JPH0154094B2 - - Google Patents

Info

Publication number
JPH0154094B2
JPH0154094B2 JP13602681A JP13602681A JPH0154094B2 JP H0154094 B2 JPH0154094 B2 JP H0154094B2 JP 13602681 A JP13602681 A JP 13602681A JP 13602681 A JP13602681 A JP 13602681A JP H0154094 B2 JPH0154094 B2 JP H0154094B2
Authority
JP
Japan
Prior art keywords
adsorbent
anion
chelate
inorganic
anions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13602681A
Other languages
Japanese (ja)
Other versions
JPS5836632A (en
Inventor
Yoshiaki Echigo
Tadashi Ishikura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP13602681A priority Critical patent/JPS5836632A/en
Publication of JPS5836632A publication Critical patent/JPS5836632A/en
Publication of JPH0154094B2 publication Critical patent/JPH0154094B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、特にリン酸アニオン、フツ素アニオ
ン、亜ヒ酸アニオン、等の有害な無機アニオンを
選択的に吸着する吸着剤とその製造法及びその利
用法に関するものである。 従来、これらの有害無機アニオンを除去するた
めの吸着剤としては、活性炭、活性アルミナ、水
酸化鉄などの金属水酸化物、ゼオライト、アニオ
ン交換樹脂、シリコン合金、金属担持型陽イオン
交換樹脂、金属を担持したイミノジ酢酸キレート
型キレート樹脂などがあり、これらを用いて上記
有害な無機アニオンを吸着除去する研究がなされ
ている。しかしながら、これらは、いずれも吸着
量が少なく、吸着剤を多量に必要とし、吸着剤の
寿命が低いなどの欠点を有している。したがつ
て、従来、公知の上記吸着剤を、上水、下水、工
業用水、工場廃液、ポイラー用水等から有害な無
機アニオンを除去するためには、コスト高とな
り、実用的には、不適当であつた。 そこで、本発明者らは、かかる欠点を解消すべ
く鋭意研究した結果、特定のキレート樹脂に金属
イオンを担持させると、無機アニオンに対して高
い吸着能を有し、かつ吸着剤の寿命がすぐれた吸
着剤が得られることを見い出し、また得られた吸
着剤が水中の無機アニオンをきわめて効率良く除
去できることを見い出し、本発明に到達した。 すなわち、本発明は、フエノール核に導入され
た一級及び/又は二級のアルキルアミノ基の水素
原子の一部又は全部がメチレンホスホン酸基で置
換されたキレート形成基を有するフエノール系キ
レート樹脂に金属イオンを担持せしめてなる無機
アニオン吸着剤及びフエノール核に導入された一
級及び/又は二級のアルキルアミノ基の水素原子
の一部又は全部がメチレンホスホン酸基で置換さ
れたキレート形成基を有するフエノール系キレー
ト樹脂(以下含リンフエノール系キレート樹脂と
いう。)と金属イオンを含有する金属塩水溶液と
を接触させることを特徴とする無機アニオン吸着
剤の製造法ならびにかかる吸着剤を用いて、水溶
液中の無機アニオンを吸着せしめることを特徴と
する吸着処理法である。 本発明に用いられる含リンフエノール系キレー
ト樹脂は先に特許出願した(特願昭55−36358号
(特公昭60−51491号公報参照))樹脂であり、た
とえば、次のような方法で製造することができ
る。すなわち、一級又は二級アルキルアミノ基を
含有するフエノール誘導体に、鉱酸の存在下で、
ホルムアルデヒドと亜リン酸を反応させ、アミノ
基のプロトンの一部又は全部をメチレンホスホン
酸に置換させ、しかる後、フエノール類とアルデ
ヒド類とを反応させゲル化させることにより製造
することができる。そのときに用いる一級又は二
級のアルキルアミノ基を含有するフエノール誘導
体としては、チロシン、アンモニアレゾール、サ
リチルアミン等、鉱酸としては、塩酸、硫酸、フ
エノール類としては、フエノール、レゾルシン、
アルデヒド類としては、ホルムアルデヒド、アセ
トアルドヒドが好ましい。また、本発明に用いら
れる含リンフエノール系キレート樹脂の形状は、
好ましくは、粒状が用いられるが、繊維状、板状
等いかなる状でもよい。 本発明において、前記の含リンフエノール系キ
レート樹脂に担持させる金属イオンとしては、い
かなる金属イオンであつてもよいが、その中でも
Fe3+,Sn4+,Ti4+,Al3+が好ましい。 本発明の吸着剤を製造するには、たとえば前記
の含リンフエノール系キレート樹脂と上記の金属
イオンを含有する金属塩水溶液とを接触させれば
よい。その接触させる方法としては、カラム法、
パツチ法のいずれの方法でもよい。また、接触さ
せる時の温度としては、5〜40℃が適当で、10〜
30℃が好ましい。また、金属塩水溶液としては、
たとえば塩化物の水溶液、硫酸塩の水溶液、硝酸
塩の水溶液があげられ、その濃度としては、0.5
〜10wt%が適当で、2〜5wt%が好ましく、PHと
しては、2〜7が適当で、3〜5が好ましい。 このようにして得られる吸着剤は無機アニオ
ン、特にリン酸アニオン、亜ヒ酸アニオン、フツ
素アニオンに対して高い吸着能を有するので、通
常のイオン交換樹脂と同様にして、無機アニオン
含有水溶液と接触させて、これを除去することが
できる。接触させる方法としては、パツチ法、カ
ラム法のいずれの方法を用いてもよい。また、そ
の時の接触温度としては、5℃〜40℃が適当で、
10℃〜30℃が好ましく、無機アニオンを含有する
水溶液のPHとしては、2〜8が適当で、4〜7が
好ましい。また、無機アニオンを吸着した吸着剤
から無機アニオンを脱着させるには、たとえば、
0.2〜1規定の塩酸又は硫酸水溶液を吸着剤に接
触させ、続いて、水洗すればよく、この方法によ
り、吸着剤は再生され、何回もくり返して使用す
ることができる。 本発明によれば、きわめて簡単で、かつ経済的
な方法で無機アニオン吸着剤を得ることができ、
また得られた吸着剤はリン酸アニオン、亜ヒ酸ア
ニオン、フツ素アニオンなどの無機アニオンに対
して高い吸着能を有し、かつ吸着剤の寿命もすぐ
てれいる。 次に実施例により本発明をさらに具体的に説明
する。 参考例 1 チロシン1モルと亜リン酸2モルとを20%塩酸
水溶液に溶解させて、撹拌しながら加熱還流させ
ておいた。この状態で、37%ホルマリン水溶液6
mlを1時間かかつて滴下し、さらに1時間還流さ
せながら、撹拌を続けた。ついで、室温に冷却し
た後、カ性ソーダを加えて、PH11のアルカリ性に
した。この液に、レゾルシン1.5モル、37%ホル
マリン5モルを加え、さらに、撹拌下n−パラフ
インを加えた。次いで、撹拌を続けながら、60℃
で1時間、80℃で1時間、90℃で1時間おのおの
加熱すると、内容物は粒状に固化を始めた。しか
る後、オートクレープに内容物をうつし、120℃
で5時間反応させて、ゲル化を完了させた。この
得られた粒状の樹脂をロ過により単離し、風乾、
水洗後、1NH2SO4溶液に浸漬し、樹脂をNa型か
らH型に変換させた。その後、この樹脂をロ別す
るとビーズ状の含リンフエノール系キレート樹脂
が得られた。 実施例 1 参考例1で製造した磁含リンフエノール系キレ
ート樹脂100c.c.を5wt%の塩化第二鉄水溶液(PH
3)500c.c.に25℃で48時間浸漬し、Fe3+イオンを
担持させた(以下この吸着剤をAとする。)。ま
た、同様にして含リンフエノール系キレート樹脂
100c.c.を5wt%の塩化第二スズ水溶液(PH5)500
c.c.に25℃で48時間浸漬しSn4+イオンを担持させ
た(以下この吸着剤をBとする。)。また、同様に
して四塩化チタン水溶液、塩化アルミニウム水溶
液を用いてTi4+イオン、Al3+イオンをそれぞれ
担持させた(以下これらの吸着剤をおのおのC,
Dとする。)。 比較例 1 イミノジ酢酸型キレート樹脂である三菱化成社
製ダイアイオンCR−10にも実施例1と同様にし
てFe3+イオン、Sn4+イオン、Ti4+イオン、Al3+
イオンをれぞれ担持せしめた(以下これらをおの
おの吸着剤E,F,G,Hとする。)。 実施例2〜5、比較例2〜5 実施例1で得た吸着剤A,B,C,D、及び比
較例1で得た吸着剤のE,F,G,H、おのおの
10c.c.を10mmφ×50mmのカラムに詰め、リン酸アニ
オン含有水溶液を、SV51/hr25℃で通液した。
このときのリン酸アニオン含有水溶液としては、
リンとして20ppmの濃度となるように、正リン酸
を用いて調整したものであり、また、この液のPH
は酢酸ソーダと塩酸でPHが6となるように調整し
たものである。 通液後、液中のリン酸濃度を測定することによ
りおのおのの吸着剤の0.5ppm破過点吸着容量を
求めた。 その結果を表1に示す。
The present invention particularly relates to an adsorbent that selectively adsorbs harmful inorganic anions such as phosphate anions, fluorine anions, arsenite anions, etc., and methods for producing and using the same. Conventionally, adsorbents for removing these harmful inorganic anions include activated carbon, activated alumina, metal hydroxides such as iron hydroxide, zeolites, anion exchange resins, silicon alloys, metal-supported cation exchange resins, and metals. There are iminodiacetic acid chelate type chelate resins that carry , and research is being conducted to adsorb and remove the harmful inorganic anions using these. However, all of these have drawbacks such as a small amount of adsorption, a large amount of adsorbent, and a short lifespan of the adsorbent. Therefore, the conventionally known adsorbents described above are expensive and unsuitable for practical use in order to remove harmful inorganic anions from tap water, sewage, industrial water, factory waste water, boiler water, etc. It was hot. Therefore, as a result of intensive research in order to eliminate such drawbacks, the present inventors found that when metal ions are supported on a specific chelate resin, it has a high adsorption capacity for inorganic anions and the life of the adsorbent is excellent. The inventors have now discovered that an adsorbent can be obtained, and that the obtained adsorbent can remove inorganic anions in water very efficiently, leading to the present invention. That is, the present invention provides a phenolic chelate resin having a chelate-forming group in which some or all of the hydrogen atoms of the primary and/or secondary alkylamino groups introduced into the phenol nucleus are substituted with methylenephosphonic acid groups. An inorganic anion adsorbent carrying ions and a phenol having a chelate-forming group in which some or all of the hydrogen atoms of the primary and/or secondary alkylamino group introduced into the phenol nucleus are substituted with a methylenephosphonic acid group. A method for producing an inorganic anion adsorbent characterized by contacting an aqueous solution of a metal salt containing a metal ion with an aqueous solution of a metal salt containing a metal ion, and a method for producing an inorganic anion adsorbent, which is characterized by bringing an aqueous solution of a metal salt containing a metal ion into contact with an aqueous chelate resin (hereinafter referred to as a phosphophenol-containing chelate resin). This is an adsorption treatment method characterized by adsorbing inorganic anions. The phosphophenol-containing chelate resin used in the present invention is a resin for which a patent application has been previously applied (Japanese Patent Application No. 55-36358 (see Japanese Patent Publication No. 60-51491)), and can be produced, for example, by the following method. be able to. That is, in the presence of a mineral acid, a phenol derivative containing a primary or secondary alkylamino group,
It can be produced by reacting formaldehyde and phosphorous acid to replace some or all of the protons of amino groups with methylenephosphonic acid, and then reacting phenols and aldehydes to form a gel. Phenol derivatives containing a primary or secondary alkylamino group used at that time include tyrosine, ammonia aresol, salicylamine, etc. Mineral acids include hydrochloric acid, sulfuric acid, and phenols include phenol, resorcinol,
As the aldehydes, formaldehyde and acetaldehyde are preferred. Furthermore, the shape of the phosphophenol-containing chelate resin used in the present invention is as follows:
Preferably, a granular shape is used, but any shape such as a fibrous shape or a plate shape may be used. In the present invention, any metal ion may be supported on the phosphor-containing chelate resin, but among them,
Fe 3+ , Sn 4+ , Ti 4+ , and Al 3+ are preferred. In order to produce the adsorbent of the present invention, for example, the above-mentioned phosphor-containing chelate resin and the above-mentioned metal salt aqueous solution containing the metal ions may be brought into contact with each other. The contact method includes column method,
Any patch method may be used. In addition, the appropriate temperature for contact is 5 to 40℃, and 10 to 40℃.
30°C is preferred. In addition, as a metal salt aqueous solution,
For example, chloride aqueous solutions, sulfate aqueous solutions, and nitrate aqueous solutions are mentioned, and their concentration is 0.5
-10wt% is suitable, preferably 2-5wt%, and the pH is suitably 2-7, preferably 3-5. The adsorbent obtained in this way has a high adsorption capacity for inorganic anions, especially phosphate anions, arsenite anions, and fluorine anions, so it can be used in the same manner as ordinary ion exchange resins to absorb inorganic anion-containing aqueous solutions. It can be removed by contacting it. As the contacting method, either a patch method or a column method may be used. In addition, the appropriate contact temperature at that time is 5°C to 40°C.
The temperature is preferably 10°C to 30°C, and the pH of the aqueous solution containing the inorganic anion is suitably 2 to 8, preferably 4 to 7. In addition, in order to desorb inorganic anions from an adsorbent that has adsorbed inorganic anions, for example,
The adsorbent may be brought into contact with a 0.2 to 1 N aqueous solution of hydrochloric acid or sulfuric acid, and then washed with water. By this method, the adsorbent is regenerated and can be used repeatedly. According to the present invention, an inorganic anion adsorbent can be obtained in an extremely simple and economical manner,
Furthermore, the obtained adsorbent has a high adsorption capacity for inorganic anions such as phosphate anions, arsenite anions, and fluorine anions, and has an excellent adsorbent life. Next, the present invention will be explained in more detail with reference to Examples. Reference Example 1 1 mole of tyrosine and 2 moles of phosphorous acid were dissolved in a 20% aqueous hydrochloric acid solution, and the solution was heated to reflux with stirring. In this state, 37% formalin aqueous solution 6
ml was added dropwise over an hour and continued stirring while refluxing for an additional hour. Then, after cooling to room temperature, caustic soda was added to make the mixture alkaline to pH 11. To this solution, 1.5 mol of resorcin and 5 mol of 37% formalin were added, and further, n-paraffin was added with stirring. Then, while stirring, the temperature was increased to 60°C.
After heating for 1 hour at 100°C, 1 hour at 80°C, and 1 hour at 90°C, the contents began to solidify into granules. After that, transfer the contents to an autoclave and heat at 120℃.
The gelation was completed by reacting for 5 hours. The resulting granular resin was isolated by filtration, air-dried,
After washing with water, the resin was immersed in a 1NH 2 SO 4 solution to convert the resin from Na type to H type. Thereafter, this resin was filtered to obtain bead-shaped phosphophenol-containing chelate resin. Example 1 100 c.c. of the magnetic phosphorphenol chelate resin produced in Reference Example 1 was mixed with a 5 wt% ferric chloride aqueous solution (PH
3) It was immersed in 500c.c. at 25°C for 48 hours to support Fe 3+ ions (hereinafter, this adsorbent will be referred to as A). In addition, in the same way, phosphorus-containing chelate resin
100c.c. 5wt% stannic chloride aqueous solution (PH5) 500
cc at 25° C. for 48 hours to support Sn 4+ ions (hereinafter, this adsorbent will be referred to as B). Similarly, titanium tetrachloride aqueous solution and aluminum chloride aqueous solution were used to support Ti 4+ ions and Al 3+ ions, respectively (hereinafter, these adsorbents were used to support C, C, and Al 3+ ions, respectively).
Let it be D. ). Comparative Example 1 In the same manner as in Example 1, Fe 3+ ions, Sn 4+ ions, Ti 4+ ions, and Al 3+ were added to Diaion CR-10 manufactured by Mitsubishi Kasei, which is an iminodiacetic acid type chelate resin.
Each adsorbent was made to support ions (hereinafter, these will be referred to as adsorbents E, F, G, and H, respectively). Examples 2 to 5, Comparative Examples 2 to 5 Adsorbents A, B, C, and D obtained in Example 1, and E, F, G, and H of the adsorbent obtained in Comparative Example 1, respectively.
10 c.c. was packed into a 10 mmφ x 50 mm column, and an aqueous solution containing phosphate anions was passed therethrough at SV51/hr25°C.
The phosphate anion-containing aqueous solution at this time is
The concentration of phosphorus was adjusted to 20ppm using orthophosphoric acid, and the pH of this solution was
The pH was adjusted to 6 using sodium acetate and hydrochloric acid. After passing through the solution, the 0.5 ppm breakthrough adsorption capacity of each adsorbent was determined by measuring the phosphoric acid concentration in the solution. The results are shown in Table 1.

【表】【table】

【表】 表1より本発明の吸着剤が高い吸着能を有して
いることが明らかである。 実施例6〜9、比較例6〜9 実施例1で得た吸着剤A,B,C,D、及び比
較例1で得た吸着剤E,F,G,H、おのおの10
c.c.を10mmφ×50mmのカラムに詰め、フツ素アニオ
ン含有水溶液をS,V51/hr25℃で通液した。こ
のときのフツ素アニオン含有水溶液は、Fとし
て、10ppmの濃度となるように、フツ化ソーダを
用いて調整したものであり、また、この液のPH
は、酢酸ソーダと塩酸でPHが6となるように調整
したものである。 通液後、液中のフツ素アニオン濃度を測定する
ことにより、おのおのの吸着剤の0.5ppm破過点
吸着容量を求めた。 その結果を表2に示す。
[Table] It is clear from Table 1 that the adsorbent of the present invention has high adsorption capacity. Examples 6 to 9, Comparative Examples 6 to 9 Adsorbents A, B, C, and D obtained in Example 1, and adsorbents E, F, G, and H obtained in Comparative Example 1, each with 10
cc was packed into a column of 10 mmφ x 50 mm, and an aqueous solution containing fluorine anions was passed therethrough at S, V51/hr25°C. The aqueous solution containing fluorine anions at this time was adjusted using sodium fluoride to have a concentration of 10 ppm as F, and the pH of this solution was
The pH was adjusted to 6 using sodium acetate and hydrochloric acid. After passing through the solution, the fluorine anion concentration in the solution was measured to determine the 0.5 ppm breakthrough adsorption capacity of each adsorbent. The results are shown in Table 2.

【表】 実施例10〜13、比較例10〜13 実施例1で得た吸着剤A,B,C,D、及び比
較例1で得た吸着剤E,F,G,H、おのおの10
c.c.を10mmφ×50mmのカラムに詰め、亜ヒ酸アニオ
ン含有水溶液をS,V,51/hr25℃で通液した。
亜ヒ酸アニオン含有水力液は、Asとして、
20ppmの濃度となるように三酸化二ヒ素を用いて
調整したものであり、また、この液のPHは酢酸ソ
ーダと塩酸でPHが6となるように調整したもので
ある。 通液後、液中のヒ素濃度を測定することによ
り、おのおのの吸着剤の0.5ppm破過点吸着容量
を求めた。 その結果を表3に示す。
[Table] Examples 10 to 13, Comparative Examples 10 to 13 Adsorbents A, B, C, D obtained in Example 1, and Adsorbents E, F, G, H obtained in Comparative Example 1, each 10
cc was packed in a 10 mmφ x 50 mm column, and an arsenite anion-containing aqueous solution was passed therethrough at S, V, 51/hr at 25°C.
Hydraulic fluid containing arsenite anion, as As,
The concentration was adjusted to 20 ppm using diarsenic trioxide, and the pH of this liquid was adjusted to 6 using sodium acetate and hydrochloric acid. After passing through the solution, the arsenic concentration in the solution was measured to determine the 0.5 ppm breakthrough adsorption capacity of each adsorbent. The results are shown in Table 3.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 フエノール核に導入された一級及び/又は二
級のアルキルアミノ基の水素原子の一部又は全部
がメチレンホスホン酸基で置換されたキレート形
成基を有するフエノール系キレート樹脂に金属イ
オンを担持せしめてなる無機アニオン吸着剤。 2 金属イオンが、Fe3+,Al3+,Ti4+又はSn4+
である特許請求の範囲第1項記載の吸着剤。 3 フエノール核に導入された一級及び/又は二
級のアルキルアミノ基の水素原子の一部又は全部
がメチレンホスホン酸基で置換されたキレート形
成基を有するフエノール系キレート樹脂と金属イ
オンを含有する金属塩水溶液とを接触させること
を特徴とする無機アニオン吸着剤の製造法。 4 金属イオンが、Fe3+,Al3+,Ti4+又はSn4+
である特許請求の範囲第3項記載の製造法。 5 フエノール核に導入された一級及び/又は二
級のアルキルアミノ基の水素原子の一部又は全部
がメチレンホスホン酸基で置換されたキレート形
成基を有するフエノール系キレート樹脂に金属イ
オンを担持せしめてなる無機アニオン吸着剤を用
いて、水溶液中の無機アニオンを吸着せしめるこ
とを特徴とする吸着処理法。 6 無機アニオンが、リン酸アニオン、亜ヒ酸ア
ニオンまたはフツ素アニオンである特許請求の範
囲第5項記載の吸着処理法。
[Scope of Claims] 1. A phenolic chelate resin having a chelate-forming group in which some or all of the hydrogen atoms of a primary and/or secondary alkylamino group introduced into a phenol nucleus are substituted with a methylenephosphonic acid group. An inorganic anion adsorbent that supports metal ions. 2 The metal ion is Fe 3+ , Al 3+ , Ti 4+ or Sn 4+
The adsorbent according to claim 1. 3 A phenolic chelate resin having a chelate-forming group in which some or all of the hydrogen atoms of the primary and/or secondary alkylamino group introduced into the phenol nucleus are substituted with a methylene phosphonic acid group, and a metal containing a metal ion. A method for producing an inorganic anion adsorbent, which comprises contacting the adsorbent with an aqueous salt solution. 4 The metal ion is Fe 3+ , Al 3+ , Ti 4+ or Sn 4+
The manufacturing method according to claim 3. 5. Metal ions are supported on a phenolic chelate resin having a chelate-forming group in which some or all of the hydrogen atoms of the primary and/or secondary alkylamino groups introduced into the phenol nucleus are substituted with methylene phosphonic acid groups. An adsorption treatment method characterized by adsorbing inorganic anions in an aqueous solution using an inorganic anion adsorbent. 6. The adsorption treatment method according to claim 5, wherein the inorganic anion is a phosphate anion, an arsenite anion, or a fluorine anion.
JP13602681A 1981-08-28 1981-08-28 Inorganic anion adsorbent, its manufacture, and adsorption treatment Granted JPS5836632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13602681A JPS5836632A (en) 1981-08-28 1981-08-28 Inorganic anion adsorbent, its manufacture, and adsorption treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13602681A JPS5836632A (en) 1981-08-28 1981-08-28 Inorganic anion adsorbent, its manufacture, and adsorption treatment

Publications (2)

Publication Number Publication Date
JPS5836632A JPS5836632A (en) 1983-03-03
JPH0154094B2 true JPH0154094B2 (en) 1989-11-16

Family

ID=15165445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13602681A Granted JPS5836632A (en) 1981-08-28 1981-08-28 Inorganic anion adsorbent, its manufacture, and adsorption treatment

Country Status (1)

Country Link
JP (1) JPS5836632A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168307A (en) * 1984-09-13 1986-04-08 Unitika Ltd Purification of sulfuric acid solution
US4830837A (en) * 1987-08-03 1989-05-16 Olin Corporation Process for removing aluminum from concentrated alkali metal halide brines
JPH01156752U (en) * 1988-04-21 1989-10-27
JP3999596B2 (en) * 2002-08-02 2007-10-31 中部キレスト株式会社 Arsenic-trapping fiber and arsenic-containing water treatment method using the same

Also Published As

Publication number Publication date
JPS5836632A (en) 1983-03-03

Similar Documents

Publication Publication Date Title
CN101343093B (en) Method for deeply purifying minim phosphor in water with composite resin
US4383104A (en) Phenolic chelate resin, process for producing the same, and method of recovering heavy metal ions with the same
US5863438A (en) Processes for deionization and demineralization of fluids
JPH0356783B2 (en)
US2004257A (en) Purification of water by zeolites
JPH0154094B2 (en)
US20120107215A1 (en) Method of removing and recovering silica using modified ion exchange materials
US3156531A (en) Hydrogen peroxide purification
JPS6055448B2 (en) How to recover uranium from seawater
US2373632A (en) Removal of fluorine from water
US2157510A (en) Process for effecting anion exchange
JPS6259998B2 (en)
JP2008049316A (en) Removal method of selenium and/or arsenic in waste liquid
US3004824A (en) Copper phosphate salts
JPH0716563A (en) Separation of phosphate ion from phosphate ion-containing aqueous solution
JPH0771636B2 (en) Purification method of inorganic salt bath
CN109248647B (en) Modified hydrotalcite/iron oxyhydroxide composite material and preparation method thereof
US2803520A (en) Preparation of aluminum halide from other aluminum salts
RU2246985C1 (en) Titanium phosphate-based sorbent preparation method
Kadlec et al. Separation of uin‐and multivalent cations and selective de‐ionisation by a phosphonic cation exchanger
KR20090022580A (en) Manufacturing method of composition for removing boron in seawater
JPS6353128B2 (en)
JPS6050192A (en) Purifying method of copper electrolyte
RU2073562C1 (en) Method of preparing ferric hydroxyhydrate-based sorbent
JPS6210927B2 (en)