JPH0154151B2 - - Google Patents

Info

Publication number
JPH0154151B2
JPH0154151B2 JP60117734A JP11773485A JPH0154151B2 JP H0154151 B2 JPH0154151 B2 JP H0154151B2 JP 60117734 A JP60117734 A JP 60117734A JP 11773485 A JP11773485 A JP 11773485A JP H0154151 B2 JPH0154151 B2 JP H0154151B2
Authority
JP
Japan
Prior art keywords
molten metal
mold
inner end
gas vent
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60117734A
Other languages
Japanese (ja)
Other versions
JPS61276761A (en
Inventor
Yasubumi Kosegi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60117734A priority Critical patent/JPS61276761A/en
Publication of JPS61276761A publication Critical patent/JPS61276761A/en
Publication of JPH0154151B2 publication Critical patent/JPH0154151B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は低圧鋳造法、ダイカスト法、溶湯鋳造
法などの成形法であつて、とくに高温溶湯用に好
適な成形法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to molding methods such as low pressure casting, die casting, and molten metal casting, and particularly to a molding method suitable for high-temperature molten metal.

<従来の技術及びその問題点> 一般に高温溶湯、すなわち融点700〜1600℃位
の溶解金属を用いた場合、融点の低い金属に比べ
て凝固時におけるガスの発生量が多い。
<Prior art and its problems> Generally, when a high-temperature molten metal, that is, a molten metal with a melting point of about 700 to 1,600°C, is used, a larger amount of gas is generated during solidification than a metal with a lower melting point.

しかし乍ら、従来の成形法におけるガス抜き手
段、例えば特開昭58−47538号公報に開示されて
いるガス抜き手段は、金型(成形型)にキヤビテ
イ(成形部)内から型外に通じるガス抜き部分、
又は一方の金型(固定側入子6)全体をセラミツ
ク材等の多孔質物質により形成して、この多孔質
物質を通じてキヤビテイ内のガスを型外に排除す
る様にした構造であるために、金型の型締め時や
キヤビテイ内への溶湯の注入時に該キヤビテイ内
に入り込んだ巻込みガス(外気)は効率良く抜く
ことができるが、溶湯の凝固過程で発生するガス
は効率良く抜くことができず、結果として溶湯の
凝固過程で発生する発生ガスによつて引け巣やガ
ス巣の発生原因になつていた。
However, the degassing means in conventional molding methods, for example, the degassing means disclosed in Japanese Patent Application Laid-open No. 58-47538, does not allow communication between the inside of the cavity (molding part) of the mold (molding mold) and the outside of the mold. gas vent part,
Alternatively, one mold (fixed side insert 6) is entirely formed of a porous material such as ceramic material, and the structure is such that gas in the cavity is expelled outside the mold through this porous material. Entrained gas (outside air) that enters the cavity when closing a mold or pouring molten metal into the cavity can be efficiently removed, but gas generated during the solidification process of the molten metal cannot be removed efficiently. As a result, the gas generated during the solidification process of the molten metal caused shrinkage cavities and gas cavities.

即ち、キヤビテイ内に注入された溶湯はそのキ
ヤビテイ面に接する外周部分から凝固が進行する
ものであり、その凝固と同時に外周部分に凝固膜
が形成された後は外部との流通(通気性)が該凝
固膜によつて遮断されてしまうからである。
In other words, the molten metal injected into the cavity solidifies from the outer periphery in contact with the cavity surface, and at the same time as the solidification occurs, a coagulated film is formed on the outer periphery, and then the flow (air permeability) with the outside is interrupted. This is because it is blocked by the coagulated film.

また、特公昭51−45532号公報に開示されてい
る様に、金型全体を多孔質物質により形成して金
型全体がキヤビテイ内から型外に通じる通気性構
造とし、金型全体を通してキヤビテイ内のガスを
真空ポンプにより強制的に吸引排除する様にした
成形法が存在しているが、この成形法も上記前者
の成形法に同様にキヤビテイ面に接する溶湯の外
周部分に凝固膜が形成された後は該凝固膜によつ
て外部との流通が遮断されてしまい、凝固過程で
発生する発生ガスは効率良く抜くことができない
といつた問題が残されているものであつた。
In addition, as disclosed in Japanese Patent Publication No. 51-45532, the entire mold is made of a porous material so that the entire mold has a breathable structure that communicates from the inside of the cavity to the outside of the mold. There is a molding method in which the gas is forcibly sucked out using a vacuum pump, but this molding method also causes a solidified film to form on the outer periphery of the molten metal in contact with the cavity surface, similar to the former molding method described above. After the coagulation process, the flow to the outside is blocked by the coagulation film, and the problem remains that the gas generated during the coagulation process cannot be efficiently removed.

<発明が解決しようとする課題> 本考案が解決しようとする技術的課題は、型締
め時や溶湯の注入時に入り込んだ巻込みガス(外
気)の排除は勿論、溶湯特に融点700〜1600℃位
の溶解金属の凝固過程で発生する多量の発生ガス
を鋳造工程終了時まで有効且つ確実に排除できる
様にした成形法の提供にある。
<Problems to be Solved by the Invention> The technical problems to be solved by the present invention include not only eliminating the entrained gas (outside air) that entered during mold clamping and pouring the molten metal, but also eliminating the molten metal, especially the one with a melting point of about 700 to 1600℃. To provide a forming method that can effectively and reliably eliminate a large amount of gas generated during the solidification process of molten metal until the end of the casting process.

<技術的課題を達成するための手段> 上記課題を達成するために本考案が講じる技術
手段は、成形部内の温度を制御する加熱機構及び
冷却機構を具備する成形型の成形部内に対面させ
てポーラスセラミツクを該成形型の型構成部材に
組み込みその成形部内から型外に通じるガス抜き
路を形成すると共に、そのガス抜き路の前記成形
部内に面する内端部分近傍に該内端部分に形成さ
れる溶湯の凝固膜を融解する加熱機構を配設し、
前記成形部内に高温溶湯を注入する注入工程、注
入された高温溶湯を加圧する加圧工程、前記加熱
機構及び冷却機構を作動させて加圧された高温溶
湯を半凝固状態に加温保持する温度領域に成形部
内を制御並びに加圧された高温溶湯が凝固する温
度領域で尚且つその凝固が前記ガス抜き路の内端
部分に向つて成長進行する温度領域に成形部内を
制御する加熱及び冷却工程、前記ガス抜き路を強
制的に吸気する吸気工程これら各鋳造工程の内、
加圧工程の終了後ガス抜き路の内端部分近傍に配
設した前記加熱機構を作動させてガス抜き路の内
端部分を加熱する様にしたことである。
<Means for Achieving the Technical Problem> The technical means taken by the present invention to achieve the above-mentioned problem is to use a mold that faces the inside of the molding part of a mold that is equipped with a heating mechanism and a cooling mechanism that control the temperature inside the molding part. Incorporating porous ceramic into the mold component of the mold, forming a gas vent passage leading from the inside of the molding part to the outside of the mold, and forming a gas vent passage near the inner end part facing into the molding part of the gas vent passage. A heating mechanism is installed to melt the solidified film of the molten metal.
An injection step of injecting high-temperature molten metal into the molding section, a pressurizing step of pressurizing the injected high-temperature molten metal, and a temperature at which the heating mechanism and cooling mechanism are operated to heat and maintain the pressurized high-temperature molten metal in a semi-solidified state. heating and cooling steps for controlling the inside of the forming part in a temperature range in which the pressurized high-temperature molten metal solidifies, and in which the solidification progresses to grow toward the inner end portion of the gas vent passage; , an intake process for forcibly drawing air into the gas vent passage;
After the pressurizing step is completed, the heating mechanism disposed near the inner end of the gas vent passage is activated to heat the inner end of the gas vent passage.

<作用> 而して、上記した本発明の技術的手段によれ
ば、成形型の型締め後、成形部内に高温溶湯が注
入され、該溶湯に加圧が掛けられた時点でガス抜
き路の成形部内に面する内端部分近傍に配設され
た加熱機構を作動させてガス抜き路の内端部分を
積極的に加熱せしめる。それによつて、高温溶湯
が成形部内に注入されその注入(充填)終了と略
同時に始まる該高温溶湯の成形部面(キヤビテイ
面)に接する外周部分の凝固に伴いガス抜き路の
内端部分に形成される凝固膜を該外周部分に比べ
て凝固するのが遅れる成形部内の中心部附近の溶
湯と同じ半凝固状態に融解せしめてガス抜き路の
内端部分に型外に通じる流通状態を確保せしめ、
加熱、冷却工程において加熱機構及び冷却機構に
より高温溶湯を半凝固状態に保持する温度領域に
成形部内を加温制御、その後に高温溶湯を凝固さ
せる温度領域に成形部内を降温制御するその温度
下降に伴う溶湯の凝固過程で発生する発生ガス
(内部ガス)は前記加圧工程による成形部内の圧
力によつて外部と流通せるガス抜き路の前記内端
部分側に押されて該ガス抜き路の強制的な吸気に
より外部に吸引排除される。
<Function> According to the technical means of the present invention described above, after the mold is clamped, high-temperature molten metal is injected into the molding part, and when the molten metal is pressurized, the gas vent passage is opened. A heating mechanism disposed near the inner end portion facing into the molded portion is activated to actively heat the inner end portion of the gas vent passage. As a result, the high-temperature molten metal is injected into the molding part, and as the outer peripheral part of the high-temperature molten metal in contact with the molding part surface (cavity surface) solidifies, which starts almost simultaneously with the end of the injection (filling), a formation occurs at the inner end of the gas vent passage. The solidified film is melted to the same semi-solidified state as the molten metal near the center of the molding part, where solidification is delayed compared to the outer peripheral part, thereby ensuring a flow condition in the inner end part of the gas vent passage to the outside of the mold. ,
In the heating and cooling process, the heating mechanism and cooling mechanism control the temperature inside the forming section to a temperature range that maintains the high-temperature molten metal in a semi-solidified state, and then control the temperature inside the forming section to a temperature range that solidifies the high-temperature molten metal. The generated gas (internal gas) generated during the solidification process of the molten metal is pushed toward the inner end portion of the gas vent passage that communicates with the outside by the pressure inside the molding part due to the pressurization process, and is forced into the gas vent passage. It is sucked out to the outside by the intake air.

<実施例> 本発明の実施例を図面に基づいて説明すると、
成形型Aは上型a1と下型a2との組からなり、1は
成形部、2は注入口、3,4は加圧ピン、5は前
記成形型Aの型構成部材の一部材となる中子であ
る。
<Example> An example of the present invention will be described based on the drawings.
The mold A consists of a set of an upper mold a 1 and a lower mold a 2 , 1 is a molding part, 2 is an injection port, 3 and 4 are pressure pins, and 5 is a part of the mold component of the mold A. This is the core.

上型a1はハイクロムモリブデン鋼などの耐熱金
属(焼結金属を含む)で形成し、この型a1内には
加熱機構6及び冷却機構6′を適宜に配設する。
The upper mold a 1 is made of a heat-resistant metal (including sintered metal) such as high chromium molybdenum steel, and a heating mechanism 6 and a cooling mechanism 6' are appropriately disposed within this mold a 1 .

下型a2はSi3N4系セラミツク型とし、該型に加
熱機構7及び冷却機構7′を配設する。
The lower mold a2 is a Si 3 N 4 ceramic mold, and a heating mechanism 7 and a cooling mechanism 7' are provided in the mold.

中子5はハイクロムモリブデン鋼などの耐熱金
属(焼結金属を含む)又はSi3N4系セラミツクで
もつて形成し、その軸方向両端面よりZrO2系ポ
ーラスセラミツク8′を貫挿着し、該ポーラスセ
ラミツク8′の内端を形成部1内に対面させてポ
ーラスセラミツク8′によりガス抜き路8を構成
する。
The core 5 is made of heat-resistant metal (including sintered metal) such as high chromium molybdenum steel or Si 3 N 4 ceramic, and ZrO 2 porous ceramic 8' is inserted and inserted from both axial end faces of the core 5. The inner end of the porous ceramic 8' faces the inside of the forming portion 1, and a gas venting passage 8 is formed by the porous ceramic 8'.

尚、ポーラスセラミツク8′の気孔率は例えば
Al基合金或いはCu基合金を溶解金属、所謂溶湯
mとして使用する場合は17%程度にすることが好
ましい。
Incidentally, the porosity of porous ceramic 8' is, for example,
When using an Al-based alloy or a Cu-based alloy as a molten metal, the so-called molten metal m is preferably about 17%.

そして、ガス抜き路8の成形部1内に面する内
端部分近傍の中子5内端部に加熱機構9を配設す
ると共に、ガス抜き路8の外端にはバキユーム機
構10を接続し、ガス抜き路8を介して成形部1
内を強制的に吸気する。
A heating mechanism 9 is disposed at the inner end of the core 5 near the inner end portion of the gas vent passage 8 facing into the molded part 1, and a vacuum mechanism 10 is connected to the outer end of the gas vent passage 8. , the molded part 1 via the gas vent passage 8
Forcefully inhale inside.

注入口2より注入する溶湯mは融点が700〜
1600℃の高温溶解金属を使用する。
The melting point of the molten metal m injected from the injection port 2 is 700~
Uses high temperature molten metal of 1600℃.

尚、上記成形型Aは下型a2のみをセラミツク材
としたが、上型a1をセラミツク材とすることもよ
く、またポーラスセラミツク8′を用いたガス抜
き路8は中子ではなく入中子又は組中子に形成す
ることも任意である。
In the above mold A, only the lower mold a 2 is made of ceramic material, but the upper mold a 1 may also be made of ceramic material, and the gas vent passage 8 using porous ceramic 8' is made of an inlet instead of a core. It is also optional to form it into a core or a set core.

次に、以上の如く構成した成形型Aを用た本成
形法の鋳造工程を説明する。
Next, the casting process of this molding method using mold A configured as above will be explained.

溶湯注入工程 成形型Aの型締め終了後、高温溶湯mを注入
口2より成形部1内に向けて注入充填する(第
1図参照)。
Molten Metal Injection Step After the mold A has been clamped, high-temperature molten metal m is injected into the molding part 1 through the injection port 2 (see Fig. 1).

この溶湯注入は低圧注入、高圧注入の何れで
あつてもよい。
This molten metal injection may be either low-pressure injection or high-pressure injection.

加圧工程 加圧ピン3,3′を成形部1方向に向けて所
定距離押動し、注入された成形部1内の溶湯m
を加圧せしめて成形部1内の圧力を高める(第
2図)。
Pressure process Pressure pins 3, 3' are pushed a predetermined distance toward the molding part 1, and the injected molten metal m in the molding part 1 is
to increase the pressure inside the molding section 1 (Fig. 2).

加熱、冷却工程 上記加圧工程の終了後、加熱機構9を作動
させて成形部1内に面するガス抜き路8の内端
部分(中子5の内端面部分)を積極的に加熱せ
しめ、高温溶湯mが成形部1内に注入されその
注入(充填)終了と略同時に始まる高温溶湯m
外周部分の凝固、即ち凝固成長が他の部分に比
べて速い成形部1面に接する高温溶湯m外周部
分の凝固に伴い前記ガス抜き路8の内端部分
(中子5の内端面部分を含む)に形成される凝
固膜を凝固が遅れる成形部1内の中心部付近の
溶湯と同じ半凝固状態に融解せしめて(第2図
参照)凝固膜による外部(型外)との流通遮断
を阻止し、ガス抜き路8を介する成形部1内と
外部との流通状態を鋳造工程最終時まで確実に
確保する様に加熱保持する(第3図参照)。
Heating and Cooling Step After the above pressurizing step is completed, the heating mechanism 9 is activated to actively heat the inner end portion of the gas venting passage 8 (the inner end surface portion of the core 5) facing into the molded part 1, The high-temperature molten metal m is injected into the molding section 1, and the high-temperature molten metal m starts almost at the same time as the injection (filling) ends.
As the outer peripheral portion solidifies, that is, the high-temperature molten metal in contact with the molded part 1 surface has a faster solidification growth than other portions, the inner end portion of the degassing passage 8 (including the inner end surface portion of the core 5) solidifies. ) is melted to the same semi-solidified state as the molten metal near the center of the molding part 1 where solidification is delayed (see Figure 2) to prevent the solidified film from blocking the flow to the outside (outside the mold). Then, the molded part 1 is heated and maintained in such a manner that the state of communication between the inside of the molded part 1 and the outside through the gas vent passage 8 is ensured until the end of the casting process (see FIG. 3).

この加熱気候9によるガス抜き路8内端部分
の流通状態の確保は該内端部分近傍の中子5並
びに上下両型a1,a2に挿入組込まれた周知の例
えば熱電対等の型温管理装置(図示せず)と加
熱機構9とを電気的に連繋せしめ、それによつ
て、ガス抜き路8の内端部分に凝固膜が鋳造工
程最終時まで形成されないように該内端部分の
温度(型温)を管理制御するものである。
The flow state of the inner end portion of the gas vent passage 8 by this heating climate 9 is ensured by mold temperature control using well-known thermocouples, etc. inserted into the core 5 and both upper and lower molds a 1 and a 2 near the inner end portion. The device (not shown) and the heating mechanism 9 are electrically connected, thereby controlling the temperature of the inner end portion of the gas vent passage 8 so that a solidified film is not formed at the inner end portion until the end of the casting process. This is to manage and control the mold temperature).

一方、加熱機構6,7は加圧工程の終了
後、即ち上記加熱機構9の作動開始と同時或い
は加圧工程と同時に作動させて成形部1内を
高温溶湯mが液層から固層に移り変る半凝固状
態の温度領域に加温制御し、その後冷却機構
6′,7′を作動させて高温溶湯mが凝固を開始
する温度領域に成形部1内の温度を制御し温度
下降させる。
On the other hand, the heating mechanisms 6 and 7 are operated after the pressurizing process is completed, that is, at the same time as the heating mechanism 9 starts operating, or simultaneously with the pressurizing process, so that the high temperature molten metal m changes from a liquid layer to a solid layer in the forming section 1. After that, the cooling mechanisms 6' and 7' are operated to control and lower the temperature inside the forming part 1 to a temperature range where the high temperature molten metal m starts to solidify.

この加熱、冷却工程において成形部1内の
高温溶湯mが、加熱機構9により積極的に加熱
され外部との流通が確保されているガス抜き路
8の内端部分に向けて次第に凝固が成長進行す
る様に成形部1内の温度制御を加熱機構6,7
及び冷却機構6′,7′により行ない、且つガス
抜き路8の内端部分に接する半凝固状態の高温
溶湯mが鋳造工程最終に凝固される様に温度制
御を加熱機構6,7及び冷却機構6′,7′によ
り行なう(第3図参照)。
In this heating and cooling process, the high-temperature molten metal m in the forming part 1 is actively heated by the heating mechanism 9, and solidification progresses gradually toward the inner end of the gas vent passage 8 where communication with the outside is ensured. The heating mechanisms 6 and 7 control the temperature inside the molding section 1 to
The heating mechanisms 6, 7 and the cooling mechanism control the temperature so that the semi-solidified high temperature molten metal m in contact with the inner end portion of the gas vent passage 8 is solidified at the end of the casting process. 6' and 7' (see Figure 3).

吸気工程 上記注入工程以前、即ち成形型Aの型締め
動作開始乃至型締め終了時にバキユーム機構1
0を作動させてポーラスセラミツク8′からな
るガス抜き路8に強制的に吸気をかけ、成形型
Aの前記型締め時や上記注入工程時に成形部
1内に浸入した巻込みガス(外気)を強制的に
吸引排除せしめ、注入工程終了と略同時に一
時停止させる。
Intake process Before the injection process, that is, from the start of the mold clamping operation to the end of the mold clamping operation, the vacuum mechanism 1
0 is activated to forcefully draw air into the gas vent passage 8 made of porous ceramic 8' to remove the entrained gas (outside air) that has entered the molding part 1 during the clamping of the mold A and the injection process. The suction is forcibly removed and the injection process is temporarily stopped almost at the same time as the end of the injection process.

そして、上記加熱、冷却工程における加熱
機構9の作動開始以前乃至該加熱機構9により
ガス抜き路8内端部分の凝固膜が融解されるタ
イミングにて再びバキユーム機構10を作動さ
せてガス抜き路8に吸気をかけつづけて前記加
熱、冷却工程の冷却機構6′,7′による成形
部1内の適度な温度下降に伴い成長進行する高
温溶湯mの凝固過程で発生し、上記加圧工程
による成形部1内の圧力によつてガス抜き路8
の内端部分側に押されてきた発生ガスを強制的
に吸手排除させる。
Then, before the heating mechanism 9 starts operating in the heating and cooling process, or at a timing when the heating mechanism 9 melts the coagulated film at the inner end portion of the gas venting path 8, the vacuum mechanism 10 is operated again to make the gas venting path 8. This occurs during the solidification process of the high-temperature molten metal m, which grows and progresses as the temperature in the forming section 1 is moderately lowered by the cooling mechanisms 6' and 7' in the heating and cooling process, and the forming process in the pressurizing process. Due to the pressure inside part 1, gas vent passage 8
The generated gas that has been pushed toward the inner end of the cylinder is forcibly removed by the suction device.

上記ガス抜き路8内端部分の凝固膜が加熱機
構9により融解された後に作動させるバキユー
ム機構10の作動タイミングの制御はガス抜き
路8の内端部分近傍に挿入組込まれた上記熱電
対等の型温管理装置によつて該内端部分の型温
管理を行ない、その型温管理即ち前記内端部分
の型温が加熱機構9により凝固膜が融解される
温度領域に上昇した時点を自動管理し、バキユ
ーム機構10を作動させるものである。
The operation timing of the vacuum mechanism 10, which is activated after the solidified film at the inner end of the gas vent passage 8 is melted by the heating mechanism 9, is controlled by the thermocouple or the like inserted in the vicinity of the inner end of the gas vent passage 8. The mold temperature of the inner end portion is controlled by a temperature control device, that is, the time when the mold temperature of the inner end portion rises to a temperature range where the solidified film is melted by the heating mechanism 9 is automatically controlled. , which operates the vacuum mechanism 10.

吸気工程の終了時に加熱機構9を停止さ
せ、所定時間が経過した後に冷却機構6′,
7′を停止させて成形型Aを型開きせしめて成
形された製品Mを取り出す。
At the end of the intake stroke, the heating mechanism 9 is stopped, and after a predetermined period of time, the cooling mechanism 6',
7' is stopped, the mold A is opened, and the molded product M is taken out.

<発明の効果> 本発明は叙上の如く、成形型の成形部内に対面
させて組込んだポーラスセラミツクからなる型外
に通じるガス抜き路の前記成形部内に面する内端
部分近傍に加熱機構を配設し、この加熱機構を鋳
造工程の内、加圧工程終了後作動させてガス抜き
路の内端部分を加熱せしめて該内端部分に形成さ
れる凝固膜を融解して成形部内に面するガス抜き
路の内端部分の凝固膜による型外との流通遮断を
阻止する様にしたから、注入工程、加圧工程、加
熱、冷却工程、吸気工程これら鋳造工程終了時ま
でガス抜き路を介する成形部内と型外との流通
(通気性)を確実に確保することが出来る。従つ
て、成形型の型締め時や高温溶湯の成形部内への
注入時に成形部内に浸入した巻込みガス(外気)
は勿論、高温溶湯の凝固が成長進行する凝固過程
で発生する発生ガス(内部ガス)を確実且つ有効
に排除することができ、従来法に比べて残留ガス
量を著しく減少させ、巣のない高品質の製品を鋳
造することができる。
<Effects of the Invention> As described above, the present invention includes a heating mechanism in the vicinity of the inner end portion facing the inside of the molding part of the gas vent passage leading to the outside of the mold, which is made of porous ceramic and is incorporated into the molding part of the molding mold so as to face each other. This heating mechanism is operated after the pressurizing process is completed during the casting process to heat the inner end of the gas vent passage, melting the solidified film formed on the inner end and melting it into the molded part. Since the solidified film on the inner end of the facing gas vent passage prevents the communication with the outside of the mold from being blocked, the gas vent passage remains closed until the end of the casting process, including the injection process, pressurization process, heating, cooling process, and suction process. It is possible to reliably ensure circulation (air permeability) between the inside of the molding part and the outside of the mold through the molding part. Therefore, entrained gas (outside air) that enters the molding part when the mold is clamped or when high-temperature molten metal is injected into the molding part.
Of course, it is possible to reliably and effectively eliminate the generated gas (internal gas) that is generated during the solidification process of high-temperature molten metal, and the amount of residual gas is significantly reduced compared to conventional methods, resulting in a high-temperature solution without voids. Capable of casting quality products.

依つて、所期の目的を達成し得た。 Thus, we were able to achieve our intended purpose.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明高温溶湯成形法の鋳造工程を示す
縦断面図であり、第1図は高温溶湯を成形部内に
注入している状態を示す、第2図は高温溶湯を加
圧せしめ且つガス抜き路の内端部分の凝固膜が融
解された状態を示す、第3図は高温溶湯の凝固が
ガス抜き路の内端部分に向けて順次に成長進行し
ている状態を示す、第4図は高温溶湯の凝固が終
了して製品が得られた状態を示す。 図中、Aは成形型、1は成形部、2は注入口、
3,4は加圧ピン、5は中子、6,7,9は加熱
機構、6′,7′は冷却機構、8はガス抜き路、
8′はポーラスセラミツク、mは溶湯である。
The drawings are longitudinal cross-sectional views showing the casting process of the high-temperature molten metal forming method of the present invention. Figure 1 shows the state in which the high-temperature molten metal is injected into the molding section, and Figure 2 shows the state in which the high-temperature molten metal is pressurized and degassed. Figure 3 shows a state in which the solidified film at the inner end of the passage is melted, and Figure 4 shows a state in which the solidification of the high-temperature molten metal is growing sequentially toward the inner end of the gas vent passage. This shows the state in which a product has been obtained after the solidification of high-temperature molten metal has been completed. In the figure, A is the mold, 1 is the molding part, 2 is the injection port,
3 and 4 are pressure pins, 5 is a core, 6, 7, and 9 are heating mechanisms, 6' and 7' are cooling mechanisms, 8 is a gas vent passage,
8' is porous ceramic, and m is molten metal.

Claims (1)

【特許請求の範囲】[Claims] 1 成形部内の温度を制御する加熱機構及び冷却
機構を具備する成形型の成形部内に対面させてポ
ーラスセラミツクを該成形型の型構成部材に組み
込みその成形部内から型外に通じるガス抜き路を
形成すると共に、そのガス抜き路の前記成形部内
に面する内端部分近傍に該内端部分に形成される
溶湯の凝固膜を融解する加熱機構を配設し、前記
成形部内に高温溶湯を注入する注入工程、注入さ
れた高温溶湯を加圧する加圧工程、前記加熱機構
及び冷却機構を作動させて加圧された高温溶湯を
半凝固状態に加温保持する温度領域に成形部内を
制御並びに加圧された高温溶湯が凝固する温度領
域で尚且つその凝固が前記ガス抜き路の内端部分
に向つて成長進行する温度領域に成形部内を制御
する加熱及び冷却工程、前記ガス抜き路を強制的
に吸気する吸気工程これら各鋳造工程の内、加圧
工程の終了後ガス抜き路の内端部分近傍に配設し
た前記加熱機構を作動させてガス抜き路の内端部
分を加熱する様にしたことを特徴とする高温溶湯
成形法。
1. Incorporating porous ceramic into a mold component of a mold, facing the inside of the molding part of the mold, which is equipped with a heating mechanism and a cooling mechanism for controlling the temperature inside the molding part, and forming a gas vent path leading from the inside of the molding part to the outside of the mold. At the same time, a heating mechanism for melting a solidified film of molten metal formed on the inner end portion is disposed near the inner end portion of the gas vent passage facing into the molding portion, and high temperature molten metal is injected into the molding portion. injection step, a pressurizing step of pressurizing the injected high-temperature molten metal, and controlling and pressurizing the inside of the molding part to a temperature range that maintains the pressurized high-temperature molten metal in a semi-solidified state by operating the heating mechanism and cooling mechanism. heating and cooling steps for controlling the inside of the forming part to a temperature range in which the high-temperature molten metal solidifies and in which the solidification progresses toward the inner end portion of the gas vent path; Intake step of drawing air Among these casting steps, after the pressurization step is completed, the heating mechanism disposed near the inner end of the gas vent passage is activated to heat the inner end of the gas vent passage. A high-temperature molten metal forming method characterized by:
JP60117734A 1985-05-30 1985-05-30 Molding method for high-temperature molten metal Granted JPS61276761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60117734A JPS61276761A (en) 1985-05-30 1985-05-30 Molding method for high-temperature molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60117734A JPS61276761A (en) 1985-05-30 1985-05-30 Molding method for high-temperature molten metal

Publications (2)

Publication Number Publication Date
JPS61276761A JPS61276761A (en) 1986-12-06
JPH0154151B2 true JPH0154151B2 (en) 1989-11-16

Family

ID=14718964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60117734A Granted JPS61276761A (en) 1985-05-30 1985-05-30 Molding method for high-temperature molten metal

Country Status (1)

Country Link
JP (1) JPS61276761A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145532A (en) * 1974-10-17 1976-04-19 Canon Kk Sukuriinbuzai oyobisono seizohoho
JPS5847538A (en) * 1981-09-14 1983-03-19 Alps Electric Co Ltd Metallic mold
JPS5916760B2 (en) * 1980-08-13 1984-04-17 日立造船株式会社 Combination mill using a large diameter intermediate bottom roll

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916760U (en) * 1982-07-16 1984-02-01 トヨタ自動車株式会社 casting mold

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145532A (en) * 1974-10-17 1976-04-19 Canon Kk Sukuriinbuzai oyobisono seizohoho
JPS5916760B2 (en) * 1980-08-13 1984-04-17 日立造船株式会社 Combination mill using a large diameter intermediate bottom roll
JPS5847538A (en) * 1981-09-14 1983-03-19 Alps Electric Co Ltd Metallic mold

Also Published As

Publication number Publication date
JPS61276761A (en) 1986-12-06

Similar Documents

Publication Publication Date Title
EP1944105A1 (en) Casting method
US4798237A (en) Molding die for use in casting
JP2519416B2 (en) Die casting method and die casting equipment
JPS60250867A (en) Method and device for die casting
JPH0811279B2 (en) Die casting method
US5183096A (en) Method and apparatus for single die composite production
CA1075874A (en) Method and apparatus for pore-free die casting
JPH0154151B2 (en)
US4727922A (en) Mold for high-temperature molten metal and method of producing high-melting metal article
JPH0744375Y2 (en) Pressure casting equipment
JPH0563264B2 (en)
JPS62230467A (en) Forming mold for casting
JP2977374B2 (en) Vacuum vertical injection casting machine
JP2004122146A (en) High-pressure casting method for thick-walled product
JPS63273558A (en) Vacuum die casting method
JPS61135470A (en) Low pressure casting device
JPH0544362U (en) Die casting machine
JP2517810B2 (en) Low pressure casting method
JPS63144852A (en) Horizontal casting device
JPH084904B2 (en) Mold for high temperature molten metal and method for manufacturing high temperature molten metal product
JP2576698B2 (en) Mold casting equipment
JP3576498B2 (en) Reduction casting method and reduction casting apparatus
JP3795837B2 (en) Metal injection molding method and apparatus
JPH0528547U (en) Vacuum die casting water heater
JP2987115B2 (en) Casting method and casting