JPH0153353B2 - - Google Patents

Info

Publication number
JPH0153353B2
JPH0153353B2 JP58247301A JP24730183A JPH0153353B2 JP H0153353 B2 JPH0153353 B2 JP H0153353B2 JP 58247301 A JP58247301 A JP 58247301A JP 24730183 A JP24730183 A JP 24730183A JP H0153353 B2 JPH0153353 B2 JP H0153353B2
Authority
JP
Japan
Prior art keywords
post
plated steel
corrosion resistance
film
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58247301A
Other languages
Japanese (ja)
Other versions
JPS60145383A (en
Inventor
Takenori Deguchi
Hisao Takamura
Kiichiro Katayama
Kazuko Uchida
Kenji Koshiishi
Fumishiro Kumon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP24730183A priority Critical patent/JPS60145383A/en
Publication of JPS60145383A publication Critical patent/JPS60145383A/en
Publication of JPH0153353B2 publication Critical patent/JPH0153353B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/26Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also organic compounds
    • C23C22/28Macromolecular compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルミニウム−亜鉛浴で溶融めつきし
たアルミニウム−亜鉛複合めつき鋼板に耐食性を
付与し、かつ黒変色化を防止する後処理法に関す
る。 最近めつき鋼板に対する高耐食性の要求からア
ルミニウム−亜鉛浴で鋼板を溶融めつきしたアル
ミニウム−亜鉛複合めつき鋼板(以下Al−Zn複
合めつき鋼板と略記する)が一部実用に供される
ようになつてきている。このAl−Zn複合めつき
鋼板にはめつき層がZnベースのAl−Zn合金のも
のとAlベースのAl−Zn合金のものとがあるが、
従来いずれのものもめつきしたままの状態で大気
中や湿潤環境下におかれると、めつき直後のAl
−Zn複合めつき鋼板特有の金属光沢が失われて
灰黒色の外観(以下黒変色と略記する)となり、
商品価値を著しく低下させるという欠点があつ
た。この黒変色化は通常表面全体に均一には生じ
ず、機械加工を受けた部分に優先的に生じ、早い
場合には需要家にわたるまでに、遅くとも屋根や
壁に施工後2〜3ケ月の短期間内に生じていた。
このためAl−Zn複合めつき鋼板の場合後処理を
施さないで保管、出荷することは困難であつた。 Al−Zn複合めつき鋼板に施す後処理としては
従来より溶融亜鉛めつき鋼板や溶融アルミニウム
めつき鋼板の後処理に一般に使用されているクロ
メート処理の適用が考えられるが、クロメート処
理を適用して種々調査してみるとクロメート処理
は耐食性は向上するものの黒変色化をかえつて促
進することが判明した。とくにこのクロメート処
理による黒変色化促進作用はAl−Zn複合めつき
鋼板が低Al%のものである程著しく、例えばAl
−Zn複合めつき鋼板が55%Al−Zn系の場合はそ
れほどではないが5%Al−Zn系になると著しい
ものであつた。 このため従来Al−Zn複合めつき鋼板に耐食性
を目的にクロメート処理を施す場合には黒変色化
促進作用を考慮してクロメート皮膜量が耐食上最
小限になるようにしていた。しかしクロメート皮
膜量を最小限にした場合耐食性が劣るため、製品
在庫中とくに雨季などに白錆が発生してしまう場
合があつて、クロメート処理により耐食性と耐黒
変色化を調和させることはむずかしいものであつ
た。 一般にAl−Zn複合めつき鋼板においても耐食
性の後処理としてはクロム化合物を含む皮膜を形
成させる方法が安価で、耐食性も優れている。し
かしクロメート処理は上述のように黒変色化を促
進し適用できない。そこで本発明者らはクロメー
ト処理以外でクロム化合物を含有する皮膜を形成
させ、しかもその皮膜中のクロム化合物が大気中
や湿潤環境下におかれてもAl−Zn複合めつき鋼
板表面と接触しないようにする後処理法を検討し
た結果、後処理液として6価クロムと樹脂とを含
有する水溶液を用いて、この後処理液により処理
した後の乾燥皮膜厚と皮膜中のクロム化合物量が
適量になるように調整すれば耐食性に優れ、しか
も耐黒変色化も著しく改善されることを見出し
た。すなわち本発明の後処理法はクロム化合物に
より耐食性を付与し、かつ樹脂によりそのクロム
化合物が鋼板表面に溶出しないようにしたもの
で、クロム酸またはクロム酸塩あるいはこれらの
両者と、水溶性樹脂またはエマルジヨン樹脂ある
いはこれらの両者とを含有する水溶液をAl−Zn
複合めつき鋼板上に直接塗布した後乾燥して、乾
燥後の皮膜厚が0.5〜4μm、皮膜中のクロム含有
量が5〜50mg/cm3の樹脂皮膜を形成することを特
徴としている。 以下本発明を詳細に説明する。 まず後処理液であるが、後処理液としては(1)ク
ロム酸またはクロム酸塩あるいはこれらの両者
と、(2)水溶性樹脂またはエマルジヨン樹脂あるい
はこれらの両者とを含有する水溶液を用いる。 ここでクロム酸またはクロム酸塩あるいはこれ
らの両者を含有させるのは皮膜中に主として6価
クロムの化合物を供給するためである。このため
これらのものは水溶液性の6価クロムの化合物で
あることが必要で、好ましいものとしてはクロム
酸の場合は無水クロム酸を、またクロム酸塩の場
合はクロム酸または重クロム酸のカリウム、アン
モニウム、マグネシウム、コバルト、ニツケル、
マンガン、亜鉛、カルシウム、ストロンチウムの
塩などを挙げることができる。しかしクロム酸塩
のうちでもクロム酸または重クロム酸の対イオン
となる陽イオンが皮膜中で吸湿性のクロム化合物
になるもの(例えばナトリウムイオン)は好まし
くない。これはAl−Zn複合めつき鋼板は未塗装
で、または塗装して使用するにしても、耐食性、
耐湿性が極めて重要であるため、吸湿性のクロム
化合物が皮膜中に分散していたのでは大気中や湿
潤環境下で吸湿し、耐湿性の面で不利であるから
である。 また水溶性樹脂またはエマルジヨン樹脂あるい
はこれらの両者を含有させるのは皮膜中に含まれ
るクロム化合物がAl−Zn複合めつき鋼板の表面
と接触しないようにするためである。ところでこ
れら樹脂を水溶液中に含有させるにあたつては、
共存するクロム酸やクロム酸塩が強力な酸化剤で
あるので、酸化されやすいものであると分解さ
れ、皮膜になつた場合に樹脂本来の性能が得られ
ず、クロム化合物も3価クロムのものが多くなつ
て耐食性も低下する。また酸化反応により水溶液
にも沈澱が生じたり、水溶液がゲル化したりす
る。このため樹脂としては耐酸化性に優れ、2週
間以上貯蔵しておいても沈澱やゲル化を起さない
ものを使用する必要がある。このような樹脂とし
てはポリアクリル系、ポリアクリルニトリル系樹
脂またはこれらを主成分にした変性樹脂が好まし
い。またこれらの樹脂は耐候性が極めて優れてい
るほか、塗装する場合種々の塗料との塗膜密着性
がよく、塗料の選択性があまりないという特徴も
ある。 本発明は以上のような組成の水溶液をAl−Zn
複合めつき鋼板に塗布して乾燥するのであるが、
塗布はロールコート法、ロール絞り法等の公知方
法でよい。また乾燥も熱風乾燥炉や赤外線ランプ
等の公知方法で基板温度として60〜250℃で乾燥
すればよい。 塗布に際しては乾燥後樹脂皮膜が0.5〜4μmに
なるようにする。これはAl−Zn複合めつき鋼板
の表面には1〜3μmのミクロ的な表面粗さがあ
り、0.5μm未満ではこのような表面に均一な皮膜
を形成させるのが困難で、工業的に難しいからで
ある。とくに塗布する水溶液は粘度が低く、多く
の場合数CPSから高くても数百CPSであるので、
塗布後表面粗さの凹凸に沿つて流れて、凹部は液
留に、また凸部は極めて薄い状態か一部めつき層
が露出した状態になつて十分な耐食、黒変化防止
機能を発揮させることができない。一方4μmを
超えるとこの種のめつき鋼板の加工の際広く行わ
れているスポツト溶接が第1図に示すように不能
になるからである。一般に耐食性、耐黒変色性を
高めるためには樹脂皮膜を厚くした方がよいが、
コスト的に高くなり、好ましくない。 また塗布に際しては乾燥後の樹脂皮膜中のクロ
ム含有量がクロム元素として5〜50mg/cm3になる
ようにする。これはクロム含有量が5mg/cm3未満
であると第2図に示すようにAl−Zn複合めつき
鋼板の用途上必要とする耐食性が得られず、50
mg/cm3を超えると第2図に示す如く色差計による
L値(明度)が小さくなり、黒変色化が著しくな
るからである。このようにクロム含有量が多くな
ると黒変色化が著しくなるのは次の理由によるも
のである。すなわち樹脂皮膜は前述の如く0.5〜
4μmと薄いので、水分を簡単に透過させる。こ
のため樹脂皮膜は湿度が高い場合には水分で膨潤
し、湿度が低い場合には乾燥により収縮するとい
うサイクルを受けることになる。このサイクルの
際水溶性の皮膜中クロム化合物は下方、すなわち
鋼板側に移行し、樹脂皮膜とめつき層との界面に
濃縮して黒変色化を促進させる。従つて前述のよ
うに樹脂皮膜中のクロム含有量をある程度に制限
しておけば黒変色化は防止され、かつ耐食性も高
く保たれる。 なお本発明のクロム含有量の規定にはmg/cm3
体積当りの量による表示を用い、従来化成処理皮
膜などに一般に用いられている単位表面積当りの
量による表示によつていないが、これは分散密度
理論によつたためである。 従来Al−Zn複合めつき鋼板の著名なものとし
てはZnベースの場合5%Al−Zn系、8%Al−Zn
系、15%Al−Zn系などが、またAlベースとして
は55%Al−Zn系、75%Al−Zn系などが知られて
いるが、本発明の後処理法はこれらのものばかり
でなく、一般にめつき層がAlとZnを主成分とし
ているAl−Zn複合めつき鋼板に適用可能である。
たとえばAl−Zn合金中にMg、Mn、Si、Ti、
Ni、Co、Mo、Pb、Sn、Crおよびレアメタル
(La、Ce、Y、Nb、その他)などを添加したも
のでも適用可能である。 実施例 めつき層組成の異なつた種々のAl−Zn複合め
つき鋼板に表1に示す組成の後処理液をロールコ
ーターで直接塗布した後乾燥することにより後処
理を施し、その一部より試験片を採取して塩水噴
霧試験、湿潤試験およびスポツト溶接試験に供し
てそれぞれ耐食性、耐黒変色性および溶接性を調
査した。この結果を表2に示す。次に後処理した
残りのものに塗装を施し、同様に試験片を採取し
て塗膜密着性試験および塗装後の耐食性試験を行
つた。
The present invention relates to a post-treatment method for imparting corrosion resistance to an aluminum-zinc composite plated steel sheet hot-dipped in an aluminum-zinc bath and preventing black discoloration. Recently, due to the demand for high corrosion resistance for plated steel sheets, some aluminum-zinc composite plated steel sheets (hereinafter abbreviated as Al-Zn composite plated steel sheets), which are steel sheets melt-plated in an aluminum-zinc bath, have been put into practical use. I'm getting used to it. There are two types of Al-Zn composite plated steel sheets: one with a Zn-based Al-Zn alloy and one with an Al-based Al-Zn alloy.
Conventionally, when exposed to the atmosphere or in a humid environment while still plated, the Al immediately after plating
-The metallic luster characteristic of Zn composite plated steel sheets is lost, resulting in a gray-black appearance (hereinafter abbreviated as black discoloration).
The drawback was that it significantly reduced the product value. This black discoloration usually does not occur uniformly over the entire surface, but preferentially occurs in areas that have been machined, and in some cases, it takes a short period of 2 to 3 months after construction on roofs and walls to reach customers. It occurred within the interval.
For this reason, it has been difficult to store and ship Al-Zn composite plated steel sheets without post-treatment. As a post-treatment for Al-Zn composite coated steel sheets, chromate treatment, which has been commonly used for post-treatment of hot-dip galvanized steel sheets and hot-dip aluminum coated steel sheets, can be considered. After conducting various investigations, it was found that although chromate treatment improves corrosion resistance, it actually promotes black discoloration. In particular, the effect of promoting black discoloration due to this chromate treatment is more pronounced as the Al-Zn composite plated steel sheet has a lower Al%.
-Zn composite plated steel sheet was not so great when it was 55% Al-Zn based, but it was significant when it was 5% Al-Zn based. For this reason, when conventionally applying chromate treatment to Al-Zn composite plated steel sheets for the purpose of corrosion resistance, the amount of chromate film was kept to a minimum in terms of corrosion resistance, taking into account the effect of promoting black discoloration. However, if the amount of chromate film is minimized, corrosion resistance will be poor, and white rust may occur during product inventory, especially during the rainy season, making it difficult to harmonize corrosion resistance and black discoloration through chromate treatment. It was hot. In general, for Al-Zn composite plated steel sheets, a method of forming a film containing a chromium compound as a post-treatment for corrosion resistance is inexpensive and has excellent corrosion resistance. However, chromate treatment promotes black discoloration as described above and cannot be applied. Therefore, the present inventors formed a film containing a chromium compound using a method other than chromate treatment, and furthermore, the chromium compound in the film does not come into contact with the surface of the Al-Zn composite plated steel sheet even when exposed to the air or in a humid environment. As a result of considering a post-treatment method to achieve this, we found that by using an aqueous solution containing hexavalent chromium and resin as a post-treatment liquid, we determined that the dry film thickness and amount of chromium compounds in the film after treatment with this post-treatment liquid would be appropriate. It has been found that if the composition is adjusted so as to provide excellent corrosion resistance, and the resistance to black discoloration is also significantly improved. In other words, the post-treatment method of the present invention uses a chromium compound to impart corrosion resistance and a resin to prevent the chromium compound from leaching onto the surface of the steel sheet. An aqueous solution containing emulsion resin or both of these resins is
It is characterized in that it is directly applied onto a composite plated steel plate and then dried to form a resin film with a dry film thickness of 0.5 to 4 μm and a chromium content of 5 to 50 mg/cm 3 . The present invention will be explained in detail below. First, the post-treatment liquid is an aqueous solution containing (1) chromic acid or chromate, or both, and (2) a water-soluble resin, an emulsion resin, or both. The reason for containing chromic acid or chromate or both is to mainly supply hexavalent chromium compounds into the film. For this reason, these substances need to be aqueous hexavalent chromium compounds, and the preferred ones are chromic acid anhydride, and potassium chromate or dichromate in the case of chromate. , ammonium, magnesium, cobalt, nickel,
Examples include salts of manganese, zinc, calcium, and strontium. However, among chromates, those whose cations serving as counterions of chromic acid or dichromic acid form hygroscopic chromium compounds in the film (for example, sodium ions) are not preferred. This means that Al-Zn composite plated steel sheets have good corrosion resistance and good corrosion resistance even if they are used unpainted or painted.
Moisture resistance is extremely important, and if a hygroscopic chromium compound were dispersed in the film, it would absorb moisture in the air or in a humid environment, which would be disadvantageous in terms of moisture resistance. The reason for containing a water-soluble resin, an emulsion resin, or both is to prevent the chromium compound contained in the coating from coming into contact with the surface of the Al--Zn composite plated steel sheet. By the way, when incorporating these resins into an aqueous solution,
Coexisting chromic acid and chromate are strong oxidizing agents, so if they are easily oxidized, they will decompose and form a film, making it impossible for the resin to achieve its original performance, and chromium compounds are also trivalent chromium. As the amount increases, corrosion resistance also decreases. Further, due to the oxidation reaction, a precipitate is formed in the aqueous solution, or the aqueous solution is turned into a gel. Therefore, it is necessary to use a resin that has excellent oxidation resistance and does not cause precipitation or gelation even after being stored for two weeks or more. As such resins, polyacrylic resins, polyacrylonitrile resins, or modified resins containing these as main components are preferable. In addition, these resins have extremely excellent weather resistance, and when painted, have good film adhesion with various paints, and are not very selective with paints. The present invention uses an aqueous solution having the above composition as Al-Zn.
It is applied to a composite plated steel plate and dried.
The coating may be performed by a known method such as a roll coating method or a roll drawing method. Further, drying may be performed using a known method such as a hot air drying oven or an infrared lamp at a substrate temperature of 60 to 250°C. When applying, make sure that the resin film has a thickness of 0.5 to 4 μm after drying. This is because the surface of the Al-Zn composite plated steel sheet has a microscopic surface roughness of 1 to 3 μm, and if it is less than 0.5 μm, it is difficult to form a uniform film on such a surface, which is industrially difficult. It is from. In particular, the aqueous solution to be applied has a low viscosity, often ranging from a few CPS to several hundred CPS at most.
After application, it flows along the irregularities of the surface roughness, and the concave parts become liquid reservoirs, and the convex parts become extremely thin or partially exposed, providing sufficient corrosion resistance and black discoloration prevention function. I can't. On the other hand, if the thickness exceeds 4 μm, spot welding, which is widely used in processing this type of galvanized steel sheet, becomes impossible as shown in FIG. In general, it is better to thicken the resin film in order to improve corrosion resistance and black discoloration resistance.
This increases the cost and is not desirable. Further, during coating, the chromium content in the resin film after drying is adjusted to 5 to 50 mg/cm 3 as chromium element. This is because if the chromium content is less than 5 mg/ cm3 , the corrosion resistance required for the application of Al-Zn composite plated steel sheets cannot be obtained, as shown in Figure 2.
This is because if it exceeds mg/cm 3 , the L value (lightness) measured by a color difference meter becomes small as shown in FIG. 2, and black discoloration becomes significant. The reason why black discoloration becomes significant as the chromium content increases is as follows. In other words, the resin film is 0.5~
As it is thin at 4μm, it allows moisture to pass through easily. For this reason, the resin film undergoes a cycle in which it swells with water when the humidity is high and shrinks due to drying when the humidity is low. During this cycle, water-soluble chromium compounds in the film migrate downward, ie, toward the steel plate, and concentrate at the interface between the resin film and the plating layer, promoting black discoloration. Therefore, as mentioned above, if the chromium content in the resin film is limited to a certain level, black discoloration can be prevented and corrosion resistance can also be maintained high. In the specification of the chromium content in the present invention, mg/cm 3 and the amount per volume are used, and the chromium content is not expressed as the amount per unit surface area, which is generally used for conventional chemical conversion coatings. This is due to the dispersion density theory. The famous conventional Al-Zn composite plated steel sheets are 5% Al-Zn based and 8% Al-Zn based.
Al-based systems such as 15% Al-Zn systems, and 55% Al-Zn systems and 75% Al-Zn systems are known as Al-based systems, but the post-treatment method of the present invention can be applied not only to these systems. Generally, it is applicable to Al-Zn composite plated steel sheets whose plated layers mainly contain Al and Zn.
For example, Mg, Mn, Si, Ti,
It is also possible to use materials to which Ni, Co, Mo, Pb, Sn, Cr, rare metals (La, Ce, Y, Nb, etc.) are added. Example Post-treatment was performed by directly applying a post-treatment solution with the composition shown in Table 1 on various Al-Zn composite plated steel sheets with different plating layer compositions using a roll coater, and then drying. Pieces were taken and subjected to a salt spray test, a wet test, and a spot welding test to investigate corrosion resistance, black discoloration resistance, and weldability, respectively. The results are shown in Table 2. Next, the remaining post-treated pieces were painted, and test pieces were taken in the same manner to conduct a paint film adhesion test and a post-painting corrosion resistance test.

【表】【table】

【表】【table】

【表】 表2より明らかな如く、本発明の後処理法で処
理したものは耐黒変色性に優れ、めつき直後の金
属光沢を保持しており、耐食性も従来の強化クロ
メート処理のもの(比較例No.6)と同等もしくは
それ以上である。黒変色化は比較例No.7より明ら
かな如く、エマルジヨン樹脂だけで、クロム酸や
クロム酸塩を含まない後処理液で処理すれば防止
できるが、耐食性が著しく劣る。またクロメート
処理した上にこのような樹脂皮膜だけを形成する
後処理を施したものは、耐食性には優れているも
のの、クロム化合物がめつき層に接触しているた
め著しく黒変色化してしまう。 スポツト溶接性はクロメート処理のもの(比較
例No.6)、無処理のもの(同No.9)と同等であり、
溶接性を損わない。また塗装性はエポキシ−ポリ
エステル系やアルキツド系の塗料の如く性質をか
なり異にするものを塗装しても塗膜密着性、耐食
性とも優れている。なお本発明に使用する後処理
液は調合後2週間経過しても液には異常が認めら
れなかつたが、比較例No.5のものには分解、ゲル
化が認められた。 以上の如く、本発明の後処理法は樹脂中にクロ
ム化合物が分散した皮膜を形成するものであるか
ら、クロム化合物とAl−Zn複合めつき鋼板表面
とは接触せず、めつき直後の金属光沢を保つ。ま
た耐食性も従来のクロメート処理と遜色はなく、
塗装性も優れている。 なお本発明の後処理法はアルミ合金やアルミめ
つき鋼板の後処理にも適用できる。
[Table] As is clear from Table 2, the products treated with the post-treatment method of the present invention have excellent black discoloration resistance, retain metallic luster immediately after plating, and have superior corrosion resistance compared to the conventional reinforced chromate treatment. It is equivalent to or better than Comparative Example No. 6). As is clear from Comparative Example No. 7, black discoloration can be prevented by treating the emulsion resin alone with a post-treatment liquid that does not contain chromic acid or chromate, but the corrosion resistance is significantly inferior. In addition, products that are chromate-treated and then subjected to post-treatment to form only a resin film have excellent corrosion resistance, but the chromium compound contacts the plating layer, resulting in significant black discoloration. The spot weldability is the same as that of the chromate treated one (Comparative Example No. 6) and the untreated one (Comparative Example No. 9).
Does not impair weldability. In addition, it has excellent paint film adhesion and corrosion resistance even when coated with materials having considerably different properties such as epoxy-polyester paints and alkyd paints. Although no abnormalities were observed in the post-treatment liquid used in the present invention even after two weeks had passed since its preparation, decomposition and gelation were observed in Comparative Example No. 5. As described above, since the post-treatment method of the present invention forms a film in which the chromium compound is dispersed in the resin, the chromium compound does not come into contact with the surface of the Al-Zn composite plated steel sheet, and the metal immediately after plating is removed. Maintains shine. In addition, its corrosion resistance is comparable to that of conventional chromate treatment.
It also has excellent paintability. Note that the post-treatment method of the present invention can also be applied to post-treatment of aluminum alloys and aluminized steel sheets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はAl−Zn複合めつき鋼板に本発明の後
処理を施した場合に形成される樹脂皮膜の皮膜厚
と溶接不良率の関係を示すグラフである。第2図
は同様に形成される樹脂皮膜のクロム化合物含有
量(すなわち分散密度)と色差計による明度(50
℃、98%RH湿潤試験400時間後)および耐食性
(塩水噴霧試験後の白サビ発生占有率)の各関係
を示すグラフである。
FIG. 1 is a graph showing the relationship between the film thickness of the resin film formed when the Al--Zn composite plated steel plate is subjected to the post-treatment of the present invention and the weld failure rate. Figure 2 shows the chromium compound content (i.e. dispersion density) and brightness (50
400 hours after a humidity test at 98% RH) and corrosion resistance (occupancy rate of white rust occurrence after a salt spray test).

Claims (1)

【特許請求の範囲】[Claims] 1 クロム酸またはクロム酸塩あるいはこれらの
両者と、水溶性樹脂またはエマルジヨン樹脂ある
いはこれらの両者とを含有する水溶液をアルミニ
ウム−亜鉛複合めつき鋼板上に直接塗布した後乾
燥して、乾燥後の皮膜厚が0.5〜4μm、皮膜中の
クロム含有量が5〜50mg/cm3の樹脂皮膜を形成す
ることを特徴とするアルミニウム−亜鉛複合めつ
き鋼板の後処理法。
1. An aqueous solution containing chromic acid or chromate, or both, and a water-soluble resin or emulsion resin, or both, is directly applied onto an aluminum-zinc composite plated steel sheet and then dried to form a film after drying. A post-treatment method for an aluminum-zinc composite plated steel sheet, characterized by forming a resin film having a thickness of 0.5 to 4 μm and a chromium content of 5 to 50 mg/cm 3 .
JP24730183A 1983-12-30 1983-12-30 Post-treatment of composite aluminum-zinc plated steel sheet Granted JPS60145383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24730183A JPS60145383A (en) 1983-12-30 1983-12-30 Post-treatment of composite aluminum-zinc plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24730183A JPS60145383A (en) 1983-12-30 1983-12-30 Post-treatment of composite aluminum-zinc plated steel sheet

Publications (2)

Publication Number Publication Date
JPS60145383A JPS60145383A (en) 1985-07-31
JPH0153353B2 true JPH0153353B2 (en) 1989-11-14

Family

ID=17161385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24730183A Granted JPS60145383A (en) 1983-12-30 1983-12-30 Post-treatment of composite aluminum-zinc plated steel sheet

Country Status (1)

Country Link
JP (1) JPS60145383A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071435A (en) * 1993-06-25 2000-06-06 Henkel Corporation Composition and process for treating a zinciferous surface
WO2009093541A1 (en) 2008-01-24 2009-07-30 Nippon Light Metal Company, Ltd. Coated metal material
US7842400B2 (en) 2003-07-29 2010-11-30 Jfe Steel Corporation Surface-treated steel sheet and method for manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197881A (en) * 1984-03-21 1985-10-07 Daido Kohan Kk Coated aluminum-zinc alloy plated steel sheet
IT1229206B (en) * 1988-03-30 1991-07-25 Nihon Parkerizing METHOD TO FORM A BLACK COLOR COATING ON THE MATERIAL SURFACE.
WO2001081653A1 (en) * 2000-04-21 2001-11-01 Nkk Corporation Surface treated steel plate and method for production thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026672A (en) * 1983-07-22 1985-02-09 Mitsui Mining & Smelting Co Ltd Chromate treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026672A (en) * 1983-07-22 1985-02-09 Mitsui Mining & Smelting Co Ltd Chromate treatment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071435A (en) * 1993-06-25 2000-06-06 Henkel Corporation Composition and process for treating a zinciferous surface
US7842400B2 (en) 2003-07-29 2010-11-30 Jfe Steel Corporation Surface-treated steel sheet and method for manufacturing the same
WO2009093541A1 (en) 2008-01-24 2009-07-30 Nippon Light Metal Company, Ltd. Coated metal material

Also Published As

Publication number Publication date
JPS60145383A (en) 1985-07-31

Similar Documents

Publication Publication Date Title
GB2188946A (en) Chromoting metal surfaces
EP1253218B1 (en) Organic composite coated zinc-based metal plated steel sheet
JPH0153353B2 (en)
JP2002187234A (en) Non-chromium coated steel plate having excellent corrosion resistance
JPH0148870B2 (en)
JP4312635B2 (en) Painted aluminized steel sheet with excellent corrosion resistance
WO2000073535A1 (en) Phosphate-treated electrogalvanized steel sheet excellent in corrosion resistance and coating suitability
KR19990082789A (en) Composition and process for anti-corrosive treatment of non-ferrous metal
JP2002266081A (en) Chemical conversion treatment solution for pretreatment to coating and chemical conversion treated steel sheet for coating
JP2004169145A (en) Precoated steel sheet for wiper and wiper
WO1998000579A1 (en) Process for producing lead-containing hot-galvanised and chromated steel sheet excellent in resistances to blackening and formation of white rust
JPH11140665A (en) Coated steel sheet excellent in edge face corrosion resistance and its production
JPS60240774A (en) Surface-treated steel stock having excellent corrosion resistance
JPH0368115B2 (en)
JP3810677B2 (en) Coating plate, surface preparation method of coating plate and method of manufacturing coated steel plate with excellent corrosion resistance
JPH09183186A (en) Organically after-treated metal sheet
JP3475908B2 (en) Method for improving the weather resistance of zinc-based plating materials
JPS5826434B2 (en) Zinc surface treatment method
JPS6018751B2 (en) Surface treatment method for galvanized steel sheets
JP2002371371A (en) Phosphate treated galvanized steel sheet superior in front and back discrimination properties
JPH0318180Y2 (en)
JP4354851B2 (en) Antirust treatment liquid for steel plate and antirust treatment method
EP0553271B1 (en) Preatment for zinc and zinc alloys prior to chromating
JPS63218279A (en) Chromating method for imparting excellent corrosion resistance
JP3478210B2 (en) Resin chromate treated metal plate