JPH0153778B2 - - Google Patents

Info

Publication number
JPH0153778B2
JPH0153778B2 JP4147783A JP4147783A JPH0153778B2 JP H0153778 B2 JPH0153778 B2 JP H0153778B2 JP 4147783 A JP4147783 A JP 4147783A JP 4147783 A JP4147783 A JP 4147783A JP H0153778 B2 JPH0153778 B2 JP H0153778B2
Authority
JP
Japan
Prior art keywords
charge
layer
charge transport
volts
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4147783A
Other languages
Japanese (ja)
Other versions
JPS59168455A (en
Inventor
Hideyuki Takahashi
Shozo Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4147783A priority Critical patent/JPS59168455A/en
Priority to US06/589,343 priority patent/US4495264A/en
Publication of JPS59168455A publication Critical patent/JPS59168455A/en
Publication of JPH0153778B2 publication Critical patent/JPH0153778B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、有機光導電䜓に関する。 埓来技術 これたで、セレン、硫化カドミりム、酞化亜鉛
などの無機光導電䜓を感光成分ずしお利甚した電
子写真感光䜓は、公知である。 䞀方、特定の有機化合物が光導電性を瀺すこず
が発芋されおから、数倚くの有機光導電䜓が開発
されお来た。䟋えば、ポリ――ビニルカルバゟ
ヌル、ポリビニルアントラセンなどの有機光導電
性ポリマヌ、カルバゟヌル、アントラセン、ピラ
ゟリン類、オキサゞアゟヌル類、ヒドラゟン類、
ポリアリヌルアルカン類などの䜎分子の有機光導
電䜓やフタロシアニン顔料、アゟ顔料、シアニン
染料、倚環キノン顔料、ペリレン系顔料、むンゞ
ゎ染料、チオむンゞゎ染料あるいはスク゚アリツ
ク酞メチン染料などの有機顔料や染料が知られお
いる。特に、光導電性を有する有機顔料や染料
は、無機材料に范べお合成が容易で、しかも適圓
な波長域に光導電性を瀺す化合物を遞択できるバ
リ゚ヌシペンが拡倧されたこずなどから、数倚く
の光導電性有機顔料や染料が提案されおいる。䟋
えば、米囜特蚱第4123270号、同第4247614号、同
第4251613号、同第4251614号、同第4256821号、
同第4260672号、同第4268596号、同第4278747号、
同第4293628号などに開瀺された様に電荷発生局
ず電荷茞送局に機胜分離した感光局における電荷
発生物質ずしお光導電性を瀺すゞスアゟ顔料を甚
いた電子写真感光䜓などが知られおいる。 この様な有機光導電䜓を甚いた電子写真感光䜓
は、バむンダヌを適圓に遞択するこずによ぀お塗
工で生産できるため、極めお生産性が高く、安䟡
な感光䜓を提䟛でき、しかも有機顔料の遞択によ
぀お感光波長域を自圚にコントロヌルできる利点
を有しおいる反面、この感光䜓は感床ず耐久特性
に難があるため、これたでに実甚に至぀たもの
は、ごくわずかである。 発明の目的 本発明の目的は、新芏な有機光導電䜓を提䟛す
るこずにある。 本発明の別の目的は特定な有機光導電䜓を䜿甚
するこずにより改善された写真特性を有する電子
写真感光䜓を提䟛するこずにあり、これにより、
実甚的な高感床特性ず繰り返し䜿甚における安定
な電䜍特性を有する電子写真感光䜓を提䟛するこ
ずにある。 本発明は、䞋蚘䞀般匏(1)に瀺す有機光導電䜓よ
りなる。 䞀般匏 は芳銙族性を有するカプラヌ成分を衚わし、
奜たしくはが以䞋の䞀般匏(2)〜(4)で衚わされる
カプラヌ成分から遞択されるこずが望たしい。䞀
般匏(2)は
The present invention relates to organic photoconductors. Prior Art Electrophotographic photoreceptors using inorganic photoconductors such as selenium, cadmium sulfide, and zinc oxide as photosensitive components have been known. On the other hand, since it was discovered that certain organic compounds exhibit photoconductivity, many organic photoconductors have been developed. For example, organic photoconductive polymers such as poly-N-vinylcarbazole and polyvinylanthracene, carbazole, anthracene, pyrazolines, oxadiazoles, hydrazones,
Organic pigments and dyes such as low-molecular organic photoconductors such as polyarylalkanes, phthalocyanine pigments, azo pigments, cyanine dyes, polycyclic quinone pigments, perylene pigments, indigo dyes, thioindigo dyes, or methine squaritate dyes are used. Are known. In particular, organic pigments and dyes with photoconductivity are easier to synthesize than inorganic materials, and the variety of compounds that exhibit photoconductivity in an appropriate wavelength range has expanded. Photoconductive organic pigments and dyes have been proposed. For example, U.S. Patent Nos. 4123270, 4247614, 4251613, 4251614, 4256821,
Same No. 4260672, Same No. 4268596, Same No. 4278747,
As disclosed in No. 4,293,628, electrophotographic photoreceptors are known in which a disazo pigment exhibiting photoconductivity is used as a charge-generating substance in a photosensitive layer that is functionally separated into a charge-generating layer and a charge-transporting layer. Electrophotographic photoreceptors using such organic photoconductors can be produced by coating by appropriately selecting a binder, so they can be produced with extremely high productivity and at low cost. Although this photoreceptor has the advantage of being able to freely control the sensitive wavelength range by selecting the photoreceptor, it has drawbacks in sensitivity and durability, and so far only a few have been put into practical use. OBJECT OF THE INVENTION An object of the invention is to provide a novel organic photoconductor. Another object of the present invention is to provide an electrophotographic photoreceptor having improved photographic properties through the use of a specific organic photoconductor.
The object of the present invention is to provide an electrophotographic photoreceptor having practical high sensitivity characteristics and stable potential characteristics during repeated use. The present invention comprises an organic photoconductor represented by the following general formula (1). general formula A represents a coupler component having aromaticity,
Preferably, A is selected from coupler components represented by the following general formulas (2) to (4). General formula (2) is

【匏】で衚わされ、匏䞭はベ ンれン環ず瞮合しおナフタレン環、アンスラセン
環、カルバゟヌル環、ゞベンゟフラン環、ベンズ
カルバゟヌル環等の芳銙族炭化氎玠環又は耇玠環
を圢成する残基、は―CONR1R2で瀺す基た
だしR1は氎玠原子、メチル、゚チル、プロピル、
ブチル、―ヒドロキシ゚チル、―ヒドロキシ
プロピル等の眮換又は非眮換のアルキル基、プ
ニル、ナフチル等のアリヌル基から成る矀より遞
ばれた基、R2はメチル、゚チル、プロピル、ブ
チル、―ヒドロキシ゚チル、―ヒドロキシプ
ロピル等の眮換又は非眮換のアルキル基、プニ
ル、ナフチル等のアリヌル基及びピリゞル、キノ
リル、カルバゟリル、チアゟリル等の耇玠環残基
から成る矀より遞ばれた基を衚わす、又は―
CONHNR3R4で瀺す基ただしR3R4は眮換又
は非眮換のプニル、ナフチル等のアリヌル基を
衚わすを衚わす。䞊蚘R1〜R4における眮換基
ずしお、メチル、゚チル等のアルキル基、フツ
玠、塩玠、臭玠等のハロゲン原子、メトキシ、゚
トキシ等のアルコキシ基、アセチル、ベンゟむル
等のアシル基、メチルチオ、゚チルチオ等のアル
キルチオ基、プニルチオ等のアリヌルチオ基、
プニル等のアリヌル基、ベンゞル等のアラルキ
ル基、ニトロ基、シアノ基、ゞメチルアミノ、ゞ
゚チルアミノ、ゞベンゞルアミノ、゚チルアミノ
等の眮換アミノ基等があげられる。 䞀般匏(3)(4)は
[Formula], where X is a residue that is condensed with a benzene ring to form an aromatic hydrocarbon ring or a heterocycle such as a naphthalene ring, anthracene ring, carbazole ring, dibenzofuran ring, or benzcarbazole ring, Y - CONR 1 The group shown by R 2 (where R 1 is a hydrogen atom, methyl, ethyl, propyl,
A group selected from the group consisting of substituted or unsubstituted alkyl groups such as butyl, 2-hydroxyethyl, 3-hydroxypropyl, and aryl groups such as phenyl, naphthyl, etc., R 2 is methyl, ethyl, propyl, butyl, 2- Represents a group selected from the group consisting of substituted or unsubstituted alkyl groups such as hydroxyethyl and 3-hydroxypropyl, aryl groups such as phenyl and naphthyl, and heterocyclic residues such as pyridyl, quinolyl, carbazolyl and thiazolyl), Or-
CONHNR 3 represents a group represented by R 4 (wherein R 3 and R 4 represent substituted or unsubstituted aryl groups such as phenyl and naphthyl). Substituents for R 1 to R 4 above include alkyl groups such as methyl and ethyl, halogen atoms such as fluorine, chlorine, and bromine, alkoxy groups such as methoxy and ethoxy, acyl groups such as acetyl and benzoyl, methylthio, ethylthio, etc. an alkylthio group, an arylthio group such as phenylthio,
Examples include aryl groups such as phenyl, aralkyl groups such as benzyl, nitro groups, cyano groups, and substituted amino groups such as dimethylamino, diethylamino, dibenzylamino, and ethylamino. General formulas (3) and (4) are

【匏】【formula】

【匏】で衚わされる。 匏䞭R5は眮換又は非眮換のアルキル基、プ
ニル基、ナフチル基等のアリヌル基から成る矀よ
り遞ばれた基を衚わす。曎に具䜓的にはR5はメ
チル、゚チル、プロピル等のアルキル基、ヒドロ
キシメチル、ヒドロキシ゚チル等のヒドロキシア
ルキル基、メトキシメチル、゚トキシメチル、゚
トキシ゚チル等のアルコキシアルキル基、シアノ
アルキル基、アミノアルキル基、―アルキルア
ミノアルキル基、―ゞアルキルアミノアル
キル基、ハロゲン化アルキル基、ベンゞル、プ
ネチル等のアラルキル基、プニル基及び眮換フ
゚ニル基、ナフチル基、眮換ナフチル基、眮換
基ずしおは䞀般匏(2)䞭のR1〜R4における眮換基
があげられる等があげられる。 本発明の代衚的な有機光導電䜓ずしおは䞋蚘の
ゞスアゟ顔料を挙げるこずができる。 これらのゞスアゟ顔料は、皮たたは皮以䞊
組合せお甚いるこずができる。たた、これらの顔
料は、 で瀺されるゞアミンを垞法によりテトラゟ化し、
次いで察応するカプラヌをアルカリの存圚䞋にカ
ツプリングするか、たたは前蚘のゞアミンのテト
ラゟニりム塩をホりフツ化塩あるいは塩化亜鉛耇
塩等の圢で䞀旊単離した埌、適圓な溶媒䟋えば
―ゞメチルホルムアミド、ゞメチルスルホ
キシド等の溶媒䞭でアルカリの存圚䞋にカツプラ
ヌずカツプリングするこずにより容易に補造する
こずができる。 次に、本発明で甚いるゞスアゟ顔料の代衚的な
合成䟋を䞋蚘に瀺す。 合成䟋  前蚘䟋瀺のゞスアゟ顔料No.の合成 500mlビヌカヌに氎80ml、濃塩酞16.6ml0.19
モル
It is represented by [Formula]. In the formula, R 5 represents a group selected from the group consisting of substituted or unsubstituted alkyl groups, phenyl groups, aryl groups such as naphthyl groups. More specifically, R 5 is an alkyl group such as methyl, ethyl, or propyl, a hydroxyalkyl group such as hydroxymethyl or hydroxyethyl, an alkoxyalkyl group such as methoxymethyl, ethoxymethyl, or ethoxyethyl, a cyanoalkyl group, or an aminoalkyl group. , N-alkylaminoalkyl group, N,N-dialkylaminoalkyl group, halogenated alkyl group, benzyl, aralkyl group such as phenethyl, phenyl group and substituted phenyl group, naphthyl group, substituted naphthyl group, (substituents include general Examples include substituents for R 1 to R 4 in formula (2). Typical organic photoconductors of the present invention include the following disazo pigments. These disazo pigments can be used alone or in combination of two or more. In addition, these pigments are The diamine represented by is tetrazotized by a conventional method,
The corresponding coupler is then coupled in the presence of an alkali, or once the tetrazonium salt of the diamine is isolated in the form of a borofluoride salt or zinc chloride double salt, etc., a suitable solvent such as N,N-dimethylformamide is added. , can be easily produced by coupling with a coupler in the presence of an alkali in a solvent such as dimethyl sulfoxide. Next, a typical synthesis example of the disazo pigment used in the present invention is shown below. Synthesis Example 1 (Synthesis of Disazo Pigment No. 1 exemplified above) In a 500ml beaker, add 80ml of water and 16.6ml of concentrated hydrochloric acid (0.19ml).
mole)

【匏】6.7 0.029モルを入れ、氷氎济で冷华しながら撹拌
し液枩を℃ずした。次に亜硝酞゜ヌダ4.2
0.061モルを氎mlに溶かした液を液枩を〜
10℃の範囲にコントロヌルしながら10分間で滎䞋
し、滎䞋終了埌同枩床で曎に30分撹拌した。反応
液にカヌボンを加え過しおテトラゟ化液を埗
た。 次に、ビヌカヌに氎700mlを入れ苛性゜ヌ
ダ210.53モルを溶解した埌ナフトヌルAS
―ヒドロキシ――ナフト゚酞アニリド
16.20.061モルを添加しお溶解した。 このカプラヌ溶液を℃に冷华し液枩を〜10
℃にコントロヌルしながら前述のテトラゟ化液を
30分かけお撹拌䞋滎䞋しお、その埌宀枩で時間
撹拌し曎に晩攟眮した。反応液を過埌、氎掗
し粗補顔料20.4を埗た。次に、400mlの
―ゞメチルホルムアミドで熱過を回繰り返し
た。その埌、枛圧熱也燥により粟補顔料19.2を
埗た。収率は84.8であ぀た。 元玠分析 蚈算倀(%) 実隓倀(%)  76.90 76.73  4.14 4.30  10.76 10.62 合成䟋  前蚘䟋瀺のゞスアゟ顔料No.の合成
[Formula] 6.7g (0.029 mol) was added and stirred while cooling in an ice water bath to bring the liquid temperature to 3°C. Next, 4.2g of sodium nitrite
(0.061 mol) dissolved in 7 ml of water and the temperature of the solution
The mixture was added dropwise over 10 minutes while controlling the temperature within the range of 10°C, and after the addition was completed, the mixture was stirred for an additional 30 minutes at the same temperature. Carbon was added to the reaction solution to obtain a tetrazotized solution. Next, put 700ml of water into 2 beakers and dissolve 21g (0.53mol) of caustic soda, then naphthol AS.
(3-hydroxy-2-naphthoic acid anilide)
16.2 g (0.061 mol) was added and dissolved. Cool this coupler solution to 6℃ and reduce the liquid temperature to 6-10℃.
Add the above-mentioned tetrazotization solution while controlling the temperature at
The mixture was added dropwise over 30 minutes with stirring, and then stirred at room temperature for 2 hours and further left overnight. After filtering the reaction solution, it was washed with water to obtain 20.4 g of a crude pigment. Next, 400ml of N,N
- Heating with dimethylformamide was repeated 5 times. Thereafter, 19.2 g of purified pigment was obtained by heat drying under reduced pressure. The yield was 84.8%. Elemental analysis: Calculated value (%) Experimental value (%) C 76.90 76.73 H 4.14 4.30 N 10.76 10.62 Synthesis example 2 (Synthesis of disazo pigment No. 2 illustrated above)

【匏】5.810.025モ ルを氎65ml、濃塩酞13.24ml0.15モルに溶
解した液に、亜硝酞゜ヌダ3.540.051モル
ã‚’æ°Ž10.6mlに溶解した液を、液枩4.5〜℃に保
ちながら分間で滎䞋し、その埌同枩床で30分撹
拌した。 ぀ぎに、―ヒドロキシ―ナフタレン――カ
ルボン酞メチルアミド10.570.0525モルず
苛性゜ヌダ16.80.42モルを氎420mlに溶解
した液に液枩を〜10℃に保ちながら䞊蚘テトラ
ゟ化液を10分間で滎䞋し、同枩床で時間撹拌し
た埌晩攟眮した。 過、氎掗、也燥した埌、メチル゚チルケトン
を甚い2.0時間゜ツクスレヌにかけお也燥顔料
13.1収率79.8を埗た。 元玠分析 蚈算倀(%) 実隓倀(%)  73.15 72.96  4.31 4.28  12.80 13.01 合成䟋  前蚘䟋瀺のゞスアゟ顔料No.の合成 ビヌカヌに氎700mlを泚入し、そこぞ苛性
゜ヌダ210.53モルを加え溶解した埌、―
ヒドロキシ―ナフタレン――カルボン酞―
―ゞプニルヒドラゞド21.60.061モル
を添加しお溶解した。 このカプラヌ溶液を℃に冷华し、液枩を℃
〜10℃にコントロヌルしながら、前述の合成䟋
ず同様の方法によ぀お䜜成したテトラゟ化液を30
分かけお撹拌䞋で滎䞋し、その埌宀枩で時間撹
拌し、さらに晩攟眮した。反応液を過埌、氎
掗し粗補顔料25.8を埗た。次に、400mlの
―ゞメチルホルムアミドで熱過を回繰り返
した。その埌、枛圧熱也燥により粟補顔料24.6
を埗た。収率は88.2であ぀た。 元玠分析 蚈算倀(%) 実隓倀(%)  77.31 77.41  4.40 4.31  11.64 11.62 以䞊皮類の顔料の合成法に぀いお述べたが、
䞀般匏(1)で瀺される他のゞスアゟ顔料も同様にし
お合成される。 本発明の有機光導電䜓の奜たしい応甚䟋では、
感光局を電荷発生局ず電荷茞送局に機胜分離した
電子写真感光䜓における電荷発生物質に前蚘䞀般
匏(1)に瀺す有機光導電䜓を甚いるこずができる。
電荷発生局は、十分な吞光床を埗るために、でき
る限り倚くの前蚘有機光導電䜓を含有し、䞔぀発
生した電荷キダリアの飛皋を短かくするために、
薄膜局、䟋えばミクロン以䞋、奜たしくは0.01
ミクロン〜ミクロンの膜厚をも぀薄膜局ずする
こずが奜たしい。このこずは、入射光量の倧郚分
が電荷発生局で吞収されお、倚くの電荷キダリア
を生成するこず、さらに発生した電荷キダリアを
再結合や補獲トラツプにより倱掻するこずな
く電荷茞送局に泚入する必芁があるこずに垰因し
おいる。 電荷発生局は、前述の有機光導電䜓を適圓なバ
むンダヌに分散させ、これを基䜓の䞊に塗工する
こずによ぀お圢成でき、たた真空蒞着装眮により
蒞着膜を圢成するこずによ぀お埗るこずができ
る。電荷発生局を塗工によ぀お圢成する際に甚い
うるバむンダヌずしおは広範な絶瞁性暹脂から遞
択でき、たたポリ――ビニルカルバゟヌル、ポ
リビニルアントラセンやポリビニルピレンなどの
有機光導電性ポリマヌから遞択できる。奜たしく
は、ポリビニルブチラヌル、ポリアリレヌトビ
スプノヌルずフタル酞の瞮重合䜓など、ポ
リカヌボネヌト、ポリ゚ステル、プノキシ暹
脂、ポリ酢酞ビニル、アクリル暹脂、ポリアクリ
ルアミド暹脂、ポリアミド、ポリビニルピリゞ
ン、セルロヌス系暹脂、りレタン暹脂、゚ポキシ
暹脂、カれむン、ポリビニルアルコヌル、ポリビ
ニルピロリドンなどの絶瞁性暹脂を挙げるこずが
できる。電荷発生局䞭に含有する暹脂は、80重量
以䞋奜たしくは40重量以䞋が適しおいる。 これらの暹脂を溶解する溶剀は、暹脂の皮類に
よ぀お異なり、たた䞋述の電荷茞送局や䞋匕局を
溶解しないものから遞択するこずが奜たしい。具
䜓的な有機溶剀ずしおは、メタノヌル、゚タノヌ
ル、む゜プロパノヌルなどのアルコヌル類、アセ
トン、メチル゚チルケトン、シクロヘキサノンな
どのケトン類、―ゞメチルホルムアミド、
―ゞメチルアセトアミドなどのアミド類、
ゞメチルスルホキシドなどのスルホキシド類、テ
トラヒドロフラン、ゞオキサン、゚チレングリコ
ヌルモノメチル゚ヌテルなどの゚ヌテル類、酢酞
メチル、酢酞゚チルなどの゚ステル類、クロロホ
ルム、塩化メチレン、ゞクロル゚チレン、四塩化
炭玠、トリクロル゚チレンなどの脂肪族ハロゲン
化炭化氎玠類あるいはベンれン、トル゚ン、キシ
レン、リグロむン、モノクロルベンれン、ゞクロ
ルベンれンなどの芳銙族類などを甚いるこずがで
きる。 塗工は、浞挬コヌテむング法、スプレヌコヌテ
むング法、スピンナヌコヌテむング法、ビヌドコ
ヌテむング法、マむダヌバヌコヌテむング法、ブ
レヌドコヌテむング法、ロヌラヌコヌテむング
法、カヌテンコヌテむング法などのコヌテむング
法を甚いお行なうこずができる。也燥は、宀枩に
おける指觊也燥埌、加熱也燥する方法が奜たし
い。加熱也燥は、30℃〜200℃の枩床で分〜
時間の範囲の時間で、静止たたは送颚䞋で行なう
こずができる。 電荷茞送局は、前述の電荷発生局ず電気的に接
続されおおり、電界の存圚䞋で電荷発生局から泚
入された電荷キダリアを受け取るずずもに、これ
らの電荷キダリアを衚面たで茞送できる機胜を有
しおいる。この際、この電荷茞送局は、電荷発生
局の䞊に積局されおいおもよく、たたその䞋に積
局されおいおもよい。しかし、電荷茞送局は、電
荷発生局の䞊に積局されおいるこずが望たしい。 光導電䜓は、䞀般に電荷キダリアを茞送する機
胜を有しおいるので、電荷茞送局はこの光導電䜓
によ぀お圢成できる。 電荷茞送局における電荷キダリアを茞送する物
質以䞋、単に電荷茞送物質ずいうは、前述の
電荷発生局が感応する電磁波の波長域に実質的に
非感応性であるこずが奜たしい。ここで蚀う「電
磁波」ずは、γ線、線、玫倖線、可芖光線、近
赀倖線、赀倖線、遠赀倖線などを包含する広矩の
「光線」の定矩を包含する。電荷茞送局の光感応
性波長域が電荷発生局のそれず䞀臎たたはオヌバ
ヌラツプする時には、䞡者で発生した電荷キダリ
アが盞互に補獲し合い、結果的には感床の䜎䞋の
原因ずなる。 電荷茞送物質ずしおは電子茞送性物質ず正孔茞
送性物質があり、電子茞送性物質ずしおは、クロ
ルアニル、ブロモアニル、テトラシアノ゚チレ
ン、テトラシアノキノゞメタン、―ト
リニトロ――フルオレノン、―
テトラニトロ――フルオレノン、―
トリニトロ――ゞシアノメチレンフルオレノ
ン、―テトラニトロキサントン、
―トリニトロチオキサントン等の電子
吞匕性物質やこれら電子吞匕物質を高分子化した
もの等がある。 正孔茞送性物質ずしおは、ピレン、―゚チル
カルバゟヌル、―む゜プロピルカルバゟヌル、
―メチル――プニルヒドラゞノ――メチ
リデン――゚チルカルバゟヌル、―ゞフ
゚ニルヒドラゞノ――メチリデン――゚チル
カルバゟヌル、―ゞプニルヒドラゞノ―
―メチリデン―10―゚チルプノチアゞン、
―ゞプニルヒドラゞノ――メチリデン
―10―゚チルプノキサゞン、―ゞ゚チルアミ
ノベンズアルデヒド――ゞプニルヒドラ
ゟン、―ゞ゚チルアミノベンズアルデヒド―
―α―ナフチル――プニルヒドラゟン、―
ピロリゞノベンズアルデヒド――ゞプニ
ルヒドラゟン、―トリメチルむンドレ
ニン―ω―アルデヒド――ゞプニルヒド
ラゟン、―ゞ゚チルベンズアルデヒド――メ
チルベンズチアゟリノン――ヒドラゟン等のヒ
ドラゟン類、―ビス―ゞ゚チルアミノ
プニル――オキサゞアゟヌル、
―プニル―――ゞ゚チルアミノスチリ
ル―――ゞ゚チルアミノプニルピラ
ゟリン、―〔キノリル(2)〕―――ゞ゚チ
ルアミノスチリル―――ゞ゚チルアミノ
プニルピラゟリン、―〔ピリゞル(2)〕―
――ゞ゚チルアミノスチリル―――
ゞ゚チルアミノプニルピラゟリン、―〔
―メトキシ―ピリゞル(2)〕―――ゞ゚チル
アミノスチリル―――ゞ゚チルアミノフ
゚ニルピラゟリン、―〔ピリゞル(3)〕――
―ゞ゚チルアミノスチリル―――ゞ
゚チルアミノプニルピラゟリン、―〔レピ
ゞル(2)〕―――ゞ゚チルアミノスチリル
―――ゞ゚チルアミノプニルピラゟリ
ン、―〔ピリゞル(2)〕―――ゞ゚チルア
ミノスチリル――メチル―――ゞ゚チ
ルアミノプニルピラゟリン、―〔ピリゞル
(2)〕――α―メチル――ゞ゚チルアミノス
チリル―――ゞ゚チルアミノプニル
ピラゟリン、―プニル―――ゞ゚チル
アミノスチリル――メチル―――ゞ゚
チルアミノプニルピラゟリン、―プニル
――α―ベンゞル――ゞ゚チルアミノスチ
リル―――ゞ゚チルアミノプニルピ
ラゟリン、スピロピラゟリンなどのピラゟリン
類、――ゞ゚チルアミノスチリル――
ゞ゚チルアミノベンズオキサゟヌル、――
ゞ゚チルアミノプニル―――ゞメチル
アミノプニル―――クロロプニル
オキサゟヌル等のオキサゟヌル系化合物、―
―ゞ゚チルアミノスチリル――ゞ゚チル
アミノベンゟチアゟヌル等のチアゟヌル系化合
物、ビス―ゞ゚チルアミノ――メチルプ
ニル―プニルメタン等のトリアリヌルメタン
系化合物、―ビス――ゞ゚チル
アミノ――メチルプニルヘプタン、
―テトラキス――ゞメチル
アミノ――メチルプニル゚タン等のポリア
リヌルアルカン類、トリプニルアミン、ポリ―
―ビニルカルバゟヌル、ポリビニルピレン、ポ
リビニルアントラセン、ポリビニルアクリゞン、
ポリ――ビニルプニルアントラセン、ピレン
―ホルムアルデヒド暹脂、゚チルカルバゟヌルホ
ルムアルデヒド暹脂等がある。 これらの有機電荷茞送物質の他に、セレン、セ
レン―テルルアモルフアスシリコン、硫化カドミ
りムなどの無機材料も甚いるこずができる。 たた、これらの電荷茞送物質は、皮たたは
皮以䞊組合せお甚いるこずができる。 電荷茞送物質に成膜性を有しおいない時には、
適圓なバむンダヌを遞択するこずによ぀お被膜圢
成できる。バむンダヌずしお䜿甚できる暹脂は、
䟋えばアクリル暹脂ポリアリレヌト、ポリ゚ステ
ル、ポリカヌボネヌト、ポリスチレンアクリロニ
トリル―スチレンコポリマヌ、アクリロニトリル
―ブタゞ゚ンコポリマヌ、ポリビニルブチラヌ
ル、ポリビニルホルマヌル、ポリスルホン、ポリ
アクリルアミド、ポリアミド、塩玠化ゎムなどの
絶瞁性暹脂、あるいはポリ――ビニルカルバゟ
ヌル、ポリビニルアントラセン、ポリビニルピレ
ンなどの有機光導電性ポリマヌを挙げるこずがで
きる。 電荷茞送局は、電荷キダリアを茞送できる限界
があるので、必芁以䞊に膜厚を厚くするこずがで
きない。䞀般的には、ミクロン〜30ミクロンで
あるが、奜たしい範囲はミクロン〜20ミクロン
である。塗工によ぀お電荷茞送局を圢成する際に
は、前述した様な適圓なコヌテむング法を甚いる
こずができる。 この様な電荷発生局ず電荷茞送局の積局構造か
らなる感光局は、導電局を有する基䜓の䞊に蚭け
られる。導電局を有する基䜓ずしおは、基䜓自䜓
が導電性をも぀もの、䟋えばアルミニりム、アル
ミニりム合金、銅、亜鉛、ステンレス、バナゞり
ム、モリブデン、クロム、チタン、ニツケル、む
ンゞりム、金や癜金などを甚いるこずができ、そ
の他にアルミニりム、アルミニりム合金、酞化む
ンゞりム、酞化錫、酞化むンゞりム―酞化錫合金
などを真空蒞着法によ぀お被膜圢成された局を有
するプラスチツク䟋えば、ポリ゚チレン、ポリ
プロピレン、ポリ塩化ビニル、ポリ゚チレンテレ
フタレヌト、アクリル暹脂、ポリフツ化゚チレン
など、導電性粒子䟋えば、カヌボンブラツク、
銀粒子などを適圓なバむンダヌずずもにプラス
チツクの䞊に被芆した基䜓、導電性粒子をプラス
チツクや玙に含浞した基䜓や導電性ポリマヌを有
するプラスチツクなどを甚いるこずができる。 導電局ず感光局の䞭間に、バリダヌ機胜ず接着
機胜をも぀䞋匕局を蚭けるこずもできる。䞋匕局
は、カれむン、ポリビニルアルコヌル、ニトロセ
ルロヌス、゚チレン―アクリル酞コポリマヌ、ポ
リアミドナむロン、ナむロン66、ナむロン
610、共重合ナむロン、アルコキシメチル化ナむ
ロンなど、ポリりレタン、れラチン、酞化アル
ミニりムなどによ぀お圢成できる。 䞋匕局の膜厚は、0.1ミクロン〜ミクロン、
奜たしくは0.5ミクロン〜ミクロンが適圓であ
る。 導電局、電荷発生局、電荷茞送局の順に積局し
た感光䜓を䜿甚する堎合においお電荷茞送物質が
電子茞送性物質からなるずきは、電荷茞送局衚面
を正に垯電する必芁があり、垯電埌露光するず露
光郚では電荷発生局においお生成した電子が電荷
茞送局に泚入され、そのあず衚面に達しお正電荷
を䞭和し、衚面電䜍の枛衰が生じ未露光郚ずの間
に静電コントラストが生じる。この様にしおでき
た静電朜像を負荷電性のトナヌで珟像すれば可芖
像が埗られる。これを盎接定着するか、あるいは
トナヌ像を玙やプラスチツクフむルム等に転写
埌、珟像し定着するこずができる。 たた、感光䜓䞊の静電朜像を転写玙の絶瞁局䞊
に転写埌珟像し、定着する方法もずれる。珟像剀
の皮類や珟像方法、定着方法は公知のものや公知
の方法のいずれを採甚しおも良く、特定のものに
限定されるものではない。 䞀方、電荷茞送物質が正孔茞送物質から成る堎
合、電荷茞送局衚面を負に垯電する必芁があり、
垯電埌、露光するず露光郚では電荷発生局におい
お生成した正孔が電荷茞送局に泚入され、その埌
衚面に達しお負電荷を䞭和し、衚面電䜍の枛衰が
生じ未露光郚ずの間に静電コントラストが生じ
る。珟像時には電子茞送物質を甚いた堎合ずは逆
に正電荷性トナヌを甚いる必芁がある。 本発明の別の応甚䟋ずしおは、前述の有機光導
電䜓を電荷茞送物質ずずもに同䞀局に含有させた
電子写真感光䜓を挙げるこずができる。この際、
前述の電荷茞送物質の他にポリ――ビニルカル
バゟヌルずトリニトロフルオレノンからなる電荷
移動錯化合物を甚いるこずができる。 この䟋の電子写真感光䜓は、前述の有機光導電
䜓ず電荷移動錯化合物をテトラヒドロフランに溶
解されたポリ゚ステル溶液䞭に分散させた埌、被
膜圢成させお調補できる。 いずれの感光䜓においおも、甚いる顔料は䞀般
匏(1)で瀺されるゞスアゟ顔料から遞ばれる少なく
ずも皮類の顔料を含有し、必芁に応じお光吞収
の異なる顔料を組合せお䜿甚した感光䜓の感床を
高めたり、パンクロマチツクな感光䜓を埗るなど
の目的で䞀般匏(1)で瀺されるゞスアゟ顔料を皮
類以䞊組合せたり、たたは公知の染料、顔料から
遞ばれた電荷発生物質ず組合せお䜿甚するこずも
可胜である。 本発明の有機光導電䜓を含有する電子写真感光
䜓は電子写真耇写機に利甚するのみならず、レヌ
ザヌプリンタヌやCRTプリンタヌ等の電子写真
応甚分野にも広く甚いるこずができる。 たた、本発明の有機光導電䜓は、前述の電子写
真感光䜓の他に、倪陜電池や光センサヌに甚いる
こずもできる。倪陜電池は、䟋えば酞化むンゞり
ムずアルミニりムによ぀お前述の有機光導電䜓を
サンドむツチするこずによ぀お調補できる。 以䞋、本発明を具䜓的に応甚䟋によ぀お説明す
る。 䟋  アルミ板䞊にカれむンのアンモニア氎溶液カ
れむン11.2、28アンモニア氎、氎222ml
をマむダヌバヌで、也燥埌の膜厚が1.0ミクロン
ずなる様に塗垃し、也燥した。 次に、前蚘䟋瀺のゞスアゟ顔料No.の有機光導
電䜓を、゚タノヌル95mlにブチラヌル暹脂
ブチラヌル化床63モルを溶かした液に
加え、アトラむタヌで時間分散した。この分散
液を先に圢成したカれむン局の䞊に也燥埌の膜厚
が0.5ミクロンずなる様にマむダヌバヌで塗垃し、
也燥しお電荷発生局を圢成した。 次いで、構造匏 のヒドラゟン化合物ずポリメチルメタクリレ
ヌト暹脂数平均分子量100000をベンれン
70mlに溶解し、これを電荷発生局の䞊に也燥埌の
膜厚が12ミクロンずなる様にマむダヌバヌで塗垃
し、也燥しお電荷茞送局を圢成した。 この様にしお䜜成した電子写真感光䜓を川口電
機(æ ª)補静電耇写玙詊隓装眮Model SP―428を甚
いおスタチツク方匏で−5KVでコロナ垯電し、
暗所で10秒間保持した埌、照床5luxで露光し垯電
特性を調べた。 垯電特性ずしおは、衚面電䜍V0ず秒間
暗枛衰させた時の電䜍を1/2に枛衰するに必芁な
露光量E1/2を枬定した。 さらに、繰り返し䜿甚した時の明郚電䜍ず暗郚
電䜍の倉動を枬定するために、本䟋で䜜成した感
光䜓を−5.6KVのコロナ垯電噚、露光量12lux.
secの露光光孊系、珟像噚、転写垯電噚、陀電露
光光孊系およびクリヌナヌを備えた電子写真耇写
機のシリンダヌに貌り付けた。この耇写機は、シ
リンダヌの駆動に䌎い、転写玙䞊に画像が埗られ
る構成にな぀おいる。この耇写機を甚いお、初期
の明郚電䜍VLず暗郚電䜍VDおよび5000
回䜿甚した埌の明郚電䜍VLず暗郚電䜍VD
を枬定した。この結果を次に瀺す。 V0−605ボルト E1/25.2lux.sec 初 期 5000回耐久埌 VD−610ボルト、VL−25ボルト
VD−595ボルト、VL−40ボルト 䟋 〜14 䟋で甚いたゞスアゟ顔料に代えお、前蚘䟋瀺
のゞスアゟ顔料No.〜14を甚いたほかは、党く䟋
ず同様の方法で電子写真感光䜓を䜜成した。 各感光䜓の垯電特性ず耐久特性を䟋ず同様の
方法によ぀お枬定した。これらの結果を次に瀺
す。
[Formula] Add 3.54 g (0.051 mol) of sodium nitrite to a solution of 5.81 g (0.025 mol) dissolved in 65 ml of water and 13.24 ml (0.15 mol) of concentrated hydrochloric acid.
A solution obtained by dissolving the above in 10.6 ml of water was added dropwise over 5 minutes while maintaining the liquid temperature at 4.5 to 7°C, and then stirred at the same temperature for 30 minutes. Next, the above tetrazotized solution was added to a solution in which 10.57 g (0.0525 mol) of 3-hydroxy-naphthalene-2-carboxylic acid methylamide and 16.8 g (0.42 mol) of caustic soda were dissolved in 420 ml of water while keeping the liquid temperature at 4 to 10°C. was added dropwise over 10 minutes, stirred at the same temperature for 2 hours, and then left overnight. After filtering, washing with water and drying, the dried pigment was soaked in methyl ethyl ketone for 2.0 hours.
13.1g (yield 79.8%) was obtained. Elemental analysis: Calculated value (%) Experimental value (%) C 73.15 72.96 H 4.31 4.28 N 12.80 13.01 Synthesis example 3 (Synthesis of disazo pigment No. 5 illustrated above) 2 Pour 700 ml of water into a beaker, and add 21 g of caustic soda into it. (0.53 mol) was added and dissolved, 3-
Hydroxy-naphthalene-2-carboxylic acid-N,
N-diphenylhydrazide 21.6g (0.061mol)
was added and dissolved. This coupler solution was cooled to 6°C, and the liquid temperature was adjusted to 6°C.
Synthesis Example 1 described above while controlling the temperature to ~10℃
30% of the tetrazotized solution prepared by the same method as
The mixture was added dropwise over several minutes with stirring, then stirred at room temperature for 2 hours, and further left overnight. After filtering the reaction solution, it was washed with water to obtain 25.8 g of a crude pigment. Next, 400ml of N,
Heating with N-dimethylformamide was repeated five times. After that, 24.6g of purified pigment was purified by heat drying under reduced pressure.
I got it. The yield was 88.2%. Elemental analysis: Calculated value (%) Experimental value (%) C 77.31 77.41 H 4.40 4.31 N 11.64 11.62 The synthesis methods of the three types of pigments have been described above.
Other disazo pigments represented by general formula (1) are also synthesized in the same manner. In a preferred application of the organic photoconductor of the present invention,
The organic photoconductor represented by the general formula (1) can be used as the charge generating substance in an electrophotographic photoreceptor in which the photosensitive layer is functionally separated into a charge generation layer and a charge transport layer.
The charge generation layer contains as much of the organic photoconductor as possible in order to obtain sufficient absorbance, and in order to shorten the range of the generated charge carriers,
Thin film layer, e.g. less than 5 microns, preferably 0.01
It is preferable to form a thin film layer having a thickness of micron to 1 micron. This means that most of the incident light is absorbed by the charge generation layer and generates a large number of charge carriers, and that the generated charge carriers are not deactivated by recombination or trapping, and the charge transport layer This is due to the need to inject. The charge generation layer can be formed by dispersing the above-mentioned organic photoconductor in a suitable binder and coating it on the substrate, or by forming a deposited film using a vacuum deposition apparatus. be able to. Binders that can be used to form the charge generating layer by coating can be selected from a wide variety of insulating resins, and can also be selected from organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene, and polyvinylpyrene. . Preferably, polyvinyl butyral, polyarylate (condensation polymer of bisphenol A and phthalic acid, etc.), polycarbonate, polyester, phenoxy resin, polyvinyl acetate, acrylic resin, polyacrylamide resin, polyamide, polyvinylpyridine, cellulose resin, urethane Examples include insulating resins such as resin, epoxy resin, casein, polyvinyl alcohol, and polyvinylpyrrolidone. The resin contained in the charge generation layer is suitably 80% by weight or less, preferably 40% by weight or less. The solvent that dissolves these resins varies depending on the type of resin, and is preferably selected from those that do not dissolve the charge transport layer or undercoat layer described below. Specific organic solvents include alcohols such as methanol, ethanol, and isopropanol, ketones such as acetone, methyl ethyl ketone, and cyclohexanone, N,N-dimethylformamide,
Amides such as N,N-dimethylacetamide,
Sulfoxides such as dimethyl sulfoxide, ethers such as tetrahydrofuran, dioxane, and ethylene glycol monomethyl ether, esters such as methyl acetate and ethyl acetate, aliphatic halogens such as chloroform, methylene chloride, dichloroethylene, carbon tetrachloride, and trichloroethylene. Hydrocarbons or aromatics such as benzene, toluene, xylene, ligroin, monochlorobenzene, dichlorobenzene, etc. can be used. Coating can be carried out using coating methods such as dip coating, spray coating, spinner coating, bead coating, Meyer bar coating, blade coating, roller coating, and curtain coating. For drying, it is preferable to dry to the touch at room temperature and then heat dry. Heat drying at a temperature of 30℃ to 200℃ for 5 minutes to 2
It can be carried out stationary or under blown air for a period of time within a range of hours. The charge transport layer is electrically connected to the charge generation layer described above, and has the function of receiving charge carriers injected from the charge generation layer in the presence of an electric field and transporting these charge carriers to the surface. ing. At this time, this charge transport layer may be laminated on or under the charge generation layer. However, it is desirable that the charge transport layer is laminated on the charge generation layer. Since the photoconductor generally has the function of transporting charge carriers, the charge transport layer can be formed by the photoconductor. The substance that transports charge carriers in the charge transport layer (hereinafter simply referred to as charge transport substance) is preferably substantially insensitive to the wavelength range of electromagnetic waves to which the charge generation layer is sensitive. The term "electromagnetic waves" used herein includes a broad definition of "light rays" that includes gamma rays, X-rays, ultraviolet rays, visible light, near infrared rays, infrared rays, far infrared rays, and the like. When the photosensitive wavelength range of the charge transport layer coincides with or overlaps that of the charge generation layer, charge carriers generated in both layers capture each other, resulting in a decrease in sensitivity. Charge transport substances include electron transport substances and hole transport substances, and electron transport substances include chloranil, bromoanil, tetracyanoethylene, tetracyanoquinodimethane, and 2,4,7-trinitro-9-fluorenone. , 2, 4, 5, 7-
Tetranitro-9-fluorenone, 2,4,7-
trinitro-9-dicyanomethylenefluorenone, 2,4,5,7-tetranitroxanthone,
Examples include electron-withdrawing substances such as 2,4,8-trinitrothioxanthone, and polymerized versions of these electron-withdrawing substances. Examples of hole-transporting substances include pyrene, N-ethylcarbazole, N-isopropylcarbazole,
N-Methyl-N-phenylhydrazino-3-methylidene-9-ethylcarbazole, N,N-diphenylhydrazino-3-methylidene-9-ethylcarbazole, N,N-diphenylhydrazino-
3-methylidene-10-ethylphenothiazine,
N,N-diphenylhydrazino-3-methylidene-10-ethylphenoxazine, P-diethylaminobenzaldehyde-N,N-diphenylhydrazone, P-diethylaminobenzaldehyde-N
-α-naphthyl-N-phenylhydrazone, P-
Pyrrolidinobenzaldehyde-N,N-diphenylhydrazone, 1,3,3-trimethylindolenine-ω-aldehyde-N,N-diphenylhydrazone, P-diethylbenzaldehyde-3-methylbenzthiazolinone-2-hydrazone hydrazones such as 2,5-bis(P-diethylaminophenyl)-1,3,4-oxadiazole, 1
-Phenyl-3-(P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, 1-[quinolyl(2)]-3-(P-diethylaminostyryl)-5-(P-diethylaminophenyl) Pyrazoline, 1-[pyridyl (2)]-3
-(P-diethylaminostyryl)-5-(P-
diethylaminophenyl) pyrazoline, 1-[6
-Methoxy-pyridyl(2)]-3-(P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, 1-[pyridyl(3)]-3-
(P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, 1-[Lepidil (2)]-3-(P-diethylaminostyryl)
-5-(P-diethylaminophenyl)pyrazoline, 1-[pyridyl(2)]-3-(P-diethylaminostyryl)-4-methyl-5-(P-diethylaminophenyl)pyrazoline, 1-[pyridyl
(2)〕-3-(α-methyl-P-diethylaminostyryl)-5-(P-diethylaminophenyl)
Pyrazoline, 1-phenyl-3-(P-diethylaminostyryl)-4-methyl-5-(P-diethylaminophenyl)pyrazoline, 1-phenyl-3-(α-benzyl-P-diethylaminostyryl)-5-( P-diethylaminophenyl) pyrazoline, spiropyrazoline and other pyrazolines, 2-(P-diethylaminostyryl)-6-
Diethylaminobenzoxazole, 2-(P-
diethylaminophenyl)-4-(P-dimethylaminophenyl)-5-(2-chlorophenyl)
Oxazole compounds such as oxazole, 2-
Thiazole compounds such as (P-diethylaminostyryl)-6-diethylaminobenzothiazole, triarylmethane compounds such as bis(4-diethylamino-2-methylphenyl)-phenylmethane, 1,1-bis(4-N,N- diethylamino-2-methylphenyl)heptane, 1,
Polyarylalkanes such as 1,2,2-tetrakis(4-N,N-dimethylamino-2-methylphenyl)ethane, triphenylamine, poly-
N-vinylcarbazole, polyvinylpyrene, polyvinylanthracene, polyvinylacridine,
Examples include poly-9-vinylphenylanthracene, pyrene-formaldehyde resin, and ethylcarbazole formaldehyde resin. In addition to these organic charge transport materials, inorganic materials such as selenium, selenium-tellurium amorphous silicon, and cadmium sulfide can also be used. Moreover, these charge transport substances may be one or two types.
More than one species can be used in combination. When the charge transport material does not have film-forming properties,
A film can be formed by selecting an appropriate binder. Resins that can be used as binders are:
For example, insulating resins such as acrylic resin polyarylate, polyester, polycarbonate, polystyrene acrylonitrile-styrene copolymer, acrylonitrile-butadiene copolymer, polyvinyl butyral, polyvinyl formal, polysulfone, polyacrylamide, polyamide, chlorinated rubber, or poly-N-vinyl carbazole. , polyvinylanthracene, polyvinylpyrene, and the like. Since the charge transport layer has a limit in its ability to transport charge carriers, it cannot be made thicker than necessary. Typically it is between 5 microns and 30 microns, with a preferred range between 8 microns and 20 microns. When forming the charge transport layer by coating, an appropriate coating method as described above can be used. A photosensitive layer having such a laminated structure of a charge generation layer and a charge transport layer is provided on a substrate having a conductive layer. As the substrate having the conductive layer, materials that are themselves conductive can be used, such as aluminum, aluminum alloy, copper, zinc, stainless steel, vanadium, molybdenum, chromium, titanium, nickel, indium, gold, and platinum. In addition, plastics (e.g., polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, acrylic resin, polyethylene fluoride, etc.), conductive particles (e.g. carbon black,
A substrate made of plastic coated with silver particles (silver particles, etc.) together with a suitable binder, a substrate made of plastic or paper impregnated with conductive particles, a plastic containing a conductive polymer, etc. can be used. A subbing layer having barrier and adhesive functions can also be provided between the conductive layer and the photosensitive layer. The undercoat layer is made of casein, polyvinyl alcohol, nitrocellulose, ethylene-acrylic acid copolymer, polyamide (nylon 6, nylon 66, nylon
610, copolymerized nylon, alkoxymethylated nylon, etc.), polyurethane, gelatin, aluminum oxide, etc. The thickness of the undercoat layer is 0.1 micron to 5 micron.
Preferably, 0.5 micron to 3 micron is appropriate. When using a photoreceptor in which a conductive layer, a charge generation layer, and a charge transport layer are laminated in this order, and the charge transport material is an electron transport material, the surface of the charge transport layer must be positively charged, and exposure after charging is required. Then, in the exposed area, electrons generated in the charge generation layer are injected into the charge transport layer, and then reach the surface and neutralize the positive charge, causing a decrease in surface potential and creating an electrostatic contrast with the unexposed area. . A visible image can be obtained by developing the electrostatic latent image thus formed with a negatively charged toner. This can be directly fixed, or the toner image can be transferred to paper, plastic film, etc. and then developed and fixed. Alternatively, a method may be used in which the electrostatic latent image on the photoreceptor is transferred onto an insulating layer of transfer paper, then developed and fixed. The type of developer, the developing method, and the fixing method may be any known ones or known methods, and are not limited to specific ones. On the other hand, when the charge transport material consists of a hole transport material, the surface of the charge transport layer must be negatively charged.
After charging, when exposed to light, holes generated in the charge generation layer in the exposed area are injected into the charge transport layer, and then reach the surface and neutralize the negative charge, causing a decrease in the surface potential and static electricity between the exposed area and the unexposed area. Electrocontrast occurs. During development, it is necessary to use a positively charged toner, contrary to the case where an electron transport material is used. Another application example of the present invention is an electrophotographic photoreceptor in which the above-described organic photoconductor is contained in the same layer together with a charge transport material. On this occasion,
In addition to the charge transport materials mentioned above, a charge transport complex compound consisting of poly-N-vinylcarbazole and trinitrofluorenone can be used. The electrophotographic photoreceptor of this example can be prepared by dispersing the aforementioned organic photoconductor and charge transfer complex compound in a polyester solution dissolved in tetrahydrofuran, and then forming a film thereon. In any of the photoreceptors, the pigment used contains at least one type of pigment selected from the disazo pigments represented by the general formula (1), and if necessary, pigments with different light absorptions are used in combination. For the purpose of increasing the photoreceptor or obtaining a panchromatic photoreceptor, two or more types of disazo pigments represented by general formula (1) are used in combination, or in combination with a charge-generating substance selected from known dyes and pigments. It is also possible to do so. The electrophotographic photoreceptor containing the organic photoconductor of the present invention can be used not only in electrophotographic copying machines but also in a wide range of electrophotographic applications such as laser printers and CRT printers. Further, the organic photoconductor of the present invention can also be used in solar cells and optical sensors in addition to the above-mentioned electrophotographic photoreceptor. Solar cells can be prepared, for example, by sandwiching the aforementioned organic photoconductors with indium oxide and aluminum. Hereinafter, the present invention will be specifically explained using application examples. Example 1 Ammonia aqueous solution of casein (11.2 g of casein, 1 g of 28% ammonia water, 222 ml of water) on an aluminum plate.
was applied with a Mayer bar so that the film thickness after drying was 1.0 microns, and dried. Next, 5 g of the organic photoconductor of disazo pigment No. 1 illustrated above was added to a solution prepared by dissolving 2 g of butyral resin (degree of butyralization: 63 mol %) in 95 ml of ethanol, and dispersed with an attritor for 2 hours. This dispersion was applied onto the previously formed casein layer using a Mayer bar so that the film thickness after drying was 0.5 microns.
It was dried to form a charge generation layer. Then, the structural formula 5 g of hydrazone compound and 5 g of polymethyl methacrylate resin (number average molecular weight 100,000) were added to benzene.
The solution was dissolved in 70 ml and applied onto the charge generation layer using a Mayer bar so that the film thickness after drying was 12 microns, and dried to form a charge transport layer. The electrophotographic photoreceptor thus prepared was statically charged with corona at -5 KV using an electrostatic copying paper tester Model SP-428 manufactured by Kawaguchi Electric Co., Ltd.
After keeping it in the dark for 10 seconds, it was exposed to light at an illuminance of 5 lux to examine the charging characteristics. As for the charging characteristics, the surface potential (V 0 ) and the exposure amount (E 1/2 ) required to attenuate the potential to 1/2 when dark decaying for 1 second were measured. Furthermore, in order to measure the fluctuations in bright area potential and dark area potential during repeated use, the photoreceptor fabricated in this example was charged with a -5.6 KV corona charger and exposed to 12 lux.
It was attached to the cylinder of an electrophotographic copying machine equipped with a sec exposure optical system, a developing device, a transfer charger, a static elimination exposure optical system, and a cleaner. This copying machine is configured to produce an image on transfer paper as a cylinder is driven. Using this copying machine, the initial bright area potential (V L ), dark area potential (V D ) and 5000
Light potential (V L ) and dark potential (V D ) after multiple uses
was measured. The results are shown below. V 0 : -605 volts E 1/2 : 5.2lux.sec Initial After 5000 cycles V D : -610 volts, V L : -25 volts
V D : -595 volts, V L : -40 volts Examples 2 to 14 Completely the same as Example 1 except that the disazo pigments Nos. 2 to 14 as illustrated above were used in place of the disazo pigments used in Example 1. An electrophotographic photoreceptor was prepared using the method. The charging characteristics and durability characteristics of each photoreceptor were measured in the same manner as in Example 1. These results are shown below.

【衚】【table】

【衚】 䟋 15 䟋で䜜成した電荷発生局の䞊に、
―トリニトロ――フルオレノンずポリ―
4′―ゞオキシゞプニル――プロパン
カヌボネヌト分子量300000をテトラヒド
ロフラン70mlに溶解しお䜜成した塗垃液を也燥埌
の塗工量が10m2ずなる様に塗垃し、也燥し
た。 こうしお䜜成した電子写真感光䜓を䟋ず同様
の方法で垯電枬定を行な぀た。この時、垯電極性
はずした。この結果を次に瀺す。 V0610ボルト E1/26.0lux.sec 初期暗郚電䜍VD600ボルト 初期明郚電䜍VL55ボルト 5000回耐久埌の暗郚電䜍VD590ボルト 5000回耐久埌の明郚電䜍VL60ボルト 䟋 16 アルミ蒞着ポリ゚チレンテレフタレヌトフむル
ムのアルミ面䞊に膜厚1.1ミクロンのポリビニル
アルコヌルの被膜を圢成した。 次に、䟋で甚いたゞスアゟ顔料の分散液を先
に圢成したポリビニルアルコヌル局の䞊に、也燥
埌の膜厚が0.5ミクロンずなる様にマむダヌバヌ
で塗垃し、也燥しお電荷発生局を圢成した。 次いで、構造匏 のピラゟリン化合物ずポリアリレヌト暹脂
ビスプノヌルずテレフタル酞―む゜フタル
酞の瞮重合䜓をテトラヒドロフラン70mlに
溶かした液を電荷発生局の䞊に也燥埌の膜厚が10
ミクロンずなる様に塗垃し、也燥しお電荷茞送局
を圢成した。 こうしお調補した感光䜓の垯電特性および耐久
特性を䟋ず同様の方法によ぀お枬定した。この
結果を次に瀺す。 V0−580ボルト E1/24.5lux.sec 初期暗郚電䜍VD−610ボルト 初期明郚電䜍VL−25ボルト 5000回耐久埌の暗郚電䜍VD−600ボルト 5000回耐久埌の明郚電䜍VL−35ボルト 䟋 17 厚さ100ミクロン厚のアルミ板䞊にカれむンの
アンモニア氎溶液を塗垃し、也燥しお膜厚1.1ミ
クロンの䞋匕局を圢成した。 次に、―トリニトロ――フルオレ
ノンずポリ――ビニルカルバゟヌル数平
均分子量300000をテトラヒドロフラン70ml
に溶かしお電荷移動錯化合物を圢成した。この電
荷移動錯化合物ず前蚘䟋瀺のゞスアゟ顔料No.の
光導電䜓を、ポリ゚ステル暹脂バむロン
東掋玡補をテトラヒドロフラン70mlに溶か
した液に加え、分散した。この分散液を䞋匕局の
䞊に也燥埌の膜厚が12ミクロンずなる様に塗垃
し、也燥した。 こうしお調補した感光䜓の垯電特性ず耐久特性
を䟋ず同様の方法によ぀お枬定した。この結果
を次に瀺す。䜆し、垯電極性はずした。 V0610ボルト E1/25.4lux.sec 初期暗郚電䜍VD595ボルト 初期明郚電䜍VL50ボルト 5000回耐久埌の暗郚電䜍VD580ボルト 5000回耐久埌の明郚電䜍VL50ボルト
[Table] Example 15 On the charge generation layer created in Example 1, 2, 4, 7
-Trinitro-9-fluorenone 5g and poly-
A coating solution prepared by dissolving 5 g of 4,4'-dioxydiphenyl-2,2-propane carbonate (molecular weight 300,000) in 70 ml of tetrahydrofuran was applied so that the coating amount after drying was 10 g/m2. , dried. The electrostatic charge of the electrophotographic photoreceptor thus prepared was measured in the same manner as in Example 1. At this time, the charging polarity was set. The results are shown below. V 0 : +610 volts E 1/2 : 6.0lux.sec Initial dark potential V D : +600 volts Initial light potential V L : +55 volts Dark potential after 5000 cycles V D : +590 volts Light area after 5000 cycles Potential V L : +60 volts Example 16 A polyvinyl alcohol film with a thickness of 1.1 microns was formed on the aluminum surface of an aluminum vapor-deposited polyethylene terephthalate film. Next, the disazo pigment dispersion used in Example 1 was applied onto the previously formed polyvinyl alcohol layer using a Mayer bar so that the film thickness after drying was 0.5 microns, and dried to form a charge generation layer. Formed. Then, the structural formula A solution prepared by dissolving 5 g of pyrazoline compound and 5 g of polyarylate resin (condensation polymer of bisphenol A and terephthalic acid-isophthalic acid) in 70 ml of tetrahydrofuran is placed on the charge generation layer so that the film thickness after drying is 10
It was applied to a micron thickness and dried to form a charge transport layer. The charging characteristics and durability characteristics of the photoreceptor thus prepared were measured in the same manner as in Example 1. The results are shown below. V 0 : -580 volts E 1/2 : 4.5lux.sec Initial dark potential V D : -610 volts Initial light potential V L : -25 volts Dark potential after 5000 cycles V D : -600 volts 5000 cycles Later bright area potential V L : -35 volts Example 17 An ammonia aqueous solution of casein was applied onto an aluminum plate with a thickness of 100 microns and dried to form a subbing layer with a thickness of 1.1 microns. Next, 5 g of 2,4,7-trinitro-9-fluorenone and 5 g of poly-N-vinylcarbazole (number average molecular weight 300,000) were added to 70 ml of tetrahydrofuran.
to form a charge transfer complex. This charge transfer complex compound and 1 g of the photoconductor of disazo pigment No. 1 mentioned above were mixed with polyester resin (Vylon:
Toyobo Co., Ltd.) 5g was dissolved in 70ml of tetrahydrofuran and dispersed. This dispersion was applied onto the undercoat layer so that the film thickness after drying was 12 microns, and dried. The charging characteristics and durability characteristics of the photoreceptor thus prepared were measured in the same manner as in Example 1. The results are shown below. However, the charging polarity was determined. V 0 : +610 volts E 1/2 : 5.4lux.sec Initial dark potential V D : +595 volts Initial light potential V L : Dark potential after 5000 cycles of +50 volts V D : Light potential after 5000 cycles of +580 volts Potential V L : +50 volts

Claims (1)

【特蚱請求の範囲】  䞋蚘䞀般匏(1)で瀺す有機光導電䜓。 ただし、匏䞭は芳銙族性を有するカプラヌ成
分を衚わす。
[Claims] 1. An organic photoconductor represented by the following general formula (1). However, in the formula, A represents a coupler component having aromaticity.
JP4147783A 1983-03-15 1983-03-15 Organic photoconductor Granted JPS59168455A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4147783A JPS59168455A (en) 1983-03-15 1983-03-15 Organic photoconductor
US06/589,343 US4495264A (en) 1983-03-15 1984-03-14 Electrophotographic photosensitive member comprising disazo compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4147783A JPS59168455A (en) 1983-03-15 1983-03-15 Organic photoconductor

Publications (2)

Publication Number Publication Date
JPS59168455A JPS59168455A (en) 1984-09-22
JPH0153778B2 true JPH0153778B2 (en) 1989-11-15

Family

ID=12609430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4147783A Granted JPS59168455A (en) 1983-03-15 1983-03-15 Organic photoconductor

Country Status (1)

Country Link
JP (1) JPS59168455A (en)

Also Published As

Publication number Publication date
JPS59168455A (en) 1984-09-22

Similar Documents

Publication Publication Date Title
JPH042944B2 (en)
JPH0441342B2 (en)
JPS61129653A (en) Electrophotographic sensitive body
JP2592271B2 (en) Electrophotographic photoreceptor
JPH039462B2 (en)
JPH0454228B2 (en)
JPH0727235B2 (en) Electrophotographic photoreceptor
JPH0513502B2 (en)
JPH0516586B2 (en)
JPH0473578B2 (en)
JP2652389B2 (en) Electrophotographic photoreceptor
JPH042946B2 (en)
JP2538266B2 (en) Electrophotographic photoreceptor
JP2566431B2 (en) Electrophotographic photoreceptor
JPH0153779B2 (en)
JP2535203B2 (en) Electrophotographic photoreceptor
JPH0153778B2 (en)
JPH0350263B2 (en)
JPH0338582B2 (en)
JPH042948B2 (en)
JPH01217358A (en) Electrophotographic sensitive body
JPH07117759B2 (en) Electrophotographic photoreceptor
JPH0833669B2 (en) Electrophotographic photoreceptor
JPH0833673B2 (en) Electrophotographic photoreceptor
JPH0682218B2 (en) Electrophotographic photoreceptor