high costs. be. Furthermore, in the method described above, paint is generally applied to the pile surface using a brush, roller, spray, etc., but with this method, it is difficult to form a coating film with a thickness of 1 mm or more even after applying several coats. The disadvantage is that it is easily susceptible to damage that reaches the pile surface. In addition, it is necessary to apply anti-corrosion coating to parts submerged in water, but it is not easy to apply the coating underwater with the above method, and even if it is possible to apply it underwater using an underwater curing type paint, it is difficult to apply it underwater. The paint is easily washed away by water due to the effects of waves, etc., making it difficult to ensure proper coverage. The present invention was devised in view of the drawbacks of the conventional methods as described above, and its basic features are as follows. That is, a release film is provided in advance on the inner surface of a split formwork, and a predetermined gap is created between the formwork and the outer circumferential surface of the steel pipe pile using spacers to form the steel pipe to be anti-corrosion treated. Attach to the outer surface of the pile. In this case, the lower part of the formwork and the outer peripheral surface of the steel pipe pile are such that the upper sealing material is thick and the lower sealing material is thin, and the annular step between both sealing materials is supported by the formwork constituent members. The seal should be sealed with a compression type elastic sealing member such as After installing such a formwork, a specific gravity of 1.5~1.5 is added to the void from the bottom of the formwork.
The formwork is removed from the steel pipe pile by injecting and filling a liquid curable anticorrosive paint of 2.0. By doing so, it is possible to efficiently and efficiently apply a strong anti-corrosion coating to the outer peripheral surface of the steel pipe pile. The outline of the basic structure of the present invention will be explained below based on FIGS. a indicates the water surface. To carry out the present invention, first, if the structure is an existing structure, scrape off shells, rust, etc. adhering to the surface of the pile, finish it with a power tool such as a jet chisel or sander, and then cover the pile. A split mold frame 2 with a release film provided on the inner surface around the outer periphery of the part to be applied.
Attach 2. The formwork 2, 2 is made of light metal such as steel, aluminum, plastic or FRP, etc., and is divided into two or three parts, each of which is attached to the outer periphery of the pile using bolts, etc. They are connected to form an integral cylindrical body. At this time, the formworks 2, 2 are mounted so as to have a gap S of a predetermined width between them and the outer peripheral surface of the steel pipe pile 1 using spacers (not shown). This is to maintain the width of the gap constant even if the steel pipe pile 1 is flat or bent due to poor roundness, and to make the thickness of the coating film uniform. be. The coating thickness targeted by the method of the present invention is approximately 10 mm, but steel pipe piles generally have an outer diameter of 1000 mm or more (outer diameter tolerance: ±10 mm); 3000~
Since it is necessary to cover a length of about 5000 mm with anti-corrosion coating,
Even if the shape of the steel pipe pile is defective within the tolerance, the void S
This is because the width of the field is extremely affected. In addition, when the formworks 2, 2 are installed, the lower part thereof and the outer circumferential surface of the steel pipe pile 1 are connected to the compression type elastic seal member 3.
It is in a sealed state. Note that this seal portion has a specific configuration as described later.
This elastic sealing member 3 is provided in advance on the outer peripheral surface of the steel pipe pile 1 or on the formworks 2, 2 themselves, and is compressed when the formworks 2, 2 are attached to form a reliable seal for preventing paint leakage. The forms 2, 2 mounted on the steel pipe pile 1 in this manner are held in the longitudinal direction of the pile by the spacer and seal member 3. In this state, the void S is filled with a curable anticorrosive paint. That is, an injection port 4 for the anticorrosion paint is provided at the bottom of the formwork 2, and the anticorrosion paint 8 is poured into the injection port 4.
injected from. This can be solved by injecting anti-corrosion paint from the top or middle of the formworks 2, 2 using this construction method.
This is because air gets mixed in and forms air bubbles in the coating film, and for this reason, the anticorrosive coating 8 is injected by pushing it up from the bottom. As the above-mentioned anticorrosive paint, one having a specific gravity of about 1.5 to 2.0 is used. Since the formwork is usually installed with its lower part submerged in water, water will remain in the formworks 2, 2. Therefore, in the present invention, an anti-corrosive paint with a large specific gravity is used, and by injecting this anti-corrosive paint 8, the water in the formworks 2, 2 is pushed up and overflowed from the upper ends of the formworks 2, 2. The coating layer can be formed by completely eliminating the water in 2. The anticorrosive paint is preferably a paint that hardens at room temperature, such as liquid bisphenol A type epoxy resin, bisphenol F type epoxy resin with a molecular weight of 350 to 420, as shown in Japanese Patent Application No. 56-17523,
An epoxy resin made of one or more aliphatic epoxy resins, a filler made of one or more of talc, barite, and calcium carbonate, to which a coloring pigment is added if necessary, and the epoxy resin cured. A water-curing curing agent is mixed with the water-curable curing agent to give a total specific gravity of 1.3 or more, and an anti-diluent consisting of an aliphatic diglycidyl ether and/or an aromatic diglycidyl ether is further mixed therewith to give a total specific gravity of 1.3 or more. Those with a specific gravity of 1.3 or higher are used. In FIG. 1B, 5 is a paint hose connected to the injection port 4, 6 is a paint container, and 7 is a pump.
The anticorrosive paint 8 is pumped from the paint container 6 into the air gap S by the pump 7.
The filling operation is completed when the liquid level of the anticorrosive paint 8 reaches the upper end of the molds 2, 2. Next, after the anticorrosive coating 8 has hardened, the molds 2, 2 are removed, thereby forming a coating film 8' having a thickness corresponding to the width of the gap S, as shown in FIG. 1C. . The coating film 8' made of the anticorrosive paint 8 thus obtained can be configured to have an arbitrary thickness by adjusting the width of the gap S. Figures 2 to 7 show examples of the method of the present invention, in which the formworks 2 and 2 used are divided into two parts, and are made of thin steel plates or synthetic resins such as FRP, vinyl chloride, and polyethylene. configured. The formworks 2, 2 need to have appropriate strength to withstand reuse. For example, in the case of FRP formwork, it has a thickness of about 5 mm and reinforcing ribs 9
A type with a circumferential direction is used. Further, the formworks 2, 2 have flanges 10, 10 at their respective joints, and can be fastened together with bolts and nuts via the flanges 10, 10. Further, an elastic sealing member 3 is wrapped in advance around the peripheral surface of the pile where the lower portions of the forms 2, 2 are located. The elastic sealing member 3 has a two-stage sealing structure consisting of an upper member 31 and a lower member 32, both of which are made of compressible soft foam rubber, soft plastic, or the like. However, the upper member 31 is constructed with a thick wall (for example, 15 to 30 mm when the width of the gap is 10 mm), so that it can sufficiently conform to the unevenness of the pile surface caused by corrosion etc. when subjected to compression. In contrast, member 32 is thin (3 to 5 mm)
This two-stage seal structure ensures reliable sealing. However,
The above-described split formworks 2, 2 are attached to the outer periphery of the pile with their lower portions located at the position of the elastic seal member 3, as shown in FIG. 2, and between the opposing flanges 10, 10. Elastic seal members 11, 11 made of rubber or plastic are interposed, and the bolt 1
2 and a nut 13. Further, in this state, the elastic seal member 3 is compressed by the molds 2, 2, and a reliable seal is formed. In other words, the viscosity of paints such as epoxy resins that must be injected into the voids of the formwork is low, so they tend to leak from the seals, and in addition, the length of the anticorrosion-treated part of steel pipe piles is usually about 3000 to 5000 mm. The load of the paint filled into the gap of this length is applied to the lower seal part, and the paint needs to be press-fitted into the gap under high pressure, so the seal at the bottom of the formwork cannot be reliably sealed. needs to be done. In this regard, in the present invention, a reliable seal can be obtained by the upper and lower two-stage seal structure consisting of the thick member 31 and the thin member 32. That is, in this seal structure, the elastic seal member 3, especially the upper thick member 31, is subjected to large compression to form a strong seal, and as shown in FIG. The portion 23 (annular) supports the member 31 via the annular stepped portion 30 between the members 31 and 32. As a result, the member 31 is supported by the protrusion 23 against the load of the paint, and not only can its sealing function be maintained, but also the load of the injected paint and the pressure at the time of injection can cause the member 31 to
is compressed in the vertical direction, the surface pressure between the member 31 and the outer surface of the pile and the inner surface of the formwork increases, thereby ensuring a very high degree of sealing performance. Note that the upper parts of the molds 2, 2 are not sealed, so that air or water can be removed when injecting the anticorrosion paint. In addition, with the formworks 2, 2 installed in this manner, a gap S is formed between the inner peripheral surfaces of the formworks 2, 2 and the outer peripheral surface of the steel pipe pile 1. Spacers 14 are used to maintain constant direction and length. That is, female screw holes 15 are provided at appropriate intervals in the circumferential direction and also in the longitudinal direction of the formworks 2, 2.
and fixing nuts 16 are provided, and bolts 17 are attached to these.
Screw in and insert the tip into the formwork 2, 2 for the desired gap.
These are made to protrude inward and come into contact with the pile surface, and these constitute the spacer 14. Note that a nut 18 is attached to the bolt 17 to ensure a seal between the fixing nut 16 and the bolt 17. Maintaining the clearance by this spacer 14 can, for example, hold a steel pipe pile with an outer diameter of 600 mm
When covering a pile with formworks 2, 2 over a length of mm, it is sufficient to cover the piles at about 4 locations in the circumferential direction at the center of formworks 2, 2, but for piles with an outer diameter of 1000mm or more, more In addition, the longer the formwork is, the more clearance must be maintained at multiple locations in the longitudinal direction. Note that this spacer 14 does not necessarily have to be made of the bolt 17, etc., but if it is made of a bolt, the bolt tip 172 is made of hard synthetic resin or the like as shown in FIG. The bolt body 1 is made into a bayonet structure.
71, and only the bolt body 171 may be removed after the work is completed. Alternatively, spacers made of the same material or similar to the anticorrosive paint may be adhered in advance to some places on the surface of the pile, and then the formwork may be attached to form the voids. Furthermore, a release film 19 is provided in advance on the inner peripheral surfaces of the molds 2, 2, as shown in FIG. Generally, the anticorrosive paint used in this method has an adhesive strength of 50 kg/cm2 or more , and the formwork area is large (2
3 m2 or more), therefore, if the anticorrosive paint is injected directly inside the formworks 2, 2, it will be extremely difficult to remove the formworks 2, 2 after the paint has hardened. Therefore, in the present invention,
A release film 19 is provided in advance on the inner surface of the mold,
This mold release film 19 is adhered to the coating film, and the mold is released by peeling the mold frame from this mold release film 19. As the release film 19, for example, a synthetic resin film such as polyethylene or polyester is used. In such a case, the film needs to have enough rigidity to prevent wrinkles, and for this reason, a film having a certain thickness (for example, 0.2~ for polyester
0.3mm) is used. Such a release film 19 is, for example, a double-sided adhesive tape 2 attached at appropriate intervals in the inner circumferential direction of the molds 2, 2.
It is pasted in advance to the inner circumferential surfaces of the formworks 2, 2 via 0 or the like. Then, with the formworks 2, 2 installed as described above, the air gap S is opened from the injection port 4 at the bottom of the formworks 2, 2.
The anticorrosion paint 8 is injected into the mold, and the liquid level reaches the formwork 2,
Stop the injection when it reaches the top of 2. Then, the anticorrosion paint 8 is cured, and after curing, the formworks 2, 2
is removed, and an anti-corrosion coating is formed on the outer surface of the steel pipe pile 1. During this mold release, since the mold release film 19 is firmly attached to the coating film 8', the molds 2, 2 can be easily removed by simply peeling them off from the mold release film 19. In order to make this mold release easier, bolt holes 21 are provided only in one of the opposing flanges 10 as shown in FIG. Press both formworks 2,
It is possible to apply a force that separates the two. Note that by using the release film 19 as described above, the surface of the resulting coating film can be made extremely smooth. Further, when the spacer 14 is as shown in FIG. 8, the bolt body 171 is rotated when removing the formworks 2,
72, so that the bolt tip 172 remains embedded in the coating. In addition, if the spacer 14 is as shown in FIG.
However, in this case, a hole will remain in the coating film 8' after the bolt 17 is pulled out, and this hole will be filled with putty after the formwork 2, 2 is removed. Filled with paint. The table below shows the results of a 5-year exposure test of anti-corrosion coatings applied on-site using the method of the present invention in comparison with those using conventional methods. In the method of the present invention, a paint as shown in the above-mentioned Japanese Patent Application No. 17523/1984 was used as an anticorrosive paint.

【表】【table】

【表】 以上の表からも明らかなように本発明工法によ
れば強靭かつ耐久性のある防食被覆を得ることが
できる。 以上述べた本発明によれば、海洋構造物等支持
用の鋼管杭の外面に効率良く、しかも比較的低コ
ストで防食性に優れた被覆を施すことができる。
特に、本発明では、 割型の型枠を用いることにより塗膜を形成す
るようにし、比較的厚い塗膜を1回の工程で効
率的に形成できる。 型枠に離型フイルムを用いるため施工後型枠
を容易に取り外すことができ、作業性が良い。 型枠の下部に堅固なシールが形成されるた
め、塗料の流出を防止でき、良好な品質の塗膜
を得ることができる。 塗料として所定の比重のものを用い、しかも
これを型枠の下部から空隙内に注入するため、
塗膜への空気の巻き込みや水の混入を防止で
き、優れた品質の塗膜が得られる。 等の長所があり、これらにより、従来のハケ塗り
やローラ塗り等による方式に較べ比較的厚く且つ
優れた品質の防食塗膜を効率的且つ低コストで施
工することができる。
[Table] As is clear from the above table, the method of the present invention makes it possible to obtain a tough and durable anti-corrosion coating. According to the present invention described above, it is possible to efficiently coat the outer surface of a steel pipe pile for supporting marine structures and the like with excellent corrosion resistance at a relatively low cost.
In particular, in the present invention, the coating film is formed by using a split mold, and a relatively thick coating film can be efficiently formed in one step. Since a release film is used for the formwork, the formwork can be easily removed after construction, resulting in good workability. A strong seal is formed at the bottom of the formwork, which prevents paint from flowing out and provides a good quality paint film. A paint with a specified specific gravity is used, and it is injected into the void from the bottom of the formwork.
This prevents air from getting into the paint film and water from entering the film, resulting in a paint film of excellent quality. Due to these advantages, it is possible to apply an anticorrosion coating film that is relatively thick and of excellent quality efficiently and at low cost compared to conventional methods such as brush coating or roller coating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図イないしハは本発明法の基本構成を段階
的に示す説明図である。第2図ないし第7図は本
発明法のより具体的実施例を示すもので、第2図
は型枠を装着した状態で示す一部切欠側面図、第
3図は同じく平面図、第4図はスペーサ部分の縦
断面図、第5図は下部シール構造の縦断面図、第
6図は離型のための諸構造を示す説明図、第7図
は離型方法を具体的に示す説明図である。第8図
はスペーサ部分の他の実施例を示す縦断面図であ
る。 図において、1は鋼管杭、2,2は型枠、3は
弾性シール部材、4は注入口、8は塗料、8′は
塗膜、14はスペーサ、19は離型フイルム、3
0は環状段部、31,32は部材を各示す。
FIGS. 1A to 1C are explanatory diagrams showing step by step the basic structure of the method of the present invention. Figures 2 to 7 show more specific embodiments of the method of the present invention, in which Figure 2 is a partially cutaway side view showing the formwork installed, Figure 3 is a plan view, and Figure 4 is a plan view. The figure is a vertical cross-sectional view of the spacer part, Figure 5 is a vertical cross-sectional view of the lower seal structure, Figure 6 is an explanatory diagram showing various structures for mold release, and Figure 7 is an explanation specifically showing the mold release method. It is a diagram. FIG. 8 is a longitudinal sectional view showing another embodiment of the spacer portion. In the figure, 1 is a steel pipe pile, 2 and 2 are formworks, 3 is an elastic sealing member, 4 is an injection port, 8 is a paint, 8' is a coating film, 14 is a spacer, 19 is a release film, 3
0 indicates an annular step, and 31 and 32 indicate members.

Claims (1)

【特許請求の範囲】[Claims] 1 海洋構造物支持用鋼管杭の外面を防食加工す
る方法において、割型の型枠の内面に予め離型フ
イルムを設けておき、該型枠を、スペーサによつ
て鋼管杭外周面との間で所定の空隙を有せしめ、
且つその下部と鋼管杭外周面とを、上部シール材
が厚肉で下部シール材が薄肉であり、両シール材
間の環状段部が型枠構成部材で支持されるような
圧縮型の弾性シール部材でシールしつつ鋼管杭外
周に装着し、前記空隙に型枠下部から比重が1.5
〜2.0の液状の硬化性防食塗料を注入充填し、該
防食塗料硬化後、防食塗膜に接着した離型フイル
ムから型枠本体を剥離させることにより鋼管杭か
ら型枠を取り外し、鋼管杭外面に塗膜を形成せし
めることを特徴とする海洋構造物の防食加工法。
1. In a method for anti-corrosion treatment of the outer surface of a steel pipe pile for supporting marine structures, a release film is provided in advance on the inner surface of a split formwork, and the formwork is separated from the outer circumferential surface of the steel pipe pile using a spacer. to have a predetermined gap,
In addition, the lower part and the outer circumferential surface of the steel pipe pile are connected by a compression type elastic seal in which the upper sealing material is thick, the lower sealing material is thin, and the annular step between both sealing materials is supported by the formwork component. It is attached to the outer periphery of the steel pipe pile while being sealed with a material, and a specific gravity of 1.5 is applied from the bottom of the formwork to the above gap.
~2.0 liquid hardening anticorrosive paint is injected and filled, and after the anticorrosive paint has hardened, the formwork is removed from the steel pipe pile by peeling off the formwork body from the release film adhered to the anticorrosion paint film, and the formwork is removed from the steel pipe pile on the outside surface of the steel pipe pile. A corrosion-proofing method for marine structures characterized by forming a coating film.
JP7807581A 1981-05-25 1981-05-25 Rust-proofing treatment of marine structure Granted JPS57193618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7807581A JPS57193618A (en) 1981-05-25 1981-05-25 Rust-proofing treatment of marine structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7807581A JPS57193618A (en) 1981-05-25 1981-05-25 Rust-proofing treatment of marine structure

Publications (2)

Publication Number Publication Date
JPS57193618A JPS57193618A (en) 1982-11-29
JPH0154487B2 true JPH0154487B2 (en) 1989-11-20

Family

ID=13651716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7807581A Granted JPS57193618A (en) 1981-05-25 1981-05-25 Rust-proofing treatment of marine structure

Country Status (1)

Country Link
JP (1) JPS57193618A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144427A (en) * 1984-01-09 1985-07-30 Nippon Kokan Kk <Nkk> Method and form for anticorrosive processing of support steel tubular pile for marine structure
JPS61274012A (en) * 1985-05-29 1986-12-04 Nishi Nippon Tokushu Kogyosho:Kk Reinforcing and corrosion prevention of marine steel structure
US4923336A (en) * 1988-07-19 1990-05-08 Schmidt Industries, Inc. Dock supporting apparatus
US5501299A (en) * 1994-01-05 1996-03-26 U.S. Elevator Process and apparatus for preventing corrosion of a hydraulic elevator cylinder
KR20040049982A (en) * 2002-12-06 2004-06-14 에스큐엔지니어링(주) Method and Structure for protecting corrosion of a steel pile for the use of habors
KR20090001336A (en) * 2007-06-29 2009-01-08 주식회사 포스코건설 The form for making of steel pile protecting lining and anti-corrosion method of steel pile using it

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132504A (en) * 1976-04-30 1977-11-07 Bridgestone Tire Co Ltd Method of pouring mortar forming antiicorrosive cover of steel pipe piles
JPS5380743A (en) * 1976-12-24 1978-07-17 Eru Fuotsukusu Dagurasu Corrosionnresistant outer covering body for construction and method of forming same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132504A (en) * 1976-04-30 1977-11-07 Bridgestone Tire Co Ltd Method of pouring mortar forming antiicorrosive cover of steel pipe piles
JPS5380743A (en) * 1976-12-24 1978-07-17 Eru Fuotsukusu Dagurasu Corrosionnresistant outer covering body for construction and method of forming same

Also Published As

Publication number Publication date
JPS57193618A (en) 1982-11-29

Similar Documents

Publication Publication Date Title
US4306821A (en) Method and apparatus for restoring piling
US5817200A (en) Surfacing of rehabilitating structures
US5226751A (en) Controlling the environment around a submerged pile or other structures by encapsulation, and treating and repairing the encapsulation area
US3370998A (en) Coating
JPH0154487B2 (en)
JP4299715B2 (en) Rehabilitation method for inner surface of manhole
JP2687096B2 (en) Manhole repair method and manhole repair material
JP3228524U (en) Anticorrosion steel pipe column
NZ517503A (en) Structure lining and sealing system
JP2000087354A (en) Pit and construction method thereof
JP4759683B1 (en) Method for reinforcing or reusing existing concrete U-shaped groove and structure used in the method
JP2726632B2 (en) How to connect precast reinforced concrete products
JP4227926B2 (en) Rehabilitation method for inner periphery of waterway
JP2571177B2 (en) Corrosion protection method for concrete floor and wall surface, and precast plate with anchor used for this method
JPS62194329A (en) Corrosion prevention work for steel sheet pile
JPS60144427A (en) Method and form for anticorrosive processing of support steel tubular pile for marine structure
JP2960623B2 (en) Installation method of molded finishing material for concrete structures
JPH09256633A (en) Cut-off plate for concrete placing separator, and method of constructing concrete structure by use of this cut-off plate
JP2642588B2 (en) Joint ditch and its construction method
JPH09125437A (en) Anticorrosive coating structure of steel material and anticorrosive execution method
JPS6350597B2 (en)
JPS6153490B2 (en)
JPS6044552B2 (en) Corrosion prevention method for steel pipe joints
JPS61112613A (en) Corrosion resistant covering process for ocean structure
JPH0358408B2 (en)