JPH0153973B2 - - Google Patents

Info

Publication number
JPH0153973B2
JPH0153973B2 JP59165695A JP16569584A JPH0153973B2 JP H0153973 B2 JPH0153973 B2 JP H0153973B2 JP 59165695 A JP59165695 A JP 59165695A JP 16569584 A JP16569584 A JP 16569584A JP H0153973 B2 JPH0153973 B2 JP H0153973B2
Authority
JP
Japan
Prior art keywords
carbonate
weight
refractive index
high refractive
allyl carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59165695A
Other languages
Japanese (ja)
Other versions
JPS6144932A (en
Inventor
Kanji Sakata
Yasuji Kida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP59165695A priority Critical patent/JPS6144932A/en
Publication of JPS6144932A publication Critical patent/JPS6144932A/en
Publication of JPH0153973B2 publication Critical patent/JPH0153973B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の技術分野) 本発明は耐衝撃性、成型性、透明性などに優れ
たアリルカーボネート系高屈折率樹脂成型品の表
面に硬化性被膜を密着性よく形成するアリルカー
ボネート系高屈折率樹脂成型品の製造方法に関す
るものである。 (発明の背景技術) 透明性に優れた合成樹脂は、無機ガラスに対し
耐衝撃性が高い、軽量、良好な成型性や染色性な
どの特徴を生かして光学レンズ、眼鏡レンズ、プ
リズム、ガラス板などに有機ガラスとして巾広く
使用されている。最近、この有機ガラスの特徴を
更に高めるために、従来の合成樹脂、例えばポリ
アリルジグリコールカーボネートの屈折率
(1.50)に対して、より屈折率の高い透明性合成
樹脂の開発が盛んに行なわれている。本出願人も
特に耐衝撃性に優れた高屈折率樹脂として、ビス
(オキシアルキレンフエニル)ジアリルカーボネ
ートと芳香環を有するジアリルエステルおよび芳
香環を有するモノアリルカーボネートとを共重合
してなるアリルカーボネート系の合成樹脂を提供
した。しかしながら、かかるアリルカーボネート
系の高屈折率合成樹脂も、従来の透明性合成樹脂
と同様に耐溶剤性、表面硬度、耐擦傷性に乏し
く、有機溶剤によつて侵されて樹脂表面の失透や
擦傷によつて透明性が損われ易い欠点を有する。 (発明が解決しようとする問題点) 本発明は上記したアリルカーボネート系高屈折
率樹脂の欠点を補うために、従来の合成樹脂と同
様に該樹脂の表面に硬質被膜を密着性よく形成し
て良好なアリルカーボネート系高屈折率樹脂成型
品を得ることを目的とするものである。このよう
な硬質被膜については数多くの提案がなされてい
るが、それらの中ではシリコン系、メラミン系、
エポキシ系、アクリル系等が硬度や耐久性に優れ
ており、その一部は既に実用化されている。しか
しながら、これら硬質被膜は単に合成樹脂の表面
上に形成しても、該合成樹脂との密着性が不十分
なために膜はがれを生じて、性能を十分に発揮で
きないことがある。 本発明の対象とするアリルカーボネート系高屈
折率樹脂も後述するように、特にシリコン系等の
硬質被膜との密着性が不良で膜はがれを生ずる問
題があつた。 一般に被膜の密着性を向上する方法には、硬化
性物質に密着性を向上する成分を添加する方法
や、合成樹脂と硬質被膜の双方に密着可能な下塗
り層を両者の間に設ける方法、そして合成樹脂の
表面を硬化性物質で被膜する前に処理して活性化
する方法などがある。しかし、硬化性物質に密着
性付与成分を添加する方法は硬質被膜の性能低下
をまねいたり、下塗り層を設ける方法は長期間の
使用や高温多湿雰囲気下で膜はがれを生ずる場合
があつて十分でない。また、合成樹脂の表面を前
処理する方法は、該合成樹脂の性状を損うことな
く硬質被膜との良好な密着性を達成するために
は、該合成樹脂の種類に応じて処理剤あるいは処
理条件を選択することが極めて重要である。 (問題を解決するための手段) 本発明者はアリルカーボネート系高屈折率樹脂
成型品の表面に密着性に優れた耐久性のある硬質
被膜を形成する方法を鋭意研究した結果、該アリ
ルカーボネート系高屈折率樹脂成型品をアルカリ
溶液で前処理することによつて、形成される硬質
被膜の基材との密着性が著しく優れていることを
見出し、本発明を完成するに至つた。即ち、本発
明は、(i)ビス(オキシアルキレンフエニル)ジア
リルカーボネートまたはそれらの誘導体、(ii)芳香
環を有するジアリルエステルおよび(iii)芳香環を有
するモノアリルカーボネートの少くとも3成分を
含む共重合体よりなる成型体の表面を予めアルカ
リ溶液と接触処理した後、硬化性物質で被膜する
ことを特徴とする高屈折率樹脂成型品の製造方法
である。 本発明の対象とするアリルカーボネート系高屈
折率樹脂は、透明性が高く特に耐衝撃性に優れた
新規な高屈折率樹脂であり、(i)下記の一般式で示
されるビス(オキシアルキレンフエニル)ジアリ
ルカーボネートまたはそれらの誘導体、(ii)芳香環
を有するジアリルエステルおよび(iii)芳香環を有す
るモノアリルカーボネートの少くとも3成分を含
む単量体混合物を共重合して得られる共重合体で
あり、顕微鏡、カメラ等の光学レンズやプリズ
ム、あるいは眼鏡レンズ、そして防塵ガラス、風
防ガラス等の有機ガラスで代表される透明性重合
体である。 ビス(オキシアルキレンフエニル)ジアリルカ
ーボネートまたはそれらの誘導体としては、下記
一般式で示されるものである。 (上記の式において、 R1はH、CH3 R2は−CH2CH2O−、
(Technical Field of the Invention) The present invention is an allyl carbonate high refractive index resin that forms a curable film with good adhesion on the surface of an allyl carbonate high refractive index resin molded product that has excellent impact resistance, moldability, transparency, etc. This invention relates to a method for manufacturing molded products. (Background Art of the Invention) Synthetic resins with excellent transparency are used in optical lenses, eyeglass lenses, prisms, and glass plates by taking advantage of their characteristics such as high impact resistance, light weight, and good moldability and dyeability compared to inorganic glass. It is widely used as an organic glass. Recently, in order to further enhance the characteristics of this organic glass, efforts have been made to develop transparent synthetic resins with a higher refractive index than that of conventional synthetic resins, such as polyallyl diglycol carbonate (1.50). ing. The present applicant also uses allyl carbonate, which is produced by copolymerizing bis(oxyalkylene phenyl) diallyl carbonate, diallyl ester having an aromatic ring, and monoallyl carbonate having an aromatic ring, as a high refractive index resin with particularly excellent impact resistance. system of synthetic resins. However, like conventional transparent synthetic resins, such allyl carbonate-based high refractive index synthetic resins also lack solvent resistance, surface hardness, and scratch resistance, and are attacked by organic solvents, causing devitrification of the resin surface. It has the disadvantage that transparency is easily impaired by scratches. (Problems to be Solved by the Invention) In order to compensate for the above-described drawbacks of the allyl carbonate-based high refractive index resin, the present invention forms a hard coating on the surface of the resin with good adhesion, similar to conventional synthetic resins. The purpose is to obtain a good allyl carbonate-based high refractive index resin molded product. Many proposals have been made for such hard coatings, among which silicone-based, melamine-based,
Epoxy-based, acrylic-based, etc. have excellent hardness and durability, and some of them are already in practical use. However, even if these hard coatings are simply formed on the surface of a synthetic resin, the film may peel off due to insufficient adhesion to the synthetic resin, and its performance may not be fully exhibited. As will be described later, the allyl carbonate-based high refractive index resin that is the object of the present invention also has the problem of poor adhesion to hard coatings such as silicone-based coatings, resulting in film peeling. Generally, methods for improving the adhesion of a film include adding an adhesion-improving component to a curable substance, providing an undercoat layer that can adhere to both the synthetic resin and the hard film, and There is a method of treating and activating the surface of a synthetic resin before coating it with a curable substance. However, the method of adding an adhesion-imparting component to a curable substance may lead to a decrease in the performance of the hard coating, and the method of providing an undercoat layer may cause the film to peel after long-term use or in a high-temperature, humid atmosphere, so it is not sufficient. . In addition, in order to achieve good adhesion with the hard coating without impairing the properties of the synthetic resin, the method of pre-treating the surface of the synthetic resin requires a treatment agent or treatment depending on the type of the synthetic resin. The selection of conditions is extremely important. (Means for Solving the Problem) As a result of intensive research into a method for forming a durable hard coating with excellent adhesion on the surface of an allyl carbonate-based high refractive index resin molded product, the present inventor found that the allyl carbonate-based high refractive index resin molded product The present inventors have discovered that by pre-treating a high refractive index resin molded product with an alkaline solution, the adhesion of the formed hard coating to the base material is significantly superior, leading to the completion of the present invention. That is, the present invention includes at least three components: (i) bis(oxyalkylene phenyl) diallyl carbonate or a derivative thereof, (ii) diallyl ester having an aromatic ring, and (iii) monoallyl carbonate having an aromatic ring. This is a method for producing a high refractive index resin molded article, which is characterized in that the surface of a molded article made of a copolymer is previously contacted with an alkaline solution and then coated with a curable substance. The allyl carbonate high refractive index resin that is the object of the present invention is a new high refractive index resin that has high transparency and particularly excellent impact resistance. A copolymer obtained by copolymerizing a monomer mixture containing at least three components: enyl) diallyl carbonate or a derivative thereof, (ii) diallyl ester having an aromatic ring, and (iii) monoallyl carbonate having an aromatic ring. It is a transparent polymer typified by optical lenses and prisms for microscopes and cameras, eyeglass lenses, and organic glasses such as dustproof glass and windshield glass. The bis(oxyalkylene phenyl) diallyl carbonate or a derivative thereof is represented by the following general formula. (In the above formula, R 1 is H, CH 3 R 2 is -CH 2 CH 2 O-,

【式】【formula】

【式】 XはCl、Br Yは−、−O−、−CO−、−SO2−、−CH2−、−
CH=CH−、
[Formula] X is Cl, Br Y is -, -O-, -CO-, -SO 2 -, -CH 2 -, -
CH=CH−,

【式】 mおよびnは1、2、3又は4の整数で、aは
0、1、2、3又は4の整数、lは1、又は2の
整数) 特に代表的に使用されるビス−(オキシアルキ
レンフエニル)ジアリルカーボネートまたはそれ
らの誘導体を具体的に例示すれば、 等、及びこれらの混合物である。 また、芳香環を有するジアリルエステルとして
は、例えばジアリルフタレート、ジアリルテレフ
タレート、ジアリルイソフタレート、トリアリル
イソシアヌレートなどが好適であり、原料のビス
(オキシアルキレンフエニル)ジアリルカーボネ
ートまたはそれらの誘導体に対して1〜99重量
%、特に5〜80重量%の範囲で用いられる。 さらにまた、芳香環を有するモノアリルカーボ
ネートとしては、例えばベンジルアリルカーボネ
ート、フエノキシエチルアリルカーボネート、メ
タブロムペンジルアリルカーボネート、パラシア
ノベンジルアリルカーボネート、フエニルアリル
カーボネートなどが好適に用いられる。芳香環を
有するモノアリルカーボネートの使用量は、ビス
(オキシアルキレンフエニル)ジアリルカーボネ
ートまたはそれらの誘導体および芳香環を有する
ジアリルエステル、あるいは必要により共重合可
能な他の単量体よりなる混合組成物に対して、一
般に0.5〜20重量%、特に1〜15重量%の範囲で
選択することが好ましい。 なお、本発明においては目的とする耐衝撃性に
優れた高屈折率樹脂を得るために、さらにポリオ
キシアルキレンポリオールポリアリルカーボネー
トを併用することが効果的である。かかるポリオ
キシアルキレンポリオールポリアリルカーボネー
トとしては、ジエチレングリコールビス(アリル
カーボネート)のほか、特に分子量が150以上、
好ましくは20〜1200であるポリオキシアルキレン
ポリオールのポリアリルカーボネートを併用する
ことが極めて効果的である。 本発明の目的とする耐衝撃性に優れた高屈折率
樹脂を製造するためには、ビス(オキシアルキレ
ンフエニル)ジアリルカーボネートまたはそれら
の誘導体、および芳香環を有するジアリルエステ
ル、また必要により共重合可能な他の単量体と共
に、芳香環を有するモノアリルカーボネートを必
須成分としてラジカル重合開始剤の存在、紫外
線、放射線の照射など、公知のラジカル重合方法
を用いて得られる。なお、本発明における重合方
法は特に限定的でなく、公知の重合方法を採用出
来る。代表的な重合方法を例示すると注型重合方
法である。例えばエラストマーガスケツトまたは
スペーサーで保持されているモールド間に、ラジ
カル重合開始剤を含む前記単量体を注入し、空気
炉中で硬化させた後取出すとよい。また、あらか
じめ重合開始剤の存在下に前記単量体を予備的に
重合させて、該単量体の粘度をあげたのち注型重
合することも出来る。勿論、前記重合に際し、離
型剤、紫外線吸収剤、酸化防止剤、着色防止剤、
帯電防止剤、ケイ光染料等の各種安定剤、添加剤
は必要に応じて選択して使用することが出来る。 本発明においては、上記したアリルカーボネー
ト系の重合体を所望の形状に成型して、前処理に
供する。 (作用) 本発明において、アリルカーボネート系高屈折
率樹脂成型品の表面処理に用いられる効果的なア
ルカリ溶液としては、一般式RnH3oNで表わさ
れるアミン類(ここでRはC1〜C6の脂肪族ある
いはC6〜C10の芳香族の各々が同一あるいは異種
の炭化水素基で、nは1、2、3の整数)、リチ
ウム、ナトリウム、カリウム、ルビジウム、セシ
ウムのアルカリ金属の水酸化物およびアルコラー
トそしてアンモニア等の塩基性化合物の単独ある
いは2種以上の混合物からなる溶液を挙げること
ができる。就中、特に塩基性の強いナトリウムや
カリウムの水酸化物あるいはアルコラートを含む
アルカリ溶液が処理効果が高く、密着性に優れた
耐久性のある硬質被膜をアリルカーボネート系高
屈折率樹脂成型品の表面に形成するための前処理
に好適に使用される。溶媒は上記の塩基性化合物
を溶解するものなら特に制限なく使用できるが、
溶解性や作業性の点などから通常は水が使用され
る。また、メチルアルコールやエチルアルコール
などのアルコール類やメチルセロソルブなどのセ
ロソルブ類等の有機系溶媒は、上記の塩基性化合
物を溶解し、また水との相溶性が良好なために、
水との混合溶媒系としても使用できる。したがつ
て、アルカリ金属アルコラートは、アルコール溶
液で、また水を誘加した水−アルコール混合溶媒
系で使用してもよい。 アルカリ溶液中の上記塩基性化合物の濃度は、
処理時間や処理温度によつて変動するが一般に1
〜50重量%の範囲が好ましく、これ以下では処理
に長時間を必要とするばかりでなく、処理効果も
十分でない。また、これ以上の濃度では処理効果
が特に向上することもない。 アリルカーボネート系高屈折率樹脂成型品のア
ルカリ溶液による処理は、該成型品とアルカリ溶
液で接触することによつて行なわれる。処理法と
しては、浸漬法、スプレー法、フロー法が挙げら
れるが、作業性等の点で該成型品をアルカリ溶液
に浸漬する浸漬法が好適である。接触時間(処理
時間)は5〜70℃で30秒〜1時間が一応の目安と
なる。 アルカリ溶液で処理したアリルカーボネート系
高屈折率樹脂の成型品は、水あるいは上記の塩基
性化合物を溶解する蒸発性の有機溶媒で十分に洗
浄し乾燥することによつて、硬化性物質を被覆す
る前の該成型品の表面前処理を終了する。なお、
本発明のアルカリ溶液処理に先立ち、該成型品は
アルカリ溶液との接触を効果的に進行させるため
に、予めその表面を十分に脱脂洗浄することが好
ましい。 本発明において、アリルカーボネート系高屈折
率樹脂成型品は、上記のアルカリ溶液による表面
前処理した後、硬化性物質で被覆し、硬化させる
ことによつて表面改質される。本発明で使用する
硬化性物質は、熱、触媒、硬化剤、光、放射線等
によつて反応し、3次元の網目構造を形成して硬
質被膜を成す、いわゆる架橋性物質が特に制限な
く使用できる。例えば、メラミン類とホルムアル
デヒド等の他の反応性物質などよりなるメラミン
系硬化性組成物、アクリル酸エステル類やアクリ
ルアミド類などよりなるアクリル系硬化性組成
物、エポキシ類とビスフエノールAなどの他の反
応性物質などよりなるエポキシ系硬化性組成物、
メチルトリメトキシシランなどの有機ケイ素類な
どよりなるシリコン系硬化性組成物あるいはこれ
らを複合した硬化性組成物が好適に使用される。 本発明のアリルカーボネート系高屈折率樹脂成
型品に硬化性物質を被覆する方法は、公知の方法
が特に制限なく使用できる。例えば浸漬法、フロ
ーコート法、はけ塗り法、回転法等が一般に採用
される。また、被膜の厚みは特に限定されるもの
ではないが、0.1μ〜50μが一般的である。更に硬
化性物質の硬化は、その種類に応じて適宜行なえ
ばよい。 (効果) このようにして本発明の方法によれば、アリル
カーボネート系高屈折率樹脂成型品と密着性が極
めて優れ、耐久性の良い耐擦傷性硬質被膜を形成
することができる。以下、本発明を具体的に説明
するために、実施例及び比較例を示すが、本発明
はこれら実施例に限定されるものではない。 なお、アリルカーボネート系合成樹脂成型品の
表面に形成される被膜の性能評価は下記の方法に
よつて実施した。 (1) 密着性試験 先端が鋭利なカツターナイフで試料の表面に
1mm×1mmのマス目を100個つけた後、市販の
セロテープを貼り付けて、次いで素早く剥した
時の被膜の剥れ状態を目視で観察し、100個の
マス目の内剥れずに残つたマス目の数で評価し
た。 (2) 耐擦傷性試験 福田機械工業株式会社製の耐擦傷性試験器に
#0000のスチールウールを取り付け、1Kgの荷
重下で試料表面を10回往復させた後の表面の傷
つき度合を目視により観察し、全く傷つかなか
つた状態をA、そしてアリルカーボネート系高
屈折率樹脂生地の非常に傷つき易い状態をEと
して、A〜Eの5段階で評価した。 (3) 耐熱水性試験 沸騰水中に2時間放置し、上記の密着性試験
を行ない、同じ規準で評価した。 (4) 耐候性試験 カーボンアークサンシヤインウエザーメータ
で300時間曝露後に上記の密着性試験を行ない、
同じ規準で評価した。 実施例及び比較例に使用した硬化性物質あるい
は硬化性組成物による硬化方法を以下に示す。 () メチルトリメトキシシラン20重量部、γ
−グリシドオキシプロピルトリメトキシシラン
10重量部、テトラエトキシシラン10重量部、加
水分解に必要な0.05規定塩酸20重量部、イソプ
ロピルアルコール40重量部、硬化触媒として酢
酸ナトリウム/酢酸(1/10)の混合物1重量
部よりなる硬化性物質中に所定の成型品を浸漬
して被覆し、これを室温で充分風乾した後、
130℃で1時間加熱して硬化させた。 () ビス(γ−トリエトキシシリルプロピ
ル)カーボネート20重量部、γ−グリシドキシ
プロピルトリメトキシシラン10重量部、コロイ
ドシリカ(日産化学社製メタノールゾル)30重
量部、メチセロ30重量部、0.05規定塩酸10重量
部、硬化触媒として過塩素酸アンモニウム0.25
重量部よりなる硬化性物質中に所定の成型品を
浸漬して被覆し、これを室温で充分風乾した
後、130℃で1時間加熱して硬化した。 () トリメチロールプロパントリアクリレー
ト50重量部、トリエチレングリコールジアクリ
レート50重量部およびベンゾフエノン1重量部
をイソプロピルアルコール50重量部に溶解した
硬化性組成物に所定の成型品を浸漬して被覆
し、室温で充分窒素風乾した後、紫外線照射下
に硬化した。 () ヘキサメトキシメチルメラミン25重量部
と2−ヒドロキシエチルメタアクリレート25重
量部をメチルセロソルブ50重量部に混合溶解し
たものにチオシアン酸アンモニウム0.2重量部
を加えて調製した硬化性物質中に所定の成型品
を浸漬して被覆し、室温で充分風乾した後、
130℃で1時間加熱硬化した。 実施例 1 アリルカーボネート系高屈折率樹脂成型品とし
て、2,2−ビス〔4−(2−アリルオキシカル
ボニルオキシ)エトキシ−3,5−ジブロモフエ
ニル〕プロパン70重量部、ジアリルイソフタレー
ト30重量部およびベンジアリルカーボネート5重
量部の混合液に、重合開始剤としてジイソプロピ
ルパーオキシジカーボネート(以下、IPPと略記
する)1.5重量部を添加して通常の注型重合によ
り製造した板状体を用いた。板状体の屈折率は
1.585(20℃で測定)であつた。 先ず前処理として、板状体をアセトンで洗浄し
て十分に風乾し清澄な状態にした後、第1表に示
す条件でアルカリ溶液に浸漬し、次いで水洗乾燥
した。 上記の板状体を硬化性物質による処理方法
()に供し、硬質被膜を形成させた。被膜の評
価結果を第1表に併せて示す。
[Formula] m and n are integers of 1, 2, 3 or 4, a is an integer of 0, 1, 2, 3 or 4, l is an integer of 1 or 2) Specific examples of (oxyalkylene phenyl) diallyl carbonate or derivatives thereof include: etc., and mixtures thereof. In addition, as the diallyl ester having an aromatic ring, for example, diallyl phthalate, diallyl terephthalate, diallyl isophthalate, triallyl isocyanurate, etc. are suitable, and the It is used in a range of 1 to 99% by weight, particularly 5 to 80% by weight. Furthermore, as the monoallyl carbonate having an aromatic ring, for example, benzyl allyl carbonate, phenoxyethyl allyl carbonate, metabromopenzyl allyl carbonate, paracyanobenzyl allyl carbonate, phenyl allyl carbonate, etc. are preferably used. The amount of monoallyl carbonate having an aromatic ring to be used is based on a mixed composition consisting of bis(oxyalkylene phenyl) diallyl carbonate or a derivative thereof and diallyl ester having an aromatic ring, or other monomers that can be copolymerized if necessary. It is generally preferable to select the amount in the range of 0.5 to 20% by weight, particularly 1 to 15% by weight. In addition, in the present invention, in order to obtain the desired high refractive index resin with excellent impact resistance, it is effective to further use polyoxyalkylene polyol polyallyl carbonate in combination. Examples of such polyoxyalkylene polyol polyallyl carbonate include diethylene glycol bis(allyl carbonate), and particularly those having a molecular weight of 150 or more,
It is very effective to use polyallyl carbonate of polyoxyalkylene polyol preferably having a molecular weight of 20 to 1,200. In order to produce a high refractive index resin with excellent impact resistance, which is the object of the present invention, it is necessary to use bis(oxyalkylene phenyl) diallyl carbonate or a derivative thereof, diallyl ester having an aromatic ring, and if necessary, copolymerization. It can be obtained by using known radical polymerization methods such as the presence of a radical polymerization initiator and irradiation with ultraviolet rays or radiation, using monoallyl carbonate having an aromatic ring as an essential component along with other possible monomers. Note that the polymerization method in the present invention is not particularly limited, and any known polymerization method can be employed. An example of a typical polymerization method is a cast polymerization method. For example, the monomer containing a radical polymerization initiator may be injected between molds held by elastomer gaskets or spacers, cured in an air oven, and then taken out. Alternatively, the monomer can be preliminarily polymerized in the presence of a polymerization initiator to increase the viscosity of the monomer, and then cast polymerization can be carried out. Of course, during the polymerization, mold release agents, ultraviolet absorbers, antioxidants, color inhibitors,
Various stabilizers and additives such as antistatic agents and fluorescent dyes can be selected and used as required. In the present invention, the allyl carbonate polymer described above is molded into a desired shape and subjected to pretreatment. (Function) In the present invention, amines represented by the general formula RnH 3o N (where R is C 1 to C 6 aliphatic or C 6 to C 10 aromatic are the same or different hydrocarbon groups, n is an integer of 1, 2, or 3), alkali metals such as lithium, sodium, potassium, rubidium, and cesium. Examples include solutions consisting of basic compounds such as hydroxides, alcoholates, and ammonia alone or in mixtures of two or more thereof. In particular, alkaline solutions containing strongly basic sodium and potassium hydroxides or alcoholates are particularly effective in treating the surfaces of allyl carbonate-based high refractive index resin molded products by forming durable hard coatings with excellent adhesion. It is suitably used for pretreatment to form. The solvent can be used without any particular restriction as long as it dissolves the above basic compound, but
Water is usually used from the viewpoint of solubility and workability. In addition, organic solvents such as alcohols such as methyl alcohol and ethyl alcohol and cellosolves such as methyl cellosolve dissolve the above basic compounds and have good compatibility with water.
It can also be used as a mixed solvent system with water. Therefore, the alkali metal alcoholates may be used in alcoholic solutions and in water-alcohol mixed solvent systems with the addition of water. The concentration of the above basic compound in the alkaline solution is
Although it varies depending on the processing time and processing temperature, generally 1
A range of ~50% by weight is preferable; below this range, not only will the treatment take a long time, but the treatment effect will not be sufficient. Further, at a concentration higher than this, the treatment effect is not particularly improved. The treatment of an allyl carbonate high refractive index resin molded article with an alkaline solution is carried out by bringing the molded article into contact with the alkaline solution. Examples of the treatment method include a dipping method, a spray method, and a flow method, but a dipping method in which the molded product is immersed in an alkaline solution is preferable in terms of workability and the like. The contact time (processing time) is generally 30 seconds to 1 hour at 5 to 70°C. Molded products made of allyl carbonate high refractive index resin treated with an alkaline solution are coated with a curable substance by thoroughly washing with water or an evaporable organic solvent that dissolves the above basic compounds and drying. The previous surface pretreatment of the molded product is completed. In addition,
Prior to the alkaline solution treatment of the present invention, it is preferable that the surface of the molded article be thoroughly degreased and cleaned in advance in order to effectively promote contact with the alkaline solution. In the present invention, the allyl carbonate high refractive index resin molded product is surface-modified by pre-treating the surface with the above-mentioned alkaline solution, then coating it with a curable substance and curing it. The curable substance used in the present invention is a so-called crosslinkable substance that reacts with heat, a catalyst, a curing agent, light, radiation, etc. to form a three-dimensional network structure to form a hard film, and can be used without particular restrictions. can. For example, melamine-based curable compositions made of melamines and other reactive substances such as formaldehyde, acrylic curable compositions made of acrylic esters and acrylamides, epoxies and other reactive substances such as bisphenol A, etc. Epoxy-based curable composition consisting of reactive substances, etc.
Silicone-based curable compositions made of organosilicon compounds such as methyltrimethoxysilane, or curable compositions composed of these are preferably used. As a method for coating the allyl carbonate high refractive index resin molded article of the present invention with a curable substance, any known method can be used without particular limitation. For example, a dipping method, a flow coating method, a brushing method, a rotation method, etc. are generally employed. Further, the thickness of the coating is not particularly limited, but is generally 0.1 μ to 50 μ. Further, the curing of the curable substance may be carried out as appropriate depending on the type thereof. (Effects) In this way, according to the method of the present invention, it is possible to form a scratch-resistant hard coating that has extremely excellent adhesion to the allyl carbonate-based high refractive index resin molded product and has good durability. EXAMPLES Below, Examples and Comparative Examples will be shown to specifically explain the present invention, but the present invention is not limited to these Examples. The performance of the film formed on the surface of the allyl carbonate synthetic resin molded product was evaluated by the following method. (1) Adhesion test After making 100 squares of 1 mm x 1 mm on the surface of the sample using a cutter knife with a sharp tip, apply commercially available cellophane tape, then quickly peel it off and visually observe the peeling state of the film. The evaluation was made based on the number of squares that remained without peeling out of 100 squares. (2) Scratch resistance test Attach #0000 steel wool to a scratch resistance tester manufactured by Fukuda Kikai Kogyo Co., Ltd., and visually check the degree of scratches on the surface after moving the sample surface back and forth 10 times under a load of 1 kg. It was observed and evaluated on a five-point scale from A to E, with A indicating a state in which there was no damage at all, and E indicating a state in which the allyl carbonate-based high refractive index resin fabric was extremely easily damaged. (3) Hot water resistance test The adhesion test described above was conducted after being left in boiling water for 2 hours, and evaluated using the same criteria. (4) Weather resistance test The above adhesion test was conducted after 300 hours of exposure using a carbon arc sun shine weather meter.
Evaluated using the same criteria. The curing method using the curable substance or curable composition used in Examples and Comparative Examples is shown below. () 20 parts by weight of methyltrimethoxysilane, γ
-glycidoxypropyltrimethoxysilane
10 parts by weight of tetraethoxysilane, 20 parts by weight of 0.05N hydrochloric acid necessary for hydrolysis, 40 parts by weight of isopropyl alcohol, and 1 part by weight of a mixture of sodium acetate/acetic acid (1/10) as a curing catalyst. After coating the specified molded product by immersing it in the substance and thoroughly air-drying it at room temperature,
It was cured by heating at 130°C for 1 hour. () 20 parts by weight of bis(γ-triethoxysilylpropyl) carbonate, 10 parts by weight of γ-glycidoxypropyltrimethoxysilane, 30 parts by weight of colloidal silica (methanol sol manufactured by Nissan Chemical Co., Ltd.), 30 parts by weight of meticello, 0.05 standard 10 parts by weight of hydrochloric acid, 0.25 ammonium perchlorate as curing catalyst
A predetermined molded article was immersed and coated in a curable material consisting of parts by weight, thoroughly air-dried at room temperature, and then heated at 130° C. for 1 hour to cure. () A prescribed molded article is dipped and coated in a curable composition prepared by dissolving 50 parts by weight of trimethylolpropane triacrylate, 50 parts by weight of triethylene glycol diacrylate, and 1 part by weight of benzophenone in 50 parts by weight of isopropyl alcohol. After thoroughly drying with nitrogen air, the film was cured under ultraviolet irradiation. () 25 parts by weight of hexamethoxymethyl melamine and 25 parts by weight of 2-hydroxyethyl methacrylate were mixed and dissolved in 50 parts by weight of methyl cellosolve, and 0.2 parts by weight of ammonium thiocyanate was added to the mixture. After soaking and coating the product and thoroughly air-drying it at room temperature,
It was cured by heating at 130°C for 1 hour. Example 1 As an allyl carbonate-based high refractive index resin molded product, 70 parts by weight of 2,2-bis[4-(2-allyloxycarbonyloxy)ethoxy-3,5-dibromophenyl]propane and 30 parts by weight of diallyl isophthalate. A plate-like body produced by ordinary cast polymerization by adding 1.5 parts by weight of diisopropyl peroxydicarbonate (hereinafter abbreviated as IPP) as a polymerization initiator to a mixed solution of 5 parts by weight and 5 parts by weight of benzialyl carbonate was used. there was. The refractive index of the plate-like body is
It was 1.585 (measured at 20°C). First, as a pretreatment, the plate-shaped body was washed with acetone and sufficiently air-dried to a clear state, and then immersed in an alkaline solution under the conditions shown in Table 1, and then washed with water and dried. The plate-like body described above was subjected to a treatment method () using a curable substance to form a hard film. The evaluation results of the coating are also shown in Table 1.

【表】 実施例 2 実施例1において塩基性化合物にNaOHを用
いた以外は同様にして被膜を形成した。NaOH
処理条件および被膜の評価結果を第2表に示す。
[Table] Example 2 A film was formed in the same manner as in Example 1 except that NaOH was used as the basic compound. NaOH
The processing conditions and film evaluation results are shown in Table 2.

【表】 実施例 3 実施例1のアリルカーボネート系高屈折率合成
樹脂の板状体をアセトンで洗浄して十分に風乾し
清澄な状態にした後、アルカリ溶液処理として10
%NaOH水溶液に20℃で10分間浸漬し、次いで
水洗乾燥した。 上記の板状体を硬化性物質による処理方法
()、()、()に供し、硬質被膜を形成させ
た。被膜の評価結果を第3表に示す。
[Table] Example 3 The plate-shaped body of the allyl carbonate high refractive index synthetic resin of Example 1 was washed with acetone and thoroughly air-dried to a clear state, and then treated with an alkaline solution for 10 minutes.
% NaOH aqueous solution for 10 minutes at 20°C, then washed with water and dried. The above-mentioned plate-shaped body was subjected to treatment methods (), (), and () using a curable substance to form a hard film. The evaluation results of the coating are shown in Table 3.

【表】 実施例 4 アリルカーボネート系高屈折率樹脂成型品とし
て、第4表に示す各種のビス(オキシアルキレン
フエニル)ジアリルカーボネートと芳香環を有す
るジアリルエステルとの所定量を添加し、更に第
4表に示す芳香環を有するモノアリルカーボネー
トの所定量を添加した混合液にIPP1.5重量部を添
加して注型重合により製造した板状体について、
アセトンで十分に洗浄して風乾し清澄な状態にし
た後、10%NaOH水溶液に20℃で10分間浸漬し、
次いで水洗乾燥した。この板状体に、硬化性物質
による処理方法()で浸漬被覆して硬質被膜を
得た。 いずれの板状体についても、硬化被膜の耐擦傷
性はB、初期密着性、耐熱水性、耐候性はすべて
100であつた。
[Table] Example 4 As an allyl carbonate-based high refractive index resin molded product, predetermined amounts of various bis(oxyalkylene phenyl) diallyl carbonates and diallyl esters having an aromatic ring as shown in Table 4 were added, and Regarding a plate-shaped body produced by cast polymerization by adding 1.5 parts by weight of IPP to a mixed solution containing a predetermined amount of monoallyl carbonate having an aromatic ring shown in Table 4,
After thoroughly washing with acetone and air-drying it to a clear state, it was immersed in a 10% NaOH aqueous solution at 20°C for 10 minutes.
Then, it was washed with water and dried. This plate-shaped body was coated by dip coating using a curable substance treatment method () to obtain a hard coating. For both plates, the scratch resistance of the cured film is B, and the initial adhesion, hot water resistance, and weather resistance are all B.
It was 100.

【表】【table】

【表】 なお、第4表中の他の略記は次の化合物を示
す。 DAIP=ジアリルイソフタレート DAP=ジアリルフタレート DATP=ジアリルテレフタレート BzAc=ベンジルアリルカーボネート PEAc=フエノキシエチルアリルカーボネート P−CBzAc=パラクロロベンジルアリルカー
ボネート 実施例 5 アリルカーボネート系高屈折率樹脂成型品とし
て、ジアリルテレフタレート40重量部に、2,2
−ビス〔4−(2−アリルオキシカルボニルオキ
シ)エトキシ−3,5−ジブロモフエニル〕プロ
パン60重量部を添加し、さらに他の単量体として
ポリエチレングリコール200ビス(アリルカーボ
ネート)10重量部、芳香環を有するモノアリルカ
ーボネートとしてフエニルアリルカーボネート3
重量部を添加し、重合開始剤としてジ−2−エチ
ルヘキシルパーオキシジカーボネート3.5重量部
を用いた以外は、実施例4と同様にして板状体を
得、アルカリ処理して、硬質被膜を形成させた。 得られた硬化被膜の耐擦傷性はB、初期密着
性、耐熱水性、耐候性はすべて100であつた。 比較例 1〜2 実施例3の第3表のNo.2におけるアリルカーボ
ネート系高屈折率合成樹脂の板状体に代つて、ビ
スフエノールAからなるポリカーボネート(比較
例1)とポリ(ジアリルイソフタレート)(比較
例2)とを用いた以外は実施例3と同様に実施し
た。但しポリカーボネートはアセトンに浸される
ためにその表面はメタノールで洗浄した。その結
果は第5表に示す通りであつた。
[Table] Other abbreviations in Table 4 indicate the following compounds. DAIP = diallyl isophthalate DAP = diallyl phthalate DATP = diallyl terephthalate BzAc = benzyl allyl carbonate PEAc = phenoxyethyl allyl carbonate P-CBzAc = parachlorobenzyl allyl carbonate Example 5 As an allyl carbonate-based high refractive index resin molded product, diallyl 40 parts by weight of terephthalate, 2,2
- Added 60 parts by weight of bis[4-(2-allyloxycarbonyloxy)ethoxy-3,5-dibromophenyl]propane, and further added 10 parts by weight of polyethylene glycol 200 bis(allyl carbonate) as other monomers, Phenyl allyl carbonate 3 as a monoallyl carbonate having an aromatic ring
A plate-shaped body was obtained in the same manner as in Example 4, except that 3.5 parts by weight of di-2-ethylhexyl peroxydicarbonate was added as a polymerization initiator, and treated with alkali to form a hard film. I let it happen. The scratch resistance of the resulting cured film was B, and the initial adhesion, hot water resistance, and weather resistance were all 100. Comparative Examples 1-2 Instead of the allyl carbonate-based high refractive index synthetic resin plate in No. 2 of Table 3 of Example 3, polycarbonate made of bisphenol A (Comparative Example 1) and poly(diallyl isophthalate) were used. ) (Comparative Example 2) was used in the same manner as in Example 3. However, since the polycarbonate was soaked in acetone, its surface was cleaned with methanol. The results were as shown in Table 5.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 (i)ビス(オキシアルキレンフエニル)ジアリ
ルカーボネートまたはそれらの誘導体、(ii)芳香環
を有するジアリルエステルおよび(iii)芳香環を有す
るモノアリルカーボネートの少くとも3成分を含
む共重合体よりなる成型体の表面を予めアルカリ
溶液と接触処理した後、硬化性物質で被膜するこ
とを特徴とする高屈折率樹脂成型品の製造方法。
1 Consisting of a copolymer containing at least three components: (i) bis(oxyalkylene phenyl) diallyl carbonate or a derivative thereof, (ii) diallyl ester having an aromatic ring, and (iii) monoallyl carbonate having an aromatic ring. A method for producing a high refractive index resin molded product, which comprises previously contacting the surface of the molded product with an alkaline solution and then coating the surface with a curable substance.
JP59165695A 1984-08-09 1984-08-09 Production of high-refractive index resin molding Granted JPS6144932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59165695A JPS6144932A (en) 1984-08-09 1984-08-09 Production of high-refractive index resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59165695A JPS6144932A (en) 1984-08-09 1984-08-09 Production of high-refractive index resin molding

Publications (2)

Publication Number Publication Date
JPS6144932A JPS6144932A (en) 1986-03-04
JPH0153973B2 true JPH0153973B2 (en) 1989-11-16

Family

ID=15817288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59165695A Granted JPS6144932A (en) 1984-08-09 1984-08-09 Production of high-refractive index resin molding

Country Status (1)

Country Link
JP (1) JPS6144932A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100020A2 (en) * 2004-04-09 2005-10-27 Vision-Ease Lens Primer-less abrasion coating for organic glass articles
WO2015123473A1 (en) 2014-02-12 2015-08-20 Insight Equity A.P.X., L.P. (Dba Vision-Ease Lens) Easy-clean coating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128155A (en) * 1976-04-19 1977-10-27 American Optical Corp Method of making wear resistant lenses
JPS5681164A (en) * 1979-12-05 1981-07-02 Nippon Sheet Glass Co Ltd Painting method of molded diethylene glycol bisaryl carbonate type plastic article
JPS58101120A (en) * 1981-12-09 1983-06-16 Mitsubishi Rayon Co Ltd Manufacture of thermosetting plastic formed product coated with ultraviolet-cured film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128155A (en) * 1976-04-19 1977-10-27 American Optical Corp Method of making wear resistant lenses
JPS5681164A (en) * 1979-12-05 1981-07-02 Nippon Sheet Glass Co Ltd Painting method of molded diethylene glycol bisaryl carbonate type plastic article
JPS58101120A (en) * 1981-12-09 1983-06-16 Mitsubishi Rayon Co Ltd Manufacture of thermosetting plastic formed product coated with ultraviolet-cured film

Also Published As

Publication number Publication date
JPS6144932A (en) 1986-03-04

Similar Documents

Publication Publication Date Title
KR100586855B1 (en) Ultraviolet curable coating resin compositions
KR100214288B1 (en) Compositions for antifogging coating and molding articles using the same
US4611892A (en) Synthetic resin ophthalmic lens having a surface hard coat
KR100293099B1 (en) Coating compositions capable of producing hardened articles with high refractive index and coatings obtained from the compositions
JPH04120181A (en) Coating composition and coating resin molding using composition
US3762940A (en) Hexa (alkoxymethyl) melamine modified hydroxylated flouroplymer coated articles
JPH03275769A (en) Coating material composition and production of wear-resistant synthetic resin molded product
EP0057906A1 (en) Coating composition and process for preparing synthetic resin shaped articles by using same
JPS6011727B2 (en) Curable resin composition
JPH0153973B2 (en)
JPH022883B2 (en)
JPS6230180A (en) Antifogging coating composition
JP2001316626A (en) Coating material
JPH0153972B2 (en)
JPH01275130A (en) Low reflection transparent molded piece
JP2007332174A (en) Anti-fogging coating composition and method for producing anti-fogging film using the same
JPS60197711A (en) High-refractive index resin composition
JPS6079071A (en) Protective coating agent
JPS60262833A (en) Coated synthetic resin material
JPH01103613A (en) Organic glass for optics
JPH0136506B2 (en)
JP2013014636A (en) Coating composition
JPS63284234A (en) Synthetic resin molding
JPH08176535A (en) Production of antistatic plastic molded product
JP2002131703A (en) Plastic lens with hard coat layer and method for manufacturing the same