JPH0153354B2 - - Google Patents

Info

Publication number
JPH0153354B2
JPH0153354B2 JP59206783A JP20678384A JPH0153354B2 JP H0153354 B2 JPH0153354 B2 JP H0153354B2 JP 59206783 A JP59206783 A JP 59206783A JP 20678384 A JP20678384 A JP 20678384A JP H0153354 B2 JPH0153354 B2 JP H0153354B2
Authority
JP
Japan
Prior art keywords
plating
corrosion resistance
phase
alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59206783A
Other languages
Japanese (ja)
Other versions
JPS6184394A (en
Inventor
Yoshio Shindo
Katsushi Saito
Fumio Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59206783A priority Critical patent/JPS6184394A/en
Publication of JPS6184394A publication Critical patent/JPS6184394A/en
Publication of JPH0153354B2 publication Critical patent/JPH0153354B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は加工部の耐食性に優れた電気亜鉛合金
めつき鋼板に関するものである。 (従来の技術) 電気亜鉛めつき鋼板は、その耐食性と共に冷延
鋼板並の加工性、溶接性などを有するため、自動
車、家電、建材など幅広い用途に使われている。 近年、自動車を主体として高品質の亜鉛めつき
鋼板の要求が強くなり、従来の純亜鉛めつきでは
耐食性、塗装性の点で限界があるため、各種の亜
鉛系合金めつき鋼板、例えばZn−Ni、Zn−Fe、
Zn−Co−Mo合金めつきや、有機皮膜を複合化し
た合金めつき鋼板が実用化されつつある。 自動車、家電用に用いられる合金めつきが具備
すべき品質としては、従来の純亜鉛めつきの良加
工性、良溶接性を確保し、かつ耐食性、塗装性の
改良が必要である。上記各種合金めつきの中で、
特にZn−Ni合金めつき鋼板は裸の耐食性、塗装
性に優れており、自動車、家電用としてその用途
は急速に拡大している。 Zn−Ni合金めつき鋼板の公知例としては、例
えば特開昭55−110792号公報、特開昭56−130477
号公報、特開昭57−207199号公報、特開昭58−
9997号公報記載のものなどがある。これらの公知
例のNi含有率は5〜20%もしくは9〜20%であ
り、中でもNi含有率9〜20%のγ単相Zn−Ni合
金めつきは最も耐食性に優れ、同一目付量の純亜
鉛めつきに比べ数倍の裸耐食性が得られるとされ
ている。 しかし、Ni含有率の増大と共にめつき層内の
内部応力が急激に上昇し、耐食性の最も優れる
Ni含有率10〜20%のZn−Ni合金めつきは軽度の
加工で無数の微細なクラツクが発生し、クラツク
に起因するめつき皮膜の剥離を生じる。これは、
Zn−Ni合金めつき層の犠牲防食作用が純亜鉛め
つきに比べて小さいので、クラツク部分からの赤
錆が短時間に発生し、耐食性が劣化するものとみ
られる。このため、公知のZn−Ni合金めつき鋼
板は、未加工の場合高耐食性を発揮するが、加工
した場合、その耐食性は加工前の1/2以下に劣化
してしまう。 Zn−Ni合金めつきの加工性を考慮した製造技
術としては、特公昭49−32172号公報にPH=4.0〜
4.5とすることでめつき層の内部応力を低下させ、
これによつて延性を得る方法が記載されている
が、電流密度が4.3〜10.8A/dm2と低い、又、特
開昭58−204195号公報ではZn−Ni合金めつきの
加工性の良、不良の境界条件となるめつき浴臨界
PHの実験式が開示されているが、めつき浴組成及
びめつき浴と鋼板との相対速度の変動に応じて臨
界PHが変動するため、実用性に乏しい。又、特開
昭56−35790号公報ではNi−Zn合金めつきの下地
処理としてNi、Co等のプレメツキを行う例もあ
るが、単層ではなく、処理プロセスが複雑になる
欠点が生ずる。 (発明が解決しようとする問題点) そこで、本発明は、加工によるクラツクが発生
しやすいγ相のZn−Niをめつき層中に含まず、
かつ加工部の耐食性が実質的にγ単相と同等以上
の性能を有する加工部耐食性に優れた低Ni含有
亜鉛合金めつき鋼板を提供するものである。 (問題点を解決するための手段) 本発明の要旨は、1〜3重量%未満のNiとFe、
Co、Snの内1種以上を総量で0.5重量%以下と残
部Znの単層からなり、めつき構造にη相のみを
含むことを特徴とする加工部の耐食性に優れた電
気亜鉛合金めつき鋼板である。 (作用) このように、本発明はNiを1〜3重量%未満
含有し、かつ構造としてはη相のみを含む低Ni
−Zn合金めつき鋼板をベースとする。 Ni含有率が3%以上ではX線回折的にめつき
層中にγ相に相当するピークが検出され、加工部
クラツクが発生し易くなる。またNi含有率が1
%未満では耐食性が劣るので、本発明では1〜3
%未満の範囲とした。 Ni含有率1〜3重量%未満のη単相構造のZn
−Ni合金めつきは、加工部耐食性においてはγ
単相のZn−Ni合金めつきより良好であるが、未
加工部の耐食性においては劣化してしまう欠点が
ある。そこで、本発明においては、さらに低Ni
−Zn合金めつき層中にFe、Co、Snの内1種以上
を総量で0.5%以下含有させることにより、X線
回折的にη相のみのめつき層が得られ、加工部が
損われることなく、更に耐食性が向上する。この
場合、含有量が0.5%を越えるとめつき構造が他
のものに変わりやすく、目的とするη相が出来に
くい。安定してη相を製造するには0.1〜0.5%の
範囲が好ましい。 こうすることにより、未加工部の耐食性、特に
電着塗装後の耐食性を、Niのみを含むγ単相あ
るいはη単相のZn−Ni合金めつきに比較して向
上させることができる。 Zn−Ni合金めつきは一般にNi含有率に比例し
てη(イーター)相、ζ(ツエーター)相、γ(ガ
ンマー)相、α(アルフア)相の組織が存在する。
本発明のNi含有率1〜3%未満、およびめつき
構造η相とするためのめつき浴およびめつき条件
は、硫酸浴を使用し、大電流でめつきすることで
あり、好ましくは全金属イオン濃度1.0〜1.5モ
ル/、Ni2+/(Ni2++Zn2+)のモル比で0.1〜
0.2、Fe2+、Co2+、Sn2+を0.001〜0.1モル/、
PH=1以上2未満、浴温40〜70℃、ストリツプと
液の相対流速が0.3m/sec以上、電流密度30A/
dm2以上のめつき条件である。 (実施例) 冷延鋼板を常法に従つて脱脂、酸洗後、以下の
条件によつてZn−Ni系電気めつきを行つた。 (1) ZnSO4・7H2O NiSO4・6H2ONi2+モル濃度10 〜20%合計400g/ Na2SO4 100g/ (2) 上記基本浴に下記の内1種あるいは2種以上
を添加したもの。 FeSO4・7H2O 3g/ CoSO4 3g/ CrO3 2g/ SnSO4 2g/ (3) 比較例 1 2 ZnSO4・7H2O 240g/ 400g/ NiSO4・6H2O 160g/ − Na2SO4 100g/ 100g/ めつき条件は、いずれの場合も下記の通りで
ある。 浴 温 60℃ 浴 PH 1.5 電流密度 50A/dm2 液流速 60m/min めつき付着量 20g/m2 上記条件で得られた製品に2t折曲加工を施し、
JISZ2317による塩水噴霧試験で赤錆発生迄の時
間を調べた結果、及びリン酸塩処理(dip処理)、
カチオン電着塗装後の耐食性について調べた結果
を第1表に示す。
(Industrial Application Field) The present invention relates to an electrolytic zinc alloy coated steel sheet with excellent corrosion resistance in processed parts. (Prior Art) Electrogalvanized steel sheets have corrosion resistance as well as workability and weldability comparable to cold-rolled steel sheets, so they are used in a wide range of applications such as automobiles, home appliances, and building materials. In recent years, there has been a strong demand for high-quality galvanized steel sheets mainly for automobiles, and since conventional pure zinc plating has limitations in terms of corrosion resistance and paintability, various zinc-based alloy coated steel sheets, such as Zn- Ni, Zn−Fe,
Zn-Co-Mo alloy plating and alloy-plated steel sheets with composite organic coatings are being put into practical use. The quality that alloy plating used for automobiles and home appliances must have is to ensure good workability and weldability of conventional pure zinc plating, and to improve corrosion resistance and paintability. Among the various alloy platings mentioned above,
In particular, Zn-Ni alloy plated steel sheets have excellent corrosion resistance and paintability, and their use in automobiles and home appliances is rapidly expanding. Known examples of Zn-Ni alloy plated steel sheets include, for example, JP-A-55-110792 and JP-A-56-130477.
Publication No., JP-A-57-207199, JP-A-58-
Some examples include those described in Publication No. 9997. The Ni content of these known examples is 5 to 20% or 9 to 20%, and among them, the γ single-phase Zn-Ni alloy plating with a Ni content of 9 to 20% has the best corrosion resistance, and is the most corrosion resistant. It is said to provide several times the corrosion resistance of bare metal compared to zinc plating. However, as the Ni content increases, the internal stress within the plating layer increases rapidly, resulting in
When Zn-Ni alloy plating with a Ni content of 10 to 20% is lightly processed, countless minute cracks occur, and the cracks cause the plating film to peel off. this is,
Since the sacrificial anticorrosion effect of the Zn-Ni alloy plating layer is smaller than that of pure zinc plating, red rust appears from the cracks in a short period of time, deteriorating the corrosion resistance. For this reason, the known Zn-Ni alloy plated steel sheet exhibits high corrosion resistance when unprocessed, but when processed, its corrosion resistance deteriorates to less than half of that before processing. As a manufacturing technology that takes into account the workability of Zn-Ni alloy plating, PH=4.0 ~
By setting it to 4.5, the internal stress of the plating layer is reduced,
A method for obtaining ductility by this method is described, but the current density is as low as 4.3 to 10.8 A/ dm2 , and JP-A No. 58-204195 shows that Zn-Ni alloy plating has good workability. Plating bath criticality as a boundary condition for failure
Although an empirical formula for PH has been disclosed, the critical PH varies depending on the composition of the plating bath and the relative speed between the plating bath and the steel sheet, so it is of little practical use. Further, in Japanese Patent Application Laid-Open No. 56-35790, there is an example in which pre-plating with Ni, Co, etc. is used as a base treatment for Ni--Zn alloy plating, but it is not a single layer and has the disadvantage that the treatment process becomes complicated. (Problems to be Solved by the Invention) Therefore, the present invention does not contain γ-phase Zn-Ni, which is likely to cause cracks due to processing, in the plating layer.
The present invention also provides a low Ni-containing zinc alloy coated steel sheet with excellent corrosion resistance in the processed portion, which has performance substantially equal to or higher than that of single phase γ. (Means for solving the problems) The gist of the present invention is that Ni and Fe in an amount of less than 1 to 3% by weight,
Electrolytic zinc alloy plating with excellent corrosion resistance on processed parts, consisting of a single layer of one or more of Co and Sn in a total amount of 0.5% by weight or less and the remainder Zn, and containing only the η phase in the plating structure. It is a steel plate. (Function) As described above, the present invention provides a low Ni
-Based on Zn alloy plated steel plate. When the Ni content is 3% or more, a peak corresponding to the γ phase is detected in the plated layer by X-ray diffraction, and cracks in the processed portion are likely to occur. Also, the Ni content is 1
If it is less than 1%, the corrosion resistance will be poor, so in the present invention, it is less than 1 to 3%.
The range was less than %. Zn with η single-phase structure with Ni content of 1 to less than 3% by weight
-Ni alloy plating has a γ
Although it is better than single-phase Zn-Ni alloy plating, it has the disadvantage that the corrosion resistance of unprocessed parts deteriorates. Therefore, in the present invention, even lower Ni
- By containing one or more of Fe, Co, and Sn in a total amount of 0.5% or less in the Zn alloy plating layer, a plating layer containing only the η phase can be obtained by X-ray diffraction, and the processed part will be damaged. Corrosion resistance is further improved. In this case, if the content exceeds 0.5%, the plating structure tends to change to something else, making it difficult to form the desired η phase. In order to stably produce the η phase, a range of 0.1 to 0.5% is preferable. By doing so, the corrosion resistance of the unprocessed part, especially the corrosion resistance after electrodeposition coating, can be improved compared to single-phase γ or single-phase η Zn-Ni alloy plating containing only Ni. Zn-Ni alloy plating generally has structures of η (eater) phase, ζ (zeator) phase, γ (gamma) phase, and α (alpha) phase in proportion to the Ni content.
The plating bath and plating conditions for achieving a Ni content of less than 1 to 3% and a plating structure of η phase in the present invention are to use a sulfuric acid bath and conduct plating with a large current, preferably all Metal ion concentration 1.0-1.5 mol/, Ni 2+ / (Ni 2+ + Zn 2+ ) molar ratio 0.1-
0.2, Fe 2+ , Co 2+ , Sn 2+ 0.001 to 0.1 mol/,
PH=1 or more and less than 2, bath temperature 40-70℃, relative flow velocity of strip and liquid 0.3m/sec or more, current density 30A/
The plating condition is dm 2 or more. (Example) After degreasing and pickling a cold-rolled steel sheet according to a conventional method, Zn--Ni electroplating was performed under the following conditions. (1) ZnSO 4・7H 2 O NiSO 4・6H 2 ONi 2+ molar concentration 10 to 20% total 400g/ Na 2 SO 4 100g/ (2) Add one or more of the following to the above basic bath What I did. FeSO 4・7H 2 O 3g/ CoSO 4 3g/ CrO 3 2g/ SnSO 4 2g/ (3) Comparative example 1 2 ZnSO 4・7H 2 O 240g/ 400g/ NiSO 4・6H 2 O 160g/ − Na 2 SO 4 100g/100g/The plating conditions are as follows in each case. Bath temperature 60℃ Bath PH 1.5 Current density 50A/dm 2 Liquid flow rate 60 m/min Plating deposition amount 20 g/m 2 The product obtained under the above conditions was subjected to a 2t bending process,
Results of investigating the time until red rust occurs in a salt spray test according to JISZ2317, phosphate treatment (dip treatment),
Table 1 shows the results of investigating the corrosion resistance after cationic electrodeposition coating.

【表】 第1表から明らかなように、めつき中のNi含
有率と2t折曲部の耐赤錆性の関係については、比
較例1〜3はいずれも早い時期(70〜85時間)に
発生している。本発明材は2t折曲部の赤錆発生迄
の時間が105〜110時間であり、比較例1〜3より
も長時間である。 又、電着塗装後にクロスカツトを入れた材料の
塩水噴霧試験を行つた結果では、本発明材は、比
較例1のγ単相材料や、比較例3〜5のNiのみ
を2.5%以下含有するη単相材料に比べ優れた性
能を有する。 (発明の効果) 以上説明したように、本発明によれば加工部耐
食性に優れた電気亜鉛合金めつき鋼板が得られ、
従来加工による耐食性低下のため使用できなかつ
た用途にも使用できるため、用途の拡大に貢献す
るものである。
[Table] As is clear from Table 1, regarding the relationship between the Ni content in plating and the red rust resistance of the 2t bent part, Comparative Examples 1 to 3 showed It has occurred. The present invention material takes 105 to 110 hours to develop red rust on the 2t bent portion, which is longer than Comparative Examples 1 to 3. In addition, the results of a salt spray test of the material with cross cuts after electrodeposition coating showed that the material of the present invention contained only 2.5% or less of γ single-phase material of Comparative Example 1 and only Ni of Comparative Examples 3 to 5. η Has superior performance compared to single-phase materials. (Effects of the Invention) As explained above, according to the present invention, an electrolytic zinc alloy plated steel sheet with excellent corrosion resistance in processed parts can be obtained,
It can be used in applications that could not be used due to reduced corrosion resistance due to conventional processing, contributing to the expansion of applications.

Claims (1)

【特許請求の範囲】[Claims] 1 1〜3重量%未満のNiとFe、Co、Snの内1
種以上を総量で0.5重量%以下と残部Znの単層か
らなり、めつき構造にη相のみを含むことを特徴
とする加工部の耐食性に優れた電気亜鉛合金めつ
き鋼板。
1 1 to less than 3% by weight of Ni and 1 of Fe, Co, and Sn
An electrolytic zinc alloy plated steel sheet with excellent corrosion resistance in processed parts, characterized by a single layer of 0.5% by weight or less of Zn and the balance Zn, and containing only η phase in the plating structure.
JP59206783A 1984-10-02 1984-10-02 Zinc alloy electroplated steel sheet having superior corrosion resistance at worked part Granted JPS6184394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59206783A JPS6184394A (en) 1984-10-02 1984-10-02 Zinc alloy electroplated steel sheet having superior corrosion resistance at worked part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59206783A JPS6184394A (en) 1984-10-02 1984-10-02 Zinc alloy electroplated steel sheet having superior corrosion resistance at worked part

Publications (2)

Publication Number Publication Date
JPS6184394A JPS6184394A (en) 1986-04-28
JPH0153354B2 true JPH0153354B2 (en) 1989-11-14

Family

ID=16529015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59206783A Granted JPS6184394A (en) 1984-10-02 1984-10-02 Zinc alloy electroplated steel sheet having superior corrosion resistance at worked part

Country Status (1)

Country Link
JP (1) JPS6184394A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550484A (en) * 1978-10-11 1980-04-12 Sumitomo Metal Ind Ltd Electric zinc alloy plated steel sheet and production thereof
JPS58104194A (en) * 1981-12-14 1983-06-21 Nisshin Steel Co Ltd Highly corrosion resistant electrogalvanized steel plate and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550484A (en) * 1978-10-11 1980-04-12 Sumitomo Metal Ind Ltd Electric zinc alloy plated steel sheet and production thereof
JPS58104194A (en) * 1981-12-14 1983-06-21 Nisshin Steel Co Ltd Highly corrosion resistant electrogalvanized steel plate and its production

Also Published As

Publication number Publication date
JPS6184394A (en) 1986-04-28

Similar Documents

Publication Publication Date Title
US4541903A (en) Process for preparing Zn-Fe base alloy electroplated steel strips
JPS6136078B2 (en)
Verberne Zinc-cobalt alloy electrodeposition
US4640872A (en) Corrosion-resistant steel strip having Zn-Fe-P alloy electroplated thereon
JPH0153354B2 (en)
JPS61207597A (en) Alloyed hot dip galvanized steel sheet having superior workability
JPH01309998A (en) Production of composite electroplated steel sheet having superior corrosion resistance and fine surface luster
JP2509939B2 (en) Method for producing Zn-Ni alloy plated steel sheet
JPH07103476B2 (en) Method for producing Zn-Ni alloy electroplated steel sheet excellent in workability
JPS58104194A (en) Highly corrosion resistant electrogalvanized steel plate and its production
JPS6348959B2 (en)
JPS5938313B2 (en) Highly corrosion resistant electrolytic zinc alloy plated steel sheet and its manufacturing method
KR920010776B1 (en) High corrosion resistant steel sheets with two layer being of alloy metal and process for making
JPH01290797A (en) Composite electroplated steel sheet having superior corrosion resistance
JPS586796B2 (en) Base steel plate for painting
JPS6134520B2 (en)
JPS6243000B2 (en)
JPH0128840B2 (en)
KR100415670B1 (en) Zn Alloy Plated Steel with High Phoshatability and A Method for Manufacturing It
JPS6348957B2 (en)
JPS6296691A (en) Zn-ni alloy plating method
JPH0762589A (en) Production of zn-cr alloy plated steel sheet
JPS60131977A (en) Surface treated steel sheet having superior suitability to chemical conversion treatment
JPH057477B2 (en)
JPH0672317B2 (en) Highly corrosion resistant composite electroplated steel sheet excellent in chemical conversion treatment and method for producing the same