JPH0154317B2 - - Google Patents

Info

Publication number
JPH0154317B2
JPH0154317B2 JP28135584A JP28135584A JPH0154317B2 JP H0154317 B2 JPH0154317 B2 JP H0154317B2 JP 28135584 A JP28135584 A JP 28135584A JP 28135584 A JP28135584 A JP 28135584A JP H0154317 B2 JPH0154317 B2 JP H0154317B2
Authority
JP
Japan
Prior art keywords
growing
crystals
water
crystal
kdp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP28135584A
Other languages
Japanese (ja)
Other versions
JPS61155284A (en
Inventor
Choe Yamanaka
Takatomo Sasaki
Kunio Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP28135584A priority Critical patent/JPS61155284A/en
Publication of JPS61155284A publication Critical patent/JPS61155284A/en
Publication of JPH0154317B2 publication Critical patent/JPH0154317B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は高出力レーザー用非線形光学結晶の作
成方法、さらに詳しくは、KOP(リン酸第1カリ
ウム)、DKDP(重水素化リン酸第1カリウム)、
ADP(リン酸第1アンモニウム)等の水溶性の作
成方法に関するものである。 (従来の技術) 従来、水溶性結晶は蒸発法、温度降下法、濃度
―定法、電気分解法、電気透析法等の方法で育成
されている。上述した方法においては、結晶育成
に水溶性を用いるため比較的低温(約80℃以下)
のもとで結晶の育成が行われている。 (発明が解決しようとする問題点) 育成された結晶は最近特にレーザー用素子とし
て利用されることが多くなつたが、従来の方法で
育成された水溶性結晶はいずれもレーザー耐損傷
性が低く、特に高出力レーザーではその耐損傷性
に問題があつた。 これは、従来の育成法では結晶育成温度が低い
ため結晶育成期間中に水溶液内に微生物等が発生
し、これが育成中の結晶に異物として取り込まれ
るためであることが最近になつてわかつた。この
種の異物は耐レーザー損傷性が低いため、レーザ
ー光線照射時に結晶中に損傷を生じていた。 本発明の目的は上述した不具合を解消して、結
晶育成中に紫外線を水溶液に照射し、水溶液の殺
菌を計り、微生物等の発生を抑えながら結晶育成
を行うことにより、耐レーザー損傷性の高い水溶
性結晶を育成する方法を提供しようとするもので
ある。 (問題点を解決するための手段) 本発明の水溶性結晶の育成法は、水溶液から比
較的低温のもとで結晶を育成する水溶性結晶の育
成法において、紫外線を水溶液に照射し水溶液中
の微生物等の発生を防ぐことにより、耐レーザー
損傷性の高い結晶を育成することを特徴とするも
のである。 (作 用) 従来の水溶性結晶育成法では、生成して結晶に
悪影響を及ぼす上述した水溶液中の微生物発生に
関しては注意が払われていない。本発明は、結晶
育成期間中水溶液に紫外線を照射するという簡単
な方法で微生物の発生を防ぎ、その結果耐レーザ
ー損傷性の高い結晶を得ることができることを見
出したことによる。ここで、X線、ガンマ線、レ
ーザー光線等も紫外線以外に考え得るが、X線、
ガンマ線では水溶液に対する透過性がないため殺
菌の効果は少なく、装置も極めて高価となり、レ
ーザー光線を用いる場合も殺菌効果を持たせるに
は紫外域の光にする必要があり装置が極めて高価
となるため、本発明では紫外線を使用した。 なお、本発明の方法は、結晶育成方法の種類お
よび育成する結晶の種類を問わず、どの方法およ
び結晶の種類でも適用可能であり、特にそのうち
KDP、DKDP、ADP等の作成に好適である。 (実施例) 以下、本発明を図面を参照して詳細に説明す
る。 第1図は本発明の水溶性結晶の育成法を実施す
る装置の一実施例を示す線図である。第1図に示
す実施例では、水溶性結晶としてKDP結晶を、
育成法としては温度降下法を例にとり説明する。
KDP結晶を温度降下法で育成する場合には、60
℃〜30℃の温度領域で育成することが多く室温に
近いため、一般に二重構造の槽により温度制御特
性を良好に保つ必要がある。以下、結晶育成の方
法について詳述する。 まず、内槽1に超純水とKDP材料を入れる。
同時に紫外線ランプ10を点灯し、殺菌を開始す
る。内槽1と外線2との間に水15を満たし、こ
の水15をヒーター3により加熱すると同時に撹
拌器4により撹拌する。水15を加熱することに
より、内槽1内の溶液を一旦育成開始温度以上に
加熱し、KDP材料を十分に溶解してKDP溶液1
4を得る。この段階でKDP溶液14を内槽ふた
12中に設けたKDP溶液フイルター用孔13を
介して図示しないフイルターに導き、フイルター
により十分ろ過した後、再び内槽1中へ戻してい
る。 次に、内槽1の種結晶取付け台6にKDP種結
晶7を配置した後、KDP溶液14中の異物をフ
イルターによりさらに除去する。除去作業終了
後、KDP溶液フイルター用孔13を閉じる。そ
の後溶液の温度を下げ溶液を過飽和状態にし、以
下徐々に温度を降下させていき結晶育成を行う。
温度のコントロールはヒーター3と外槽温度コン
トロール用温度センサー5により行つている。ま
た、KDP溶液14の温度分布を一定に保つため、
KDP溶液14を撹拌用プロペラ9により常時撹
拌している。KDP溶液14の温度は温度モニタ
ー用センサー11で常に監視している。 紫外線ランプ10は育成終了まで常時点灯して
おき、KDP溶液14内の微生物発生を防いでい
る。また、紫外線を照射しているため、内槽1、
種結晶取付け台6、溶液撹拌用プロペラ9、温度
モニター用センサー11、内槽ふた12等は、紫
外線劣化の生じない材料を用いる必要がある。 実施例 1 第2図に示す形状の、従来の方法により育成し
たKDP結晶と上述した本発明の方法により育成
したKDP結晶を準備した。第2図において、2
1は種結晶、22は育成結晶である。また、その
育成条件は以下のようであり、従来法の場合は紫
外線ランプを使用しなかつた。 ●使用した紫外線ランプ 出力10W、主波長2537Å ●使用した超純水 8 ●使用したKDP材料 2800g(試薬特級) ●育成開始温度 44.80℃ ●育成終了温度 35.35℃ ●育成期間 28日間 ●溶液温度降下率 0.3℃/day ●種結晶 5cm×5cm×1cm (Zカツト板) ●溶液撹拌 プロペラ法 その後、波長1.06μm、パルス幅1nsec.のレーザ
ーを使用して耐レーザー損傷テストを行つた結
果、第1表に示す結果が得られた。
(Industrial Application Field) The present invention relates to a method for producing a nonlinear optical crystal for high-power lasers, and more specifically, KOP (potassium monophosphate), DKDP (deuterated potassium monophosphate),
This paper relates to a method for producing water-soluble ADP (ammonium phosphate) and the like. (Prior Art) Water-soluble crystals have conventionally been grown by methods such as an evaporation method, a temperature drop method, a concentration method, an electrolysis method, and an electrodialysis method. In the above method, since water solubility is used for crystal growth, the temperature is relatively low (approximately 80℃ or less).
Crystals are grown under (Problems to be Solved by the Invention) Grown crystals have recently been increasingly used, especially as laser elements, but all water-soluble crystals grown by conventional methods have low laser damage resistance. However, there were problems with its damage resistance, especially with high-power lasers. It has recently been found that this is because in conventional growth methods, the crystal growth temperature is low, so microorganisms and the like are generated in the aqueous solution during the crystal growth period, and these microorganisms are incorporated into the growing crystal as foreign matter. Since this type of foreign matter has low laser damage resistance, damage was caused in the crystal during laser beam irradiation. The purpose of the present invention is to eliminate the above-mentioned problems, and to achieve high laser damage resistance by irradiating an aqueous solution with ultraviolet rays during crystal growth, sterilizing the aqueous solution, and growing the crystal while suppressing the generation of microorganisms. The present invention aims to provide a method for growing water-soluble crystals. (Means for Solving the Problems) The method for growing water-soluble crystals of the present invention is a method for growing water-soluble crystals in which crystals are grown from an aqueous solution at a relatively low temperature. This method is characterized by growing crystals with high laser damage resistance by preventing the generation of microorganisms and the like. (Function) In the conventional water-soluble crystal growth method, no attention is paid to the above-mentioned generation of microorganisms in the aqueous solution that are generated and have an adverse effect on the crystals. The present invention is based on the discovery that the generation of microorganisms can be prevented by a simple method of irradiating an aqueous solution with ultraviolet rays during the crystal growth period, and as a result, crystals with high laser damage resistance can be obtained. Here, X-rays, gamma rays, laser beams, etc. can also be considered in addition to ultraviolet rays, but
Gamma rays have little sterilizing effect because they have no permeability to aqueous solutions, and the equipment is extremely expensive. Even when using laser beams, in order to have a sterilizing effect, the light needs to be in the ultraviolet region, making the equipment extremely expensive. In the present invention, ultraviolet light was used. Note that the method of the present invention can be applied to any method and type of crystal, regardless of the type of crystal growth method and the type of crystal to be grown.
Suitable for creating KDP, DKDP, ADP, etc. (Example) Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing one embodiment of an apparatus for carrying out the method for growing water-soluble crystals of the present invention. In the example shown in Fig. 1, KDP crystal is used as the water-soluble crystal.
The growth method will be explained using a temperature drop method as an example.
When growing KDP crystals by temperature drop method, 60
Since they are often grown in a temperature range of ℃ to 30℃, which is close to room temperature, it is generally necessary to maintain good temperature control characteristics using a double-layered tank. The crystal growth method will be described in detail below. First, put ultrapure water and KDP material into inner tank 1.
At the same time, the ultraviolet lamp 10 is turned on to start sterilization. Water 15 is filled between the inner tank 1 and the outer line 2, and the water 15 is heated by a heater 3 and stirred by a stirrer 4 at the same time. By heating the water 15, the solution in the inner tank 1 is heated to a temperature higher than the growth start temperature, and the KDP material is sufficiently dissolved to form the KDP solution 1.
Get 4. At this stage, the KDP solution 14 is guided to a filter (not shown) through the KDP solution filter hole 13 provided in the inner tank lid 12, and after being thoroughly filtered by the filter, it is returned to the inner tank 1 again. Next, after placing the KDP seed crystal 7 on the seed crystal mount 6 of the inner tank 1, foreign matter in the KDP solution 14 is further removed using a filter. After the removal work is completed, close the KDP solution filter hole 13. Thereafter, the temperature of the solution is lowered to bring the solution into a supersaturated state, and the temperature is then gradually lowered to grow crystals.
The temperature is controlled by a heater 3 and a temperature sensor 5 for controlling the temperature of the outer tank. In addition, in order to keep the temperature distribution of the KDP solution 14 constant,
The KDP solution 14 is constantly stirred by a stirring propeller 9. The temperature of the KDP solution 14 is constantly monitored by a temperature monitoring sensor 11. The ultraviolet lamp 10 is kept on at all times until the end of the growth to prevent the generation of microorganisms in the KDP solution 14. In addition, since ultraviolet rays are irradiated, the inner tank 1,
The seed crystal mounting stand 6, the solution stirring propeller 9, the temperature monitoring sensor 11, the inner tank lid 12, etc. must be made of materials that are not subject to UV deterioration. Example 1 A KDP crystal grown by a conventional method and a KDP crystal grown by the above-described method of the present invention having the shape shown in FIG. 2 were prepared. In Figure 2, 2
1 is a seed crystal, and 22 is a grown crystal. Further, the growth conditions are as follows, and in the case of the conventional method, no ultraviolet lamp was used. ●Ultraviolet lamp used Output: 10W, dominant wavelength: 2537Å ●Ultrapure water used: 8 ●KDP material used: 2800g (reagent grade) ●Growing start temperature: 44.80℃ ●Growing end temperature: 35.35℃ ●Growing period: 28 days ●Solution temperature drop rate 0.3℃/day ●Seed crystal 5cm x 5cm x 1cm (Z-cut plate) ●Solution stirring Propeller method After that, we performed a laser damage resistance test using a laser with a wavelength of 1.06μm and a pulse width of 1nsec.The results are shown in Table 1. The results shown are obtained.

【表】 第1表から明らかなように、本発明の方法によ
り作成したKDP結晶は従来の方法により作成し
たKDP結晶と比較して約3〜5倍の耐レーザー
損傷性向上が認められた。 (発明の効果) 以上詳細に説明したところから明らかなよう
に、本発明の高レーザー耐損傷性を持つ水溶液結
晶の育成法よれば、結晶育成時に紫外線を照射す
ることにより、耐レーザー損傷性の高い水溶液結
晶を得ることができ、特に高出力レーザー用素子
として有効に使用することができる。
[Table] As is clear from Table 1, the KDP crystal produced by the method of the present invention was found to have about 3 to 5 times improved laser damage resistance compared to the KDP crystal produced by the conventional method. (Effects of the Invention) As is clear from the detailed explanation above, according to the method of growing an aqueous solution crystal with high laser damage resistance of the present invention, by irradiating ultraviolet rays during crystal growth, laser damage resistance can be improved. It is possible to obtain high-quality aqueous crystals, and it can be particularly effectively used as a high-power laser element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の水溶性結晶の育成法を実施
する装置の一実施例を示す線図、第2図は、育成
した単結晶の形状を示す線図である。 1……内槽、2……外槽、3……ヒーター、4
……撹拌器、5……外槽温度コントロール用温度
センサー、6……種結晶取付台、7……種結晶、
8……KDP結晶、9……撹拌用プロペラ、10
……紫外線ランプ、11……温度モニター用セン
サー、12……内槽ふた、13……KDP溶液フ
イルター用孔、14……KDP溶液、15……水。
FIG. 1 is a diagram showing an example of an apparatus for implementing the water-soluble crystal growth method of the present invention, and FIG. 2 is a diagram showing the shape of a grown single crystal. 1...Inner tank, 2...Outer tank, 3...Heater, 4
... Stirrer, 5 ... Temperature sensor for outer tank temperature control, 6 ... Seed crystal mounting stand, 7 ... Seed crystal,
8... KDP crystal, 9... Stirring propeller, 10
...UV lamp, 11...Temperature monitoring sensor, 12...Inner tank lid, 13...KDP solution filter hole, 14...KDP solution, 15...Water.

Claims (1)

【特許請求の範囲】 1 水溶液から比較的低温のもとで結晶を育成す
る水溶性結晶の育成法において、紫外線を水溶液
に照射し水溶液中の微生物等の発生を防ぐことに
より、耐レーザー損傷性の高い結晶を育成するこ
とを特徴とする水溶性結晶の育成法。 2 前記紫外線を、水溶性結晶の育成開始時から
育成終了時まで常時照射することを特徴とする特
許請求の範囲第1項記載の水溶性結晶の育成法。
[Claims] 1. In a water-soluble crystal growth method in which crystals are grown from an aqueous solution at a relatively low temperature, laser damage resistance is achieved by irradiating the aqueous solution with ultraviolet rays to prevent the generation of microorganisms, etc. in the aqueous solution. A method for growing water-soluble crystals characterized by growing crystals with high . 2. The method for growing water-soluble crystals according to claim 1, characterized in that the ultraviolet rays are constantly irradiated from the start of growing the water-soluble crystals until the end of growing them.
JP28135584A 1984-12-27 1984-12-27 Growth of water-soluble crystal having high resistance to damage caused by laser Granted JPS61155284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28135584A JPS61155284A (en) 1984-12-27 1984-12-27 Growth of water-soluble crystal having high resistance to damage caused by laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28135584A JPS61155284A (en) 1984-12-27 1984-12-27 Growth of water-soluble crystal having high resistance to damage caused by laser

Publications (2)

Publication Number Publication Date
JPS61155284A JPS61155284A (en) 1986-07-14
JPH0154317B2 true JPH0154317B2 (en) 1989-11-17

Family

ID=17637953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28135584A Granted JPS61155284A (en) 1984-12-27 1984-12-27 Growth of water-soluble crystal having high resistance to damage caused by laser

Country Status (1)

Country Link
JP (1) JPS61155284A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103979A (en) * 1987-10-15 1989-04-21 Univ Osaka Method for growing water soluble optical single crystal having resistance to scratching by high-output laser
CN102534778A (en) * 2012-03-14 2012-07-04 青岛大学 Omnibearing growing method for KDP (Potassium Dihydrogen Phosphate) crystals
CN110359081B (en) * 2019-08-08 2021-02-19 江南大学 Method for controlling aspect ratio in crystal growth process

Also Published As

Publication number Publication date
JPS61155284A (en) 1986-07-14

Similar Documents

Publication Publication Date Title
EP3620555B1 (en) Compound of cesium fluorooxoborate, non-linear optical crystal of cesium fluorooxoborate, preparation method therefor and use thereof
CN107265473B (en) Compound fluoboric acid rubidium and fluoboric acid rubidium nonlinear optical crystal and preparation method and purposes
CN111334858B (en) Compound barium fluoborate, barium fluoborate nonlinear optical crystal, preparation method and application
CN108588833A (en) Compound fluoboric acid calcium and fluoroboric acid calcium non-linear optical crystal and preparation method and purposes
US6261420B1 (en) Process for producing amorphous material containing single crystal or polycrystal and material produced
CN106948003A (en) Compound potassium fluoborate and potassium fluoborate nonlinear optical crystal and preparation method and purposes
CN108004594A (en) Cesium iodate nonlinear optical crystal and its preparation method and application
CN114057207B (en) Compound sodium octadecafluoride and sodium octafluoride nonlinear optical crystal, and preparation method and application thereof
JPH0154317B2 (en)
US5879590A (en) Low conductivity, doped KTIOPO4 and devices based thereon
CN112501692B (en) Compound lead barium boron oxyfluoride and lead barium boron oxyfluoride nonlinear optical crystal, preparation method and application
CN109748256A (en) The preparation method and purposes of phosphoric acid rubidium lead bismuth and its nonlinear optical crystal
CN108286072A (en) Compound one is fluorinated sodium tetraborate and a fluorination sodium tetraborate nonlinear optical crystal and preparation method and purposes
Joshi et al. Single crystal growth of ferroelectric potassium dihydrogen orthophosphate in silica gels
Shou-Quan et al. Hydrothermal growht of KTP crystals in the medium range of temperature and pressure
CN1421551A (en) Combined crucible rotating and molten salt pulling method for growing RE3+: KGd (WO4)2 laser crystal
JPH01103979A (en) Method for growing water soluble optical single crystal having resistance to scratching by high-output laser
US5322588A (en) Method for producing KTIOPO4 single crystal
Manivannan et al. Investigation on Nucleation Kinetics, Growth and Nonlinear Optical Properties of L-Cystine Hydrochloride Crystal
DE3419722C2 (en)
JPH04270195A (en) Production of nonlinear optical single crystal
CN113913936B (en) Compound lanthanum boron oxyfluoride and lanthanum boron oxyfluoride nonlinear optical crystal, and preparation method and application thereof
CN114959915B (en) Device for improving growth speed and utilization rate of KDP crystal and growth method thereof
US3418086A (en) Lithium meta-niobate crystalline growth from melt containing magnesium oxide
CN116427031A (en) Compound sodium fluoroborate and sodium fluoroborate nonlinear optical crystal, preparation method and application

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term