JPH0154399B2 - - Google Patents

Info

Publication number
JPH0154399B2
JPH0154399B2 JP55140132A JP14013280A JPH0154399B2 JP H0154399 B2 JPH0154399 B2 JP H0154399B2 JP 55140132 A JP55140132 A JP 55140132A JP 14013280 A JP14013280 A JP 14013280A JP H0154399 B2 JPH0154399 B2 JP H0154399B2
Authority
JP
Japan
Prior art keywords
coal
granulation
water slurry
heavy oil
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55140132A
Other languages
Japanese (ja)
Other versions
JPS5763392A (en
Inventor
Hayamizu Ito
Shuhei Tatsumi
Shoichi Takao
Noboru Sato
Jintaro Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP14013280A priority Critical patent/JPS5763392A/en
Publication of JPS5763392A publication Critical patent/JPS5763392A/en
Publication of JPH0154399B2 publication Critical patent/JPH0154399B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、石炭・水スラリーのPHを調整した
後、石炭・水スラリー中の石炭粒子をペレツト状
に効率よく造粒して、性状の改善された造粒炭と
して回収する石炭の造粒方法に関するものであ
る。 〔従来の技術〕 近年、石油供給の不安定化のため、石炭を有効
利用する技術開発が進められている。石炭の輸送
コストを下げるためには石炭をスラリー輸送する
のが効果的であり、このためスラリー輸送された
石炭粒子を効率よく回収する方法の開発が要求さ
れている現状である。 従来、産炭地から直接石炭をスラリー輸送する
方法が、アメリカ合衆国、ソビエト連邦で行わ
れ、文献にも報告されている。 また従来、特開昭53−70076号公報には、石炭
スラリーから石炭微粉を凝集し、灰が存在する場
合は、同時に灰を除去する方法において、上記ス
ラリーに鉱油留分などの油留分の水性乳濁液を添
加し、その混合物を撹拌し、生成した凝集物を除
去する方法が記載されている。 さらに特開昭56−67395号公報には、「ベルモン
ト炭を室温にて水に分散させ撹拌して石炭―水ス
ラリーを得、この混合物に対して所定量の造粒剤
を添加し、更にC重油を加えて造粒化させる。」
技術が記載されており、特開昭56−159292号公報
には、「プレアソール炭を室温にて水に分散させ
撹拌して、石炭−水スラリーを得、この混合物に
対して所定量の造粒化剤を添加し、更にC重油を
加えて造粒化させる。」技術が記載されている。 〔発明が解決しようとする課題〕 前述の従来の方法ではスラリー輸送後の石炭粒
子と水との分離は、遠心分離装置により行われて
おり、消費エネルギが大きい割には脱水後の石炭
粒子中の水分が多い(約25〜39%)などの不都合
点がある。 また特開昭53−70076号公報記載の方法におい
ては、油留分の水性乳濁液を添加しているので、
表面活性剤が油留分の乳濁のために使用され、石
炭粒子表面の改質作用が弱くなる。 さらに特開昭56−67395号公報および特開昭56
−159292号公報には、「石炭・水スラリーのPHを
6.5〜10に調整する」という技術思想は何ら記載
されていない。 石炭を微粉にして水中にスラリー化した場合、
一般にPH値としては、PH6.0近辺の値を示す。ま
た、石炭を輸送あるいは貯炭した場合、表面が酸
化されて強い酸性を示す場合もある。たとえば、
ブレアソール炭では、PH4.0〜3.0になることもあ
る。したがつて、造粒促進剤の性能を充分生かす
ためには、PH調節する必要がある。 本発明は上記の点に鑑みなされたもので、消費
動力が少なくかつ脱水効率も高く(脱水後の石炭
中の水分約20〜25%)、かつ、造粒炭の性状が改
善され、しかも石炭中に含まれる灰分も一部分
離、除去することができる石炭の造粒方法の提供
を目的とするものである。 〔課題を解決するための手段および作用〕 上記の目的を達成するために、本発明の石炭の
造粒方法は、第1図に示すように、石炭・水スラ
リーをPH6.5〜10に調整した後、重油および造粒
促進剤を加えるか、または石炭・水スラリーに重
油および造粒促進剤を加えつつPH6.5〜10に調整
し、この石炭・水スラリーを撹拌混合槽1で撹拌
混合して石炭粒子と重油との混合ペレツトを形成
させた後、固液分離器7により混合ペレツトと水
とを分離して石炭・水スラリー中の石炭粒子を回
収することを特徴としている。 本発明において、造粒促進剤として用いる界面
活性剤にはアニオン系、カチオン系、ノニオン系
があるが、アニオン系、カチオン系は水に溶解し
てイオン性を示すため、スラリーのPH値によつて
作用効果に影響をあたえる。すなわち、アニオン
系はアルカリ性において、界面活性を示すスルホ
ン基、カルボン酸基の解離を促進し、界面活性を
十分に示すが、酸性では、解離は抑えられ界面活
性を十分に発揮できなくなる。 またカチオン系は、酸性において界面活性を示
すアミン基の解離を促進し、界面活性を十分に示
すが、アルカリ性では解離は抑えられ、界面活性
を十分に発揮できなくなる。さらにPH値において
は、界面活性以外に腐食問題が考慮されなければ
ならない。つまり、酸性においては、機械装置が
腐食されるため、PH値が制限される。 またPH6.5未満においては、石炭中に含まれる
灰成分の溶解が促進され、造粒促進剤の機能が低
下し造粒速度が減少する。 一方、PH10を越える場合は、重油のケン化が促
進されるとともに、溶液の表面張力が低下し、発
泡現象が生じる。したがつて、石炭と重油との混
合が十分に行われず、造粒化速度が減少する。 これらの点を考慮して、PH値としては、ノニオ
ン系、アニオン系界面活性剤ではPH6.5〜10が適
用範囲であり、カチオン系界面活性剤ではPH6.5
〜8が適用範囲である。 またPH調整には、アルカリ金属、アルカリ土類
金属の水酸化物、アンモニアなどの塩基性物質と
塩酸、硫酸などの酸性物質が用いられる。 以下、本発明の構成を図面に基づいて説明す
る。第1図は本発明の方法を実施する装置の一例
を示している。1は撹拌翼2を備えた撹拌混合槽
で、この撹拌混合槽1には石炭・水スラリー供給
管3、重油供給管4、造粒促進剤供給管5、混合
ペレツト・水抜出管6が接続されており、この混
合ペレツト・水抜出管6は振動ふるいなどの簡単
な構造の固液分離器7に接続されている。8は混
合ペレツト抜出ライン、9は廃水抜出管である。 上記のように構成された装置において、撹拌混
合槽1内に石炭・水スラリー、重油および造粒促
進剤を供給し、撹拌混合して石炭粒子と重油との
混合ペレツトを形成させた後、振動ふるいなどの
固液分離器7により混合ペレツトと水とを分離す
る。分離された混合ペレツトは再び輸送されるか
またはボイラで燃焼される。撹拌混合槽1内に石
炭・水スラリー、重油および造粒促進剤を供給す
る場合、第1図に示すように各々別々に撹拌混合
槽1に直接供給する以外に、造粒促進剤を予め石
炭・水スラリー中に添加する場合もある。通常、
産炭地から輸送される石炭・水スラリーにおける
石炭の濃度は、ドライベースで40〜50重量%、と
くに43〜47重量%の場合が多く、本発明はこれら
の濃度の石炭・水スラリーを処理するのに適して
いる。 本発明において用いられる重油は、造粒する際
にバインダーとして必要な粘度を有し、かつ比較
的安価なものでなければならない。この意味から
C重油、B重油、常圧蒸留塔塔底油などが好適で
ある。また重油の添加量はドライベースで石炭の
6〜20重量%、好ましくは10〜15重量%である。 また本発明において用いられる造粒促進剤は、
アニオン系、ノニオン系、カチオン系の界面活性
剤を単独または組み合わせて用いられ、炭種によ
つて適宜選択される。具体的にはアニオン系界面
活性剤としては、アルキルベンゼンスルホン酸
塩、アルキル硫酸エステル塩、ポリオキシエチレ
ンアルキル(アルキルフエノール)硫酸エステル
塩、アルキルリン酸エステル塩、ジアルキルスル
ホコハク酸エステル塩、アクリル酸もしくは/お
よび無水マレイン酸共重合体、多環式芳香族スル
ホン化物もしくはホルマリン化合物などが使用さ
れ、カチオン系界面活性剤としては、アルキルア
ミン塩、第4級アミン塩などが使用され、ノニオ
ン系界面活性剤としては、ポリオキシアルキルエ
ーテル、ポリオキシエチレンアルキルフエノール
エーテル、オキシエチレン・オキシプロピレンブ
ロツクポリマー、ポリオキシエチレンアルキルア
ミン、ソルビタン脂肪酸エステル、ポリオキシエ
チレンソルビタン脂肪酸エステルなどが使用さ
れ、両性系界面活性剤としては、アルキルベタイ
ンなどが使用され、また1,2,3モノアミン、
ジアミンなどのアミン化合物が使用される。また
造粒促進剤の添加量はドライベースで石炭の0.01
〜5.0重量%、好ましくは0.05〜2.0重量%である。 本発明における造粒はつぎの過程によつてなさ
れていると考えられる。まず石炭・水スラリー中
に添加された重油と造粒促進剤が分散し、造粒促
進剤が石炭粒子表面に吸着して石炭粒子表面を改
質した後、重油が石炭粒子表面に付着して油膜を
形成し、ついで重油と造粒促進剤の吸着した石炭
粒子同士が衝突、接触して油をバインダーとして
凝集、結合してフロツクを形成、成長し、さらに
圧密されてペレツトを形成する。第2図は、本発
明者らが上記の造粒を第1図に示す装置を用いて
回分式で行つたときの、その消費動力と液相中の
油分濃度(n―ヘキサン抽出物/)の経時変化
を示したものである。なお造粒条件として、粒径
1mm以下のブレアソール炭の41重量%水スラリー
(石炭粒子の重量450g)にCa(OH)2を添加して
PHを8.5に調整した後、この石炭・水スラリーに
造粒促進剤としてアニオン系界面活性剤を石炭
(ドライベース)の01重量%添加し、中東系C重
油(50℃における粘度137.3センチストークス、
比重(15/4℃)0.9515)を石炭(ドライベー
ス)の12重量%添加し、撹拌翼の回転数350rpm
で60分間撹拌混合した。 第2図に示すように、まず前半、すなわち重油
添加後20分間は消費動力は小さく、また液相中の
油分の濃度が急激に減少して行き、油分が石炭粒
子表面に吸着されていることがわかる。そして後
半、すなわち重油添加後約20分間経過した後、消
費動力が増大し、この間に造粒が起こりペレツト
が形成されていることがわかる。 また第4図は、前述の造粒を第1図に示す装置
を用いて回分式で行つたときのPH値による液相中
の油分濃度(n―ヘキサン抽出物/)の経時変
化を示したものである。なお造粒条件として、粒
径1mm以下のブレアソール炭の41重量%水スラリ
ー(石炭粒子の重量450g)にCa(OH)2を添加し
てPH5,PH8.5,PH12に調整した。他の条件は第
2図の場合と同様である。 第4図から、PH8.5の場合が液相中の油分濃度
が最も小さく、PH5,PH12では液相中の油分濃度
が大きいことがわかる。 〔実施例〕 つぎに本発明の実施例および比較例を示す。 実施例 1 粒径1mm以下のブレアソール炭の44重量%水ス
ラリーは、PH5.5を示すため、この石炭・水スラ
リー100Kgに対し、Ca(OH)2をブレアソール炭の
0.3重量%、すなわち132g添加してPH8.5に調整
した。この石炭・水スラリーに造粒促進剤として
アニオン系界面活性剤であるジオクチルスルホ琥
珀酸ナトリウムをブレアソール炭の0.1重量%、
すなわち44g添加し、さらに中東系C重油(50℃
における粘度137.3センチストークス、比重
(15/4℃)0.9515)をブレアソール炭の12重量
%、すなわち5280g添加し、撹拌翼の回転数
300rpmで40分間撹拌混合した後、16メツシユの
振動ふるいに通して水と混合ペレツトとを分離し
た。この結果、全水分20.0重量%、油分8.0重量
%(ドライベース)、平均粒径1mmの混合ペレツ
トが得られた。 実施例 2 粒径1mm以下のブレアソール炭の41重量%水ス
ラリーは、PH5.8を示すため、この石炭・水スラ
リーに対し、造粒促進剤としてアニオン系界面活
性剤であるジオクチルスルホ琥珀酸ナトリウムを
対石炭比で0.001(重量比)、Ca(OH)2を対石炭比
で0.004(重量比)、中東系C重油(50℃における
粘度137.3センチストークス、比重(15/4℃)
0.9515)を対石炭比で0.12(重量比)加え、PHを
7.0に調整し、撹拌翼の回転数300rpmで60分間撹
拌混合した後、16メツシユの振動ふるいにより水
切りを行つて混合ペレツトを得た。この混合ペレ
ツト(造粒炭)および原料ブレアソール粉砕炭の
性状は第1表の如くであつた。
[Industrial Application Field] The present invention is to efficiently granulate the coal particles in the coal/water slurry into pellets after adjusting the pH of the coal/water slurry to produce granulated coal with improved properties. This invention relates to a method for granulating coal to be recovered. [Conventional technology] In recent years, due to the instability of oil supply, the development of technology to effectively utilize coal has been progressing. In order to reduce the cost of transporting coal, it is effective to transport coal as a slurry, and therefore there is a current demand for the development of a method for efficiently recovering coal particles transported as a slurry. Conventionally, a method of transporting slurry of coal directly from a coal-producing area has been carried out in the United States and the Soviet Union, and has been reported in the literature. Furthermore, in a conventional method, JP-A-53-70076 discloses a method in which fine coal powder is agglomerated from a coal slurry and, if ash is present, the ash is removed at the same time. A method is described in which an aqueous emulsion is added, the mixture is stirred, and the agglomerates formed are removed. Furthermore, JP-A No. 56-67395 states, ``Belmont coal is dispersed in water at room temperature and stirred to obtain a coal-water slurry, a predetermined amount of granulating agent is added to this mixture, and further carbon Add heavy oil and granulate it.
The technology is described in Japanese Patent Application Laid-open No. 159292/1982, which states, ``Pleasol coal is dispersed in water at room temperature and stirred to obtain a coal-water slurry, and this mixture is granulated in a predetermined amount. A technology is described in which a curing agent is added, further C heavy oil is added, and the mixture is granulated. [Problems to be Solved by the Invention] In the conventional method described above, separation of coal particles and water after slurry transport is performed using a centrifugal separator, and although it consumes a large amount of energy, it is difficult to separate water from coal particles after dewatering. There are disadvantages such as high water content (approximately 25 to 39%). Furthermore, in the method described in JP-A-53-70076, since an aqueous emulsion of oil fraction is added,
Surfactants are used to emulsify the oil fraction, which weakens the modification effect on the surface of coal particles. In addition, JP-A No. 56-67395 and JP-A-56
- Publication No. 159292 states, “PH of coal/water slurry
There is no mention of the technical idea of ``adjusting it to 6.5 to 10''. When coal is pulverized and slurried in water,
Generally, the PH value indicates a value around PH6.0. Furthermore, when coal is transported or stored, its surface may become oxidized and exhibit strong acidity. for example,
Blairsall charcoal can have a pH of 4.0 to 3.0. Therefore, in order to fully utilize the performance of the granulation accelerator, it is necessary to adjust the pH. The present invention was made in view of the above points, and has low power consumption and high dewatering efficiency (approximately 20 to 25% moisture in coal after dewatering), improves the properties of granulated coal, and The object of the present invention is to provide a method for granulating coal that can partially separate and remove the ash contained therein. [Means and effects for solving the problem] In order to achieve the above object, the coal granulation method of the present invention adjusts the coal/water slurry to pH 6.5 to 10, as shown in Fig. 1. After that, add heavy oil and a granulation accelerator, or add heavy oil and a granulation accelerator to the coal/water slurry and adjust the pH to 6.5 to 10, and then stir and mix this coal/water slurry in the stirring mixing tank 1. After forming mixed pellets of coal particles and heavy oil, the solid-liquid separator 7 separates the mixed pellets from water to recover the coal particles in the coal/water slurry. In the present invention, surfactants used as granulation accelerators include anionic, cationic, and nonionic surfactants. Anionic and cationic surfactants dissolve in water and exhibit ionicity, so they depend on the PH value of the slurry. It affects the action and effectiveness. That is, in alkaline conditions, anionic compounds promote the dissociation of sulfonic acid groups and carboxylic acid groups that exhibit surface activity, and exhibit sufficient surface activity, but in acidic conditions, dissociation is suppressed and the surface activity cannot be sufficiently exhibited. In addition, the cationic type promotes the dissociation of amine groups exhibiting surface activity in acidic conditions and exhibits sufficient surface activity, but in alkaline conditions, dissociation is suppressed and the surface activity cannot be sufficiently exhibited. Furthermore, when determining the pH value, corrosion issues must be taken into account in addition to surface activity. In other words, acidic conditions corrode mechanical equipment, which limits the pH value. Furthermore, at a pH of less than 6.5, the dissolution of the ash component contained in the coal is promoted, the function of the granulation accelerator is reduced, and the granulation rate is reduced. On the other hand, if the pH exceeds 10, saponification of the heavy oil is promoted and the surface tension of the solution decreases, causing a foaming phenomenon. Therefore, the coal and heavy oil are not sufficiently mixed, and the granulation rate is reduced. Considering these points, the applicable pH value is PH6.5 to 10 for nonionic and anionic surfactants, and PH6.5 for cationic surfactants.
-8 is the applicable range. Furthermore, for pH adjustment, basic substances such as alkali metal and alkaline earth metal hydroxides and ammonia, and acidic substances such as hydrochloric acid and sulfuric acid are used. Hereinafter, the configuration of the present invention will be explained based on the drawings. FIG. 1 shows an example of an apparatus for carrying out the method of the invention. 1 is a stirring mixing tank equipped with stirring blades 2, and a coal/water slurry supply pipe 3, a heavy oil supply pipe 4, a granulation accelerator supply pipe 5, and a mixed pellet/water extraction pipe 6 are connected to this stirring mixing tank 1. This mixed pellet/water extraction pipe 6 is connected to a solid-liquid separator 7 of a simple structure such as a vibrating screen. 8 is a mixed pellet extraction line, and 9 is a waste water extraction pipe. In the apparatus configured as described above, coal/water slurry, heavy oil, and granulation accelerator are supplied into the stirring mixing tank 1, and after stirring and mixing to form mixed pellets of coal particles and heavy oil, A solid-liquid separator 7 such as a sieve separates the mixed pellets from water. The separated mixed pellets are either transported again or burned in a boiler. When supplying coal/water slurry, heavy oil, and a granulation accelerator into the stirring mixing tank 1, instead of feeding each directly to the stirring mixing tank 1 separately as shown in Fig. 1, the granulation accelerator can be added to the coal in advance. - May be added to water slurry. usually,
The concentration of coal in coal/water slurry transported from coal producing areas is often 40 to 50% by weight, especially 43 to 47% by weight on a dry basis, and the present invention is capable of processing coal/water slurries with these concentrations. suitable for. The heavy oil used in the present invention must have a viscosity necessary as a binder during granulation and must be relatively inexpensive. In this sense, C heavy oil, B heavy oil, atmospheric distillation column bottom oil, etc. are suitable. The amount of heavy oil added is 6 to 20% by weight, preferably 10 to 15% by weight of the coal on a dry basis. Furthermore, the granulation accelerator used in the present invention is
Anionic, nonionic, and cationic surfactants are used alone or in combination, and are appropriately selected depending on the type of coal. Specifically, anionic surfactants include alkylbenzene sulfonates, alkyl sulfate ester salts, polyoxyethylene alkyl (alkylphenol) sulfate ester salts, alkyl phosphate ester salts, dialkyl sulfosuccinate ester salts, acrylic acid and/or and maleic anhydride copolymers, polycyclic aromatic sulfonates, or formalin compounds, etc. As cationic surfactants, alkyl amine salts, quaternary amine salts, etc. are used, and nonionic surfactants Polyoxyalkyl ethers, polyoxyethylene alkyl phenol ethers, oxyethylene/oxypropylene block polymers, polyoxyethylene alkyl amines, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, etc. are used as amphoteric surfactants. For example, alkyl betaines are used, and 1,2,3 monoamines,
Amine compounds such as diamines are used. In addition, the amount of granulation accelerator added is 0.01 of coal on a dry basis.
-5.0% by weight, preferably 0.05-2.0% by weight. It is thought that granulation in the present invention is carried out by the following process. First, the heavy oil and granulation accelerator added to the coal/water slurry are dispersed, and the granulation accelerator adsorbs onto the surface of the coal particles to modify the surface of the coal particles.Then, the heavy oil adheres to the surface of the coal particles. An oil film is formed, and then the coal particles adsorbed with heavy oil and granulation accelerator collide and come into contact with each other, coagulate and combine with oil as a binder, form and grow flocs, and are further compacted to form pellets. Figure 2 shows the power consumption and oil concentration in the liquid phase (n-hexane extract/) when the inventors performed the above granulation in a batch manner using the apparatus shown in Figure 1. It shows the change over time. The granulation conditions were as follows: Ca(OH) 2 was added to a 41% water slurry of Blairsall coal with a particle size of 1 mm or less (weight of coal particles: 450 g).
After adjusting the pH to 8.5, an anionic surfactant as a granulation accelerator was added to this coal/water slurry in an amount of 01% by weight based on the coal (dry base), and Middle Eastern C heavy oil (viscosity at 50°C, 137.3 centistokes,
Specific gravity (15/4℃) 0.9515) was added at 12% by weight of coal (dry base), and the rotation speed of the stirring blade was 350 rpm.
The mixture was stirred and mixed for 60 minutes. As shown in Figure 2, in the first half, 20 minutes after adding heavy oil, power consumption is small, and the concentration of oil in the liquid phase decreases rapidly, indicating that oil is adsorbed on the surface of coal particles. I understand. It can be seen that in the second half, that is, approximately 20 minutes after the addition of heavy oil, the power consumption increases, and during this period, granulation occurs and pellets are formed. Furthermore, Figure 4 shows the change over time in the oil concentration (n-hexane extract/) in the liquid phase depending on the PH value when the above-mentioned granulation was carried out batchwise using the apparatus shown in Figure 1. It is something. The granulation conditions were adjusted to PH5, PH8.5, and PH12 by adding Ca(OH) 2 to a 41% by weight water slurry of Blairsall coal with a particle size of 1 mm or less (coal particle weight: 450 g). Other conditions are the same as in the case of FIG. From FIG. 4, it can be seen that the oil concentration in the liquid phase is the lowest at PH8.5, and the oil concentration in the liquid phase is high at PH5 and PH12. [Example] Next, Examples and Comparative Examples of the present invention will be shown. Example 1 A 44% by weight water slurry of Blairsall coal with a particle size of 1 mm or less has a pH of 5.5.
0.3% by weight, or 132g, was added to adjust the pH to 8.5. To this coal/water slurry, sodium dioctyl sulfosuccinate, an anionic surfactant, was added as a granulation accelerator in an amount of 0.1% by weight based on Blairsol coal.
That is, 44g was added, and Middle Eastern C heavy oil (50℃
viscosity of 137.3 centistokes and specific gravity (15/4℃) of 0.9515) was added at 12% by weight of Blairsall coal, i.e. 5280g, and the rotation speed of the stirring blade was increased.
After stirring and mixing at 300 rpm for 40 minutes, the mixture was passed through a 16-mesh vibrating sieve to separate water and the mixed pellets. As a result, mixed pellets with a total moisture content of 20.0% by weight, an oil content of 8.0% by weight (dry base), and an average particle size of 1 mm were obtained. Example 2 A 41% by weight water slurry of Blairsall coal with a particle size of 1 mm or less has a pH of 5.8, so dioctyl sulfosuccinic acid, an anionic surfactant, was added to this coal/water slurry as a granulation accelerator. Sodium to coal ratio is 0.001 (weight ratio), Ca (OH) 2 to coal ratio is 0.004 (weight ratio), Middle East C heavy oil (viscosity 137.3 centistokes at 50℃, specific gravity (15/4℃)
0.9515) was added to coal by 0.12 (weight ratio), and the PH was
7.0 and stirred and mixed for 60 minutes at a stirring blade rotation speed of 300 rpm, and then drained with a 16-mesh vibrating sieve to obtain mixed pellets. The properties of the mixed pellets (granulated coal) and Blairsol pulverized coal as raw material were as shown in Table 1.

【表】【table】

【表】 なお、造粒炭の発熱量は気乾試料で測定した値
である。第1表から明らかなように、本発明の方
法により造粒することにより、造粒炭の灰分が大
幅に減少していることがわかる。これは油は石炭
に付着し易く、灰分に付着し難いことによるもの
と解される。なお本実施例に用いた原料ブレアソ
ール粉砕炭と、得られた造粒炭との積算(累積)
粒度分布を示すと第3図のようになる。 つぎに、実施例2に対する比較例を示す。 比較例 1 粒径1mm以下のブレアソール炭の41重量%水スラ
リーはPH5.8を示すが、造粒促進剤としてアニオ
ン系界面活性剤であるジオクチルスルホ琥珀酸ナ
トリウムを対石炭比で0.001(重量比)、中東系C
重油(50℃における粘度137.3センチストークス、
比重(15/4℃)0.9515)を対石炭比で0.12(重
量比)加え、撹拌翼の回転数300rpmで60分間撹
拌混合した後、16メツシユの振動ふるいにより水
切りを行つて混合ペレツトを得た。この混合、ペ
レツト(造粒炭)および原料ブレアソール粉砕炭
の性状は第2表の如くであつた。
[Table] The calorific value of granulated coal is the value measured using an air-dried sample. As is clear from Table 1, the ash content of the granulated coal is significantly reduced by granulating it by the method of the present invention. This is thought to be due to the fact that oil easily adheres to coal and is difficult to adhere to ash. Note that the total (accumulation) of the raw material Blairsall pulverized coal used in this example and the obtained granulated coal
The particle size distribution is shown in Figure 3. Next, a comparative example for Example 2 will be shown. Comparative Example 1 A 41% water slurry of Blairsall coal with a particle size of 1 mm or less has a pH of 5.8, but sodium dioctyl sulfosuccinate, an anionic surfactant, is added as a granulation accelerator at a ratio of 0.001 (by weight) to the coal. ), Middle Eastern C
Heavy oil (viscosity 137.3 centistokes at 50°C,
Specific gravity (15/4°C) 0.9515) was added to the coal at a ratio of 0.12 (weight ratio), and after stirring and mixing for 60 minutes at a stirring blade rotation speed of 300 rpm, water was drained using a 16-mesh vibrating sieve to obtain mixed pellets. . The properties of this mixture, pellets (granulated coal), and Blairsol pulverized coal as raw material were as shown in Table 2.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の方法によれば、
石炭・水スラリー中に含まれる石炭粒子を簡単な
工程、少ない消費動力で、かつ高い脱水効率で回
収できる上に、造粒炭の性状を改善することがで
き、また、石炭中に含まれる灰分の一部も分離、
除去することができるという効果を奏する。
As explained above, according to the method of the present invention,
Not only can the coal particles contained in the coal/water slurry be recovered with a simple process, low power consumption, and high dewatering efficiency, but the properties of granulated coal can be improved, and the ash content contained in the coal can be recovered. Also part of is separated,
It has the effect of being able to be removed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する装置の一例を
示す説明図、第2図は本発明の方法を回分式で行
つた場合における撹拌動力の経時変化および液相
中の油分濃度の経時変化を示す曲線図、第3図は
ブレアソール粉砕炭を原料として本発明の方法で
造粒した場合における原料ブレアソール粉砕炭と
造粒炭の粒度分布を示す曲線図、第4図はPH値に
よる液相中の油分濃度の経時変化を示す曲線図で
ある。 1…撹拌混合槽、2…撹拌翼、3…石炭・水ス
ラリー供給管、4…重油供給管、5…造粒促進剤
供給管、6…混合ペレツト・水抜出管、7…固液
分離器、8…混合ペレツト抜出ライン、9…廃水
抜出管。
Figure 1 is an explanatory diagram showing an example of an apparatus for carrying out the method of the present invention, and Figure 2 is a diagram showing changes over time in stirring power and changes in oil concentration in the liquid phase over time when the method according to the present invention is carried out batchwise. Figure 3 is a curve diagram showing the particle size distribution of raw Blairsall pulverized coal and granulated coal when Blairsall pulverized coal is used as a raw material and granulated by the method of the present invention, and Figure 4 is a curve diagram showing the particle size distribution of Blairsole pulverized coal and granulated coal. FIG. 2 is a curve diagram showing changes over time in oil concentration in a liquid phase. 1... Stirring mixing tank, 2... Stirring blade, 3... Coal/water slurry supply pipe, 4... Heavy oil supply pipe, 5... Granulation accelerator supply pipe, 6... Mixed pellet/water extraction pipe, 7... Solid-liquid separator , 8... Mixed pellet extraction line, 9... Waste water extraction pipe.

Claims (1)

【特許請求の範囲】 1 石炭・水スラリーをPH6.5〜10に調整した後、
重油および造粒促進剤を加えるか、または石炭・
水スラリーに重油および造粒促進剤を加えつつPH
6.5〜10に調整し、この石炭・水スラリーを撹拌
混合槽1で撹拌混合して石炭粒子と重油との混合
ペレツトを形成させた後、固液分離器7により混
合ペレツトと水とを分離して石炭・水スラリー中
の石炭粒子を回収することを特徴とする石炭の造
粒方法。 2 造粒促進剤としてカチオン系界面活性剤を用
い、石炭・水スラリーをPH6.5〜8に調整する特
許請求の範囲第1項記載の石炭の造粒方法。 3 石炭・水スラリーの濃度がドライベースで40
〜50重量%である特許請求の範囲第1項または第
2項記載の石炭の造粒方法。 4 重油の添加量がドライベースで石炭の6〜20
重量%である特許請求の範囲第1項または第2項
記載の石炭の造粒方法。 5 造粒促進剤の添加量がドライベースで石炭の
0.01〜5.0重量%である特許請求の範囲第1項ま
たは第2項記載の石炭の造粒方法。
[Claims] 1. After adjusting the coal/water slurry to pH 6.5 to 10,
Add heavy oil and granulation accelerator or add coal/
PH while adding heavy oil and granulation accelerator to water slurry
6.5 to 10, this coal/water slurry is stirred and mixed in the stirring mixing tank 1 to form mixed pellets of coal particles and heavy oil, and then the mixed pellets and water are separated by the solid-liquid separator 7. A method for granulating coal, characterized by recovering coal particles in a coal/water slurry. 2. The coal granulation method according to claim 1, which uses a cationic surfactant as a granulation accelerator and adjusts the coal/water slurry to pH 6.5 to 8. 3 Concentration of coal/water slurry is 40 on dry basis
The method for granulating coal according to claim 1 or 2, wherein the amount is 50% by weight. 4 The amount of heavy oil added is 6 to 20 that of coal on a dry basis.
The method for granulating coal according to claim 1 or 2, wherein the coal granulation method is % by weight. 5 The amount of granulation accelerator added is
The method for granulating coal according to claim 1 or 2, wherein the content is 0.01 to 5.0% by weight.
JP14013280A 1980-10-06 1980-10-06 Pelletization of coal Granted JPS5763392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14013280A JPS5763392A (en) 1980-10-06 1980-10-06 Pelletization of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14013280A JPS5763392A (en) 1980-10-06 1980-10-06 Pelletization of coal

Publications (2)

Publication Number Publication Date
JPS5763392A JPS5763392A (en) 1982-04-16
JPH0154399B2 true JPH0154399B2 (en) 1989-11-17

Family

ID=15261627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14013280A Granted JPS5763392A (en) 1980-10-06 1980-10-06 Pelletization of coal

Country Status (1)

Country Link
JP (1) JPS5763392A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370076A (en) * 1976-12-03 1978-06-22 Shell Int Research Method of aggregating coal powder
JPS5667395A (en) * 1979-11-08 1981-06-06 Kao Corp Granulating agent for coal powder-water slurry
JPS56159292A (en) * 1980-05-14 1981-12-08 Kao Corp Granulating agent for water slurry of coal powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370076A (en) * 1976-12-03 1978-06-22 Shell Int Research Method of aggregating coal powder
JPS5667395A (en) * 1979-11-08 1981-06-06 Kao Corp Granulating agent for coal powder-water slurry
JPS56159292A (en) * 1980-05-14 1981-12-08 Kao Corp Granulating agent for water slurry of coal powder

Also Published As

Publication number Publication date
JPS5763392A (en) 1982-04-16

Similar Documents

Publication Publication Date Title
JP2827152B2 (en) Dust suppression method
JPS588719B2 (en) Method of transporting coal by deashing and granulating it
JPH0257840B2 (en)
JPS6247416B2 (en)
JPH0154399B2 (en)
US3705019A (en) Agglomeration of cyanuric acid
JPH0224879B2 (en)
JPH0124140Y2 (en)
JPS58142983A (en) Improvement of coal quality
JPS5958092A (en) Preparation of coal slurry
JPS6247476B2 (en)
JPS6147197B2 (en)
JPS6324558B2 (en)
JPS58142985A (en) Improvement of coal quality
JPH0140078B2 (en)
JPH0220888B2 (en)
JPH0367117B2 (en)
JPS6247477B2 (en)
JPH044032B2 (en)
JPS62225591A (en) Production of deashed and fine powdered coal slurry in high concentration
JP3457033B2 (en) Production method of spherical iron hydroxide
JPS6025076B2 (en) Method for producing deashed coal/petroleum mixed fuel
JPS58103592A (en) Method for deashing coal
JPS59176394A (en) Preparation of coal slurry
JPS6056721A (en) Conveying method of coal slurry