JPH0153321B2 - - Google Patents

Info

Publication number
JPH0153321B2
JPH0153321B2 JP59077114A JP7711484A JPH0153321B2 JP H0153321 B2 JPH0153321 B2 JP H0153321B2 JP 59077114 A JP59077114 A JP 59077114A JP 7711484 A JP7711484 A JP 7711484A JP H0153321 B2 JPH0153321 B2 JP H0153321B2
Authority
JP
Japan
Prior art keywords
plastic material
synthetic resin
mold
metal
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59077114A
Other languages
Japanese (ja)
Other versions
JPS60221502A (en
Inventor
Osamu Furubayashi
Hiroyasu Yamada
Hiroshi Sasaki
Motoatsu Shiraishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP7711484A priority Critical patent/JPS60221502A/en
Priority to IN283/MAS/85A priority patent/IN164639B/en
Priority to BE2/60664A priority patent/BE902202A/en
Priority to BR8501808A priority patent/BR8501808A/en
Publication of JPS60221502A publication Critical patent/JPS60221502A/en
Publication of JPH0153321B2 publication Critical patent/JPH0153321B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 A 発明の目的 (1) 産業上の利用分野 本発明は、主としてプレス加工に用いられる金
型の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Object of the Invention (1) Field of Industrial Application The present invention relates to a method of manufacturing a mold mainly used for press working.

(2) 従来の技術 従来、この種金型を製造する場合には、合成樹
脂または石膏により模型を作製し、次いでその模
型に倣つて金型素材を研削してワーク成形部を形
成し、その後ワーク成形部に仕上げ加工を施して
いる。
(2) Conventional technology Conventionally, when manufacturing this type of mold, a model is made of synthetic resin or plaster, and then the mold material is ground to form a workpiece molding part after that model. Finishing is applied to the molded part of the workpiece.

(3) 発明が解決しようとする問題点 金属を研削する倣い研削加工においては、加工
時間が長くなり、その上仕上げ加工に多くの時間
と工数を要し、製造費が高くつくという問題があ
る。
(3) Problems to be solved by the invention In profile grinding for grinding metal, there are problems in that the machining time is long, and finishing machining requires a lot of time and man-hours, resulting in high manufacturing costs. .

本発明は上記問題に鑑み、製造が容易で、しか
も寸法精度の良好な金型を得ることができる経済
的な前記製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an economical manufacturing method capable of obtaining a mold that is easy to manufacture and has good dimensional accuracy.

B 発明の目的 (1) 問題点を解決するための手段 本発明は、ワーク成形部を金属焼結層より構成
した金型の製造方法であつて、焼結性金属粉末と
合成樹脂バインダとを混練した可塑性物を金型素
材に貼着して前記ワーク成形部を粗造りする工程
と、前記可塑性物に、常温では固体の合成樹脂を
有機溶剤に溶解した合成樹脂液を塗布して前記焼
結性金属粉末相互間に存する気孔に含浸させる工
程と、前記可塑性物を加熱して半硬化させる工程
と、前記半硬化した可塑性物を研削して前記ワー
ク成形部の形状を仕上げる工程と、前記可塑性物
の周りに囲いを設け、次いで該可塑性物の表面を
セラミツク粉末で覆い、その後セラミツク粉末の
上に通気性バツクアツプを形成する工程と、前記
可塑性物中の前記合成樹脂バインダを熱分解する
共に前記焼結性金属粉末を焼結して前記金属焼結
層を得る工程とを用いることを第1の特徴とす
る。
B. Object of the Invention (1) Means for Solving the Problems The present invention is a method for manufacturing a mold in which a workpiece forming part is composed of a sintered metal layer, which comprises a method of manufacturing a mold in which a sinterable metal powder and a synthetic resin binder are used. A step of roughly forming the workpiece molding part by attaching the kneaded plastic material to a mold material, and a step of coating the plastic material with a synthetic resin liquid prepared by dissolving a synthetic resin, which is solid at room temperature, in an organic solvent and baking it. a step of impregnating the pores existing between the condensable metal powders, a step of heating the plastic material to semi-harden it, a step of grinding the semi-hardened plastic material to finish the shape of the workpiece forming part, providing an enclosure around the plastic material, then covering the surface of the plastic material with ceramic powder, forming an air-permeable back-up on the ceramic powder, and pyrolyzing the synthetic resin binder in the plastic material; A first feature is that the method includes a step of sintering the sinterable metal powder to obtain the metal sintered layer.

本発明は、ワーク成形部を金属焼結層より構成
した金型の製造方法であつて、焼結性金属粉末と
合成樹脂バインダとを混練した可塑性物を金型素
材に貼着して前記ワーク成形部を粗造りする工程
と、前記可塑性物に、常温では固体の合成樹脂を
有機溶剤に溶解した合成樹脂液を塗布して前記焼
結性金属末相互間に存する気孔に含浸させる工程
と、前記可塑性物を加熱して半硬化させる工程
と、前記半硬化した可塑性物を研削して前記ワー
ク成形部の形状を仕上げる工程と、前記可塑性物
の周りに囲いを設け、次いで該可塑性物の表面を
セラミツク粉末で覆い、その後セラミツク粉末の
上に通気性バツクアツプを形成する工程と、前記
可塑性物中の前記合成樹脂バインダを熱分解する
共に前記焼結性金属粉末を焼結して前記金属焼結
属を得る工程と、前記金属焼結層に溶浸処理を施
す工程とを用いることを第2の特徴とする。
The present invention is a method for manufacturing a mold in which a workpiece forming part is composed of a sintered metal layer, in which a plastic material obtained by kneading sinterable metal powder and a synthetic resin binder is adhered to a mold material. a step of roughly constructing a molded part; a step of applying a synthetic resin liquid, which is a synthetic resin solid at room temperature dissolved in an organic solvent, to the plastic material to impregnate the pores existing between the sinterable metal powder; a step of heating the plastic material to semi-harden it, a step of grinding the semi-hardened plastic material to finish the shape of the workpiece forming part, and providing an enclosure around the plastic material, and then curing the surface of the plastic material. covering with ceramic powder and then forming an air-permeable back-up on the ceramic powder, thermally decomposing the synthetic resin binder in the plastic material and sintering the sinterable metal powder to sinter the metal. The second feature is that the method includes a step of obtaining metal and a step of subjecting the sintered metal layer to an infiltration treatment.

(2) 作用 第1の特徴によれば、半硬化した可塑性物は、
合成樹脂バインダおよび合成樹脂液中の樹脂分に
より保形されて常温では見掛け上固体であるか
ら、形状維持性が良好である。このような可塑性
物を研削してワーク成形部の形状を仕上げるの
で、研削作業が容易であり、またワーク成形部の
形状を正確に形成してその寸法精度を向上させる
ことができる。そしてワーク成形部を最終的には
金属焼結層より構成するので、その仕上げ加工時
間および工数を大幅に減少させることができる。
(2) Effect According to the first characteristic, the semi-hardened plastic material is
Since the shape is retained by the synthetic resin binder and the resin content in the synthetic resin liquid and it is apparently solid at room temperature, it has good shape retention. Since the shape of the molded workpiece is finished by grinding such a plastic material, the grinding work is easy, and the shape of the molded workpiece can be formed accurately to improve its dimensional accuracy. Since the workpiece forming portion is finally constructed from a sintered metal layer, the finishing time and man-hours can be significantly reduced.

また、バツクアツプにより金属焼結層の寸法変
化を抑制して、その寸法精度を向上させることが
できる。
Furthermore, it is possible to suppress dimensional changes in the metal sintered layer due to back-up and improve its dimensional accuracy.

さらに、金属焼結層に対するバツクアツプの溶
着はセラミツク粉末により阻止されるので、金属
焼結層の面粗度を悪化させることはない。
Furthermore, since the back-up is prevented from adhering to the sintered metal layer by the ceramic powder, the surface roughness of the sintered metal layer is not deteriorated.

その上、焼結時合成樹脂バインダ等の有機物質
の分解により生成された分解ガスは、セラミツク
粉末相互間に形成される気孔および通気性バツク
アツプを通じて除去されるので、残留ガスによる
金属焼結層の腐食といつた不具合を生じることが
なく、金属焼結層の品質を高めることができる。
In addition, the decomposed gas generated by the decomposition of organic materials such as synthetic resin binders during sintering is removed through the pores and air permeable backups formed between the ceramic powders, so the residual gas can cause damage to the metal sintered layer. The quality of the metal sintered layer can be improved without causing problems such as corrosion.

第2の特徴によれば、金属焼結層の硬度を著し
く高くして、その層に大きな座屈強度を保持させ
ることができる。
According to the second feature, the hardness of the metal sintered layer can be significantly increased, allowing the layer to maintain high buckling strength.

(3) 実施例 第1図は本発明により得られたプレス用金型1
を示し、その金型1は上下動可能なパンチ2と、
それと協働して、ワークWを成形する固定のダイ
ス3とよりなる。パンチ2およびダイス3のワー
ク成形部2a,3aは以下に述べる手法により得
られる金属焼結層S1,S2より構成される。
(3) Example Figure 1 shows a press mold 1 obtained according to the present invention.
The mold 1 has a punch 2 that can move up and down,
It consists of a fixed die 3 which cooperates with it to form the workpiece W. The workpiece forming parts 2a and 3a of the punch 2 and die 3 are composed of metal sintered layers S 1 and S 2 obtained by the method described below.

実施例 可塑性物の製造 Ni自溶性合金粉80部と、Mo粉砕粉20部とを
V−ブレンダにより十分に混合して混合粉を得
る。
Example Manufacture of plastic material 80 parts of Ni self-fusing alloy powder and 20 parts of Mo pulverized powder were sufficiently mixed in a V-blender to obtain a mixed powder.

四フツ化エチレン樹脂エマルジヨンとアクリ
ル樹脂エマルジヨンを1:1に混合して合成樹
脂バインダを得る。
A synthetic resin binder is obtained by mixing a tetrafluoroethylene resin emulsion and an acrylic resin emulsion at a ratio of 1:1.

上記混合粉100部に対し合成樹脂バインダ3
部を添加して卓上ニーダにより十分に混練し、
この混練物を100〜150℃に加熱して合成樹脂バ
インダ中の水分を蒸発させる。得られた混練物
の性状は、合成樹脂バインダにより粘結されて
無数の団塊状を呈する。
3 parts of synthetic resin binder for 100 parts of the above mixed powder
% and thoroughly knead with a bench kneader,
This kneaded material is heated to 100 to 150°C to evaporate water in the synthetic resin binder. The obtained kneaded product has a shape of numerous nodules due to being caked by the synthetic resin binder.

上記混練物を80〜100℃に加熱してロール機
に複数回通しシート状可塑性物を得る。この場
合、ロール機のロールを混練物と同程度に加熱
すると、シート成形作業が容易に行われる。得
られたシート状可塑性物は常温において適度な
可撓性と引裂き強度を有する。
The above-mentioned kneaded material is heated to 80 to 100°C and passed through a roll machine several times to obtain a sheet-like plastic material. In this case, if the roll of the roll machine is heated to the same degree as the kneaded material, the sheet forming operation will be easily performed. The obtained sheet-like plastic material has appropriate flexibility and tear strength at room temperature.

パンチの製造 第2図aに示すように、金型素材としてのパ
ンチ素材2oは鋳鉄(JIS FC30材)より鋳造
されたもので、そのワーク成形部2aを形成す
るベース面4は完成されたパンチ2におけるワ
ーク成形部2a外面(鎖線示)よりも5〜20mm
低くなるように成形されている。パンチ素材2
oは鋳放しのまま使用されるもので、その黒皮
を持つベース面4には清掃後アクリル樹脂接着
剤を塗布する。
Manufacture of Punch As shown in Figure 2a, the punch material 2o as the mold material is cast from cast iron (JIS FC30 material), and the base surface 4 forming the workpiece forming part 2a is the finished punch material. 5 to 20 mm from the outer surface of the workpiece forming part 2a (indicated by chain lines) in 2.
It is shaped to be low. Punch material 2
o is used as-cast, and after cleaning, an acrylic resin adhesive is applied to the base surface 4 having a black crust.

第2図bに示すように、ベース面4にシート
状可塑性物Pを貼着してワーク成形部2aを粗
造りする。この場合所定厚さを得るためにはシ
ート状可塑性物を積層する。またベース面4と
シート状可塑性物P相互間の密着性を良好にす
るため、シート状可塑性物P外面を突き棒等に
より突き固める。この場合、パンチ素材2oを
80〜100℃に加熱しておくと、前記シート状可
塑性物Pの貼着および突き固め作業が容易に行
われる。
As shown in FIG. 2b, a sheet-like plastic material P is adhered to the base surface 4 to roughly form the workpiece forming part 2a. In this case, in order to obtain a predetermined thickness, sheet-like plastic materials are laminated. Further, in order to improve the adhesion between the base surface 4 and the sheet-like plastic material P, the outer surface of the sheet-like plastic material P is tamped with a ramming rod or the like. In this case, punch material 2o
When heated to 80 to 100°C, the pasting and tamping of the sheet-like plastic material P can be easily performed.

熱可塑化温度が100〜130℃以上で、且つ常温
では固体の合成樹脂、例えば、アクリル樹脂を
トリクロロエチレン、エチルメチルケトン等の
有機溶剤に固形分10〜40%程度となるように溶
解して合成樹脂液を調製する。この合成樹脂液
を前記可塑性物Pに、はけ塗り、流込み等の手
段で塗布してNi自溶性合金−Mo粉末相互間に
存する気孔に含浸し保形性を向上させる。
Synthesized by dissolving a synthetic resin with a thermoplasticization temperature of 100 to 130°C or higher and solid at room temperature, such as acrylic resin, in an organic solvent such as trichlorethylene or ethyl methyl ketone to a solid content of about 10 to 40%. Prepare resin liquid. This synthetic resin liquid is applied to the plastic material P by means such as brushing or pouring to impregnate the pores existing between the Ni self-fusing alloy and the Mo powder to improve shape retention.

第2図cに示すように、可塑性物Pを常温か
ら有機溶剤の蒸発温度まで加熱し、これを半硬
化する。この半硬化した可塑性物Pは、Ni自
溶性合金−Mo粉末と、合成樹脂バインダ中の
四フツ化エチレン樹脂およびアクリル樹脂と、
合成樹脂液中のアクリル樹脂とよりなり、それ
ら樹脂分により保形されて常温では見掛け上固
体であるから形状維持性が良好であり、砥石、
やすり、サンドペーパー等により容易に研削加
工を施すことができる。
As shown in FIG. 2c, the plastic material P is heated from room temperature to the evaporation temperature of the organic solvent to semi-cure it. This semi-hardened plastic material P contains Ni self-fusing alloy-Mo powder, tetrafluoroethylene resin and acrylic resin in a synthetic resin binder,
It is composed of acrylic resin in a synthetic resin liquid, and its shape is retained by these resins and it appears to be solid at room temperature, so it has good shape retention.
It can be easily ground using a file, sandpaper, etc.

そこで、半硬化した可塑性物に前記手法によ
り研削加工を施してワーク成形部2aの形状お
よび厚さを仕上げる。この場合、研削加工が容
易であるから、ワーク形成部の形状を正確に形
成してその寸法精度を向上させることができ
る。
Therefore, the semi-hardened plastic material is ground by the method described above to finish the shape and thickness of the workpiece forming portion 2a. In this case, since the grinding process is easy, the shape of the workpiece forming portion can be formed accurately and its dimensional accuracy can be improved.

第2図dに示すように、パンチ素材2oに囲
い5を取付けて可塑性物Pの周りを囲み、可塑
性物Pの表面をセラミツク粉末で覆い、その上
に直径0.75mmの鋼球6を載せて通気性バツクア
ツプを形成する。このバツクアツプは鋼球6の
重さにより後述するNi自溶性合金−Mo粉末の
焼結時金属焼結層S1の寸法変化、即ち膨脹を抑
制するものである。
As shown in Fig. 2d, an enclosure 5 is attached to the punch material 2o to surround the plastic material P, the surface of the plastic material P is covered with ceramic powder, and a steel ball 6 with a diameter of 0.75 mm is placed on top of it. Forms a breathable back-up. This back-up suppresses the dimensional change, that is, expansion, of the metal sintered layer S1 during sintering of Ni self-fusing alloy-Mo powder, which will be described later, due to the weight of the steel ball 6.

次いで、上記パンチ素材2oを真空焼結炉7に
設置して第3図に示す加熱−冷却条件で有機物質
の分解と金属粉末の焼結を行う。キヤリヤガスは
窒素ガスまたは還元性の強い水素ガスが用いられ
る。
Next, the punch material 2o is placed in a vacuum sintering furnace 7, and the organic substance is decomposed and the metal powder is sintered under the heating-cooling conditions shown in FIG. As the carrier gas, nitrogen gas or highly reducing hydrogen gas is used.

(A) 第1加熱ゾーン(第3図A) この加熱ゾーンAは常温から650℃までであ
り、昇温速度は10〜20℃/分である。この加熱
ゾーンAでは先ず水分が蒸発し、次いで合成樹
脂バインダ中の四フツ化エチレン樹脂、アクリ
ル樹脂および後で含浸されたアクリル樹脂が分
解してガス化する。これら合成樹脂は300〜400
℃でガス化するが、熱伝導を考慮して600〜650
℃に90分間均熱保持して殆どの有機物質を除去
し、Ni自溶性合金−Mo粉末層を残置する。
(A) First heating zone (Fig. 3A) This heating zone A is from room temperature to 650°C, and the temperature increase rate is 10 to 20°C/min. In this heating zone A, water first evaporates, and then the tetrafluoroethylene resin in the synthetic resin binder, the acrylic resin, and the acrylic resin impregnated later are decomposed and gasified. These synthetic resins are 300 to 400
Gasifies at ℃, but considering heat conduction 600-650
Most of the organic material is removed by soaking at ℃ for 90 minutes, leaving a Ni self-fusing alloy-Mo powder layer.

分解ガスはセラミツク粉末相互間に形成され
る気孔および通気性バツクアツプを通じて除去
される。
Decomposition gases are removed through the pores and permeable back-up formed between the ceramic powders.

有機物質のガス化を真空焼結炉7内の真空度
の変化により説明すると、常温では1Torrであ
るが、650℃で90分間均熱保持したときは最高
2Torrに真空度が低下する。これは主として有
機物質の分解ガスの生成による。そして90分を
経過した後は真空度は再び1Torrに上昇するも
ので、これは真空焼結炉7内より分解ガスが除
去されたことを意味する。
Explaining the gasification of organic substances by changes in the degree of vacuum in the vacuum sintering furnace 7, it is 1 Torr at room temperature, but reaches its maximum when soaked at 650°C for 90 minutes.
The degree of vacuum decreases to 2Torr. This is mainly due to the production of decomposition gases from organic substances. After 90 minutes have elapsed, the degree of vacuum rises again to 1 Torr, which means that the cracked gas has been removed from the vacuum sintering furnace 7.

(B) 第2加熱ゾーン(第3図B) この加熱ゾーンBは900〜1000℃の範囲であ
り、Ni自溶性合金−Mo粉末層をNi自溶性合金
の固相線(1010〜1020℃)以下の温度、例えば
950℃に30分間均熱保持して固相焼結処理を施
し、これを仮焼結する。第1加熱ゾーンAから
の昇温速度は10〜20℃/分である。
(B) Second heating zone (Fig. 3B) This heating zone B is in the range of 900 to 1000℃, and the Ni self-flux alloy-Mo powder layer is heated to the solidus line of the Ni self-flux alloy (1010 to 1020℃). Temperatures below, e.g.
A solid-phase sintering process is performed by soaking at 950°C for 30 minutes, and this is pre-sintered. The temperature increase rate from the first heating zone A is 10 to 20°C/min.

真空焼結炉7内のNi自溶性合金−Mo粉末層
は、その表面から加熱されて昇温するので、層
全体が均一温度に達するまでは所定の加熱時間
が必要である。若し焼結温度である1000〜1200
℃にいきなり加熱するとNi自溶性合金−Mo粉
末層の表面部分とベース面に接する部分との間
に温度差ができて、気孔率のばらつきが多くな
り均一な金属焼結層が得られないだけでなく、
焼結後クラツク等の欠陥を生じ易くなる。
Since the Ni self-fusing alloy-Mo powder layer in the vacuum sintering furnace 7 is heated from its surface and increases in temperature, a predetermined heating time is required until the entire layer reaches a uniform temperature. If the sintering temperature is 1000~1200
If it is suddenly heated to ℃, a temperature difference will be created between the surface part of the Ni self-fusing alloy-Mo powder layer and the part in contact with the base surface, which will increase the variation in porosity and make it impossible to obtain a uniform metal sintered layer. Not, but
Defects such as cracks are likely to occur after sintering.

第2加熱ゾーンBでは未分解の有機物質が完
全にガス化して除去される。このガス化等によ
り真空焼結炉7内の真空度は一時的に4Torrに
低下するが30分経過後には1Torrに復帰する。
In the second heating zone B, undecomposed organic substances are completely gasified and removed. Due to this gasification, etc., the degree of vacuum in the vacuum sintering furnace 7 temporarily decreases to 4 Torr, but returns to 1 Torr after 30 minutes.

(C) 第3加熱ゾーン(第3図C) この加熱ゾーンCは、Ni自溶性合金の固相
線(1010〜1020℃)直下から液相線(1075〜
1085℃)を越える温度、即ち1000〜1200℃の範
囲であり、Ni自溶性合金−Mo仮焼結層を、例
えば液相線を越える温度である1100〜1180℃、
好ましくは1120℃に120分間恒温保持してNi自
溶性合金の溶融により液相焼結処理を施し金属
焼結層S1を形成する。この場合Ni自溶性合金
の流動はMoの存在により妨げられ、したがつ
て形状維持性が良い。第2加熱ゾーンBからの
昇温速度は15〜20℃/分であり、Ni自溶性合
金−Mo仮焼結層は第2加熱ゾーンBで既に高
温加熱されているので、第3加熱ゾーンCまで
の昇温時間は僅かである。この第3加熱ゾーン
Cの保持時間が不充分であると焼結が完全に行
われず、金属焼結層S1に欠陥を生ずる。
(C) Third heating zone (Figure 3C) This heating zone C ranges from just below the solidus line (1010~1020℃) of the Ni self-fluxing alloy to the liquidus line (1075~1020℃).
1085℃), i.e., in the range of 1000 to 1200℃.
Preferably, the temperature is maintained at 1120° C. for 120 minutes to perform liquid phase sintering treatment by melting the Ni self-fusing alloy to form the metal sintered layer S1 . In this case, the flow of the Ni self-fusing alloy is hindered by the presence of Mo, and therefore shape retention is good. The temperature increase rate from the second heating zone B is 15 to 20°C/min, and since the Ni self-fusing alloy-Mo pre-sintered layer has already been heated to a high temperature in the second heating zone B, the third heating zone C It takes only a short time to raise the temperature. If the holding time in the third heating zone C is insufficient, sintering will not be completed completely and defects will occur in the metal sintered layer S1 .

上記のように焼結温度を1120℃に選定する理
由は、その温度が鋳鉄よりなるパンチ素材2o
の共晶温度以下であるからである。パンチ素材
2oが鋳鋼等の鋼系であれば焼結温度は1160℃
が良い。その理由は焼結温度が1200℃程度とな
ると、金属焼結層S1の寸法変化が大きくなり、
また炉温制御が容易でなく、その上、炉内温度
がばらつくといつた不具合があり、これらの不
具合を除去するための作業温度としては1160℃
が適当であるからである。
The reason for selecting the sintering temperature at 1120℃ as mentioned above is that the temperature is
This is because it is below the eutectic temperature of If the punch material 2o is made of steel such as cast steel, the sintering temperature is 1160℃.
is good. The reason is that when the sintering temperature is around 1200℃, the dimensional change of the metal sintered layer S1 becomes large.
Furthermore, it is not easy to control the furnace temperature, and on top of that, there are problems such as fluctuations in the temperature inside the furnace.The working temperature to eliminate these problems is 1160℃.
This is because it is appropriate.

(D) 冷却ゾーン(第3図D) この冷却ゾーンDは、前記焼結温度から略
800℃までの1次冷却ゾーンD1と、略800℃か
ら略400℃までの2次冷却ゾーンD2と、略400
℃から常温までの3次冷却ゾーンD3とに分け
られる。
(D) Cooling zone (Fig. 3D) This cooling zone D is approximately below the sintering temperature.
Primary cooling zone D 1 up to 800℃, secondary cooling zone D 2 from approximately 800℃ to approximately 400℃, and approximately 400℃
It is divided into a tertiary cooling zone D3 from ℃ to room temperature.

1次冷却ゾーンD1は、金属焼結層S1の高温
下における安定域であり、この冷却ゾーンD1
ではできるだけ熱的な刺激を避け、同時に冷却
効率を考慮して最高2℃/分程度のゆつくりし
た速度で冷却する。この冷却ゾーンD1で急冷
が行われると金属焼結層S1にクラツクが多発す
る。
The primary cooling zone D 1 is a stable region of the metal sintered layer S 1 at high temperatures, and this cooling zone D 1
In order to avoid thermal stimulation as much as possible, and at the same time take cooling efficiency into consideration, cooling is performed at a slow rate of about 2°C/min at maximum. When rapid cooling is performed in this cooling zone D1 , cracks occur frequently in the metal sintered layer S1 .

2次冷却ゾーンD2では、パンチ素材2oの
線膨脹(12.5×10-6/℃)とAr1変態における
寸法変化を吸収するために最高3℃/分程度の
ゆつくりした速度で冷却する。この場合金属焼
結層S1の線収縮は14.6×10-6/℃であるが、多
孔質であるためパンチ素材2oの収縮に追随す
る。この冷却ゾーンD2で急冷が行われると金
属焼結層S1にクラツクが多発する。
In the secondary cooling zone D2 , the punch material 2o is cooled at a slow rate of about 3°C/min at maximum in order to absorb linear expansion (12.5×10 -6 /°C) and dimensional changes due to Ar 1 transformation. In this case, the linear shrinkage of the metal sintered layer S 1 is 14.6×10 −6 /° C., but since it is porous, it follows the shrinkage of the punch material 2o. When rapid cooling is performed in this cooling zone D2 , cracks occur frequently in the metal sintered layer S1 .

3次冷却ゾーンD3では、水、油等の液冷以
外のガス冷却(空冷を含む)により金属焼結層
S1およびパンチ素材2oの温度を常温まで冷却
する。
In the tertiary cooling zone D 3 , the metal sintered layer is cooled by gas cooling (including air cooling) other than liquid cooling such as water or oil.
The temperature of S 1 and the punch material 2o is cooled to room temperature.

第2図eに示すように上記加熱−冷却処理を
経て、ワーク成形部2aをNi自溶性合金−Mo
よりなる金属焼結層S1によつて形成されたパン
チ2が得られる。
As shown in Fig. 2e, after the above heating-cooling treatment, the workpiece forming part 2a is made of Ni self-fluxing alloy-Mo
A punch 2 formed of the metal sintered layer S 1 is obtained.

上記金属焼結層S1は、パンチ素材2oとの溶
着性が良好で、クラツク等の欠陥の発生がな
く、また寸法変化も±0〜2mm以内と精度が良
く、その上面粗度も良好で、腐食もなく、した
がつて簡単な仕上げ加工を施すことより直ちに
プレス作業に使用することができる。
The metal sintered layer S 1 has good weldability with the punch material 2o, has no defects such as cracks, has good dimensional variation within ±0 to 2 mm, and has good upper surface roughness. , there is no corrosion, and therefore it can be used for press work immediately after simple finishing.

実施例 実施例で得られたパンチ2における金属焼結
層S1の表面硬度はロツクウエル硬さBスケールに
おいて20程度であり、この程度の硬度を持てば通
常のプレス作業では何等問題を生じないが、作業
内容によつては金属焼結層S1の一部に高圧が作用
することがあり、この場合その高圧作用部分が多
孔質であるため座屈するおそれがある。
Example The surface hardness of the metal sintered layer S 1 in the punch 2 obtained in Example is about 20 on the Rockwell hardness B scale, and if it has hardness of this level, it will not cause any problems in normal press work. Depending on the content of the work, high pressure may act on a part of the metal sintered layer S1 , and in this case, the high pressure acting part is porous and may buckle.

そこで、本発明においては金属焼結層S1の高圧
作用部分にNi自溶性合金、Cu等の低融点金型属
を溶浸させて気孔を埋め、座屈強度を向上させる
ものである。
Therefore, in the present invention, the high-pressure acting portion of the metal sintered layer S1 is infiltrated with a low melting point mold metal such as a self-fusing Ni alloy or Cu to fill the pores and improve the buckling strength.

即ち、金属焼結層S1の高圧作用部分に、その気
孔率38〜40%と同じ容量の片状Cuを付設し、こ
れを真空炉に設置して1100〜1120℃に加熱し、溶
融したCuを高圧作用部分の気孔に毛細管現象に
より浸入させ、その後前記と同様の冷却条件にて
冷却する。
That is, a piece of Cu having the same volume as the porosity of 38% to 40% was attached to the high pressure acting part of the metal sintered layer S1 , and this was placed in a vacuum furnace and heated to 1100 to 1120°C to melt it. Cu is allowed to enter the pores of the high-pressure portion by capillary action, and then cooled under the same cooling conditions as described above.

Cuを溶浸した高圧作用部分を顕微鏡により観
察したところ気孔はCuにより完全に充たされて
おり、またCuはパンチ素材2oである鋳鋼に一
体的に溶着していることが確認された。したがつ
て金属焼結層S1は、その硬度が著しく高くなり、
大きな座屈強度を持つものである。
When the high-pressure action part infiltrated with Cu was observed under a microscope, it was confirmed that the pores were completely filled with Cu, and that Cu was integrally welded to the cast steel that was the punch material 2o. Therefore, the hardness of the metal sintered layer S 1 is significantly increased,
It has high buckling strength.

実施例 ダイスの製造 第4図a〜eの工程を経てダイスが製造され
る。この製造工程は前記実施例と同じである。
Example Manufacture of dice A dice is manufactured through the steps shown in FIGS. 4a to 4e. This manufacturing process is the same as in the previous example.

即ち、第4図aに示すように金型素材としての
ダイス素材3oを鋳鉄(JIS FC30材)により鋳
造、同図bに示すようにベース面8に前記実施例
と同様のシート状可塑性物Pを貼着してワーク
成形部3aの粗造り、同図cに示すように可塑性
物Pの半硬化、研削加工によるワーク成形部3a
の形状、厚さの仕上げおよび前記実施例で得ら
れたパンチ2との型合わせ、同図dに示すように
囲い9、セラミツク粉末および鋼球6によるバツ
クアツプ、真空焼結炉7における有機物質の分解
と金属粉末の焼結による金属焼結層S2の形成、お
よび同図eに示すようにダイス3の完成である。
That is, as shown in FIG. 4a, a die material 3o as a mold material is cast from cast iron (JIS FC30 material), and as shown in FIG. The workpiece forming part 3a is rough-made by pasting the plastic material P, and as shown in FIG.
As shown in FIG. The metal sintered layer S2 is formed by decomposition and sintering of the metal powder, and the die 3 is completed as shown in FIG.

また得られた金属焼結層S2の高圧作用部分には
必要に応じて前記低融点金属であるNi自溶性合
金、Cu等の溶浸処理を施す。
Further, the high-pressure acting portion of the obtained sintered metal layer S2 is subjected to infiltration treatment with the low melting point metal such as Ni self-fusing alloy, Cu, etc., if necessary.

上記のように溶浸処理を施された金型はトリミ
ング用に最適である。
A mold that has been infiltrated as described above is ideal for trimming.

なお、前記実施例、のb工程における合成
樹脂液の可塑性物P中への含浸に際しては、金属
粉末間の気孔にアクリル樹脂液が効率良く浸入し
得るように有機溶剤の種類を選定し、また濃度を
調節する。
In addition, when impregnating the synthetic resin liquid into the plastic material P in step b of the above example, the type of organic solvent was selected so that the acrylic resin liquid could efficiently penetrate into the pores between the metal powders, and Adjust concentration.

C 発明の効果 第1項記載の発明によれば、寸法精度および面
粗度が良好で、腐食のない高品質な金属焼結層、
したがつてワーク成形部を備えた金型を短時間の
うちに容易に製造してその製造費を大幅に低減す
ることができる。
C Effect of the invention According to the invention described in item 1, a high-quality sintered metal layer with good dimensional accuracy and surface roughness and no corrosion;
Therefore, it is possible to easily manufacture a mold having a workpiece forming part in a short time and to significantly reduce manufacturing costs.

第2項記載の発明によれば、前記金属焼結層に
溶浸処理を施すことにより金属焼結層の硬度を著
しく高くして、その層に大きな座屈強度を保持さ
せることができる。
According to the invention described in item 2, by subjecting the sintered metal layer to an infiltration treatment, the hardness of the sintered metal layer can be significantly increased, and the layer can maintain high buckling strength.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すもので、第1図は
金型の断面図、第2図a乃至eは第1実施例の工
程説明図、第3図は焼結工程における温度と時間
の関係を示すグラフ、第4図a乃至eは第3実施
例の工程説明図である。 P……可塑性物、S1,S2……金属焼結層、1…
…金型、2o,3o……金型素材としてのパンチ
素材、ダイス素材。
The drawings show an embodiment of the present invention, and FIG. 1 is a cross-sectional view of a mold, FIGS. Graphs showing the relationship, FIGS. 4a to 4e, are process explanatory diagrams of the third embodiment. P...Plastic material, S1 , S2 ...Metal sintered layer, 1...
...Mold, 2o, 3o... Punch material and die material as mold material.

Claims (1)

【特許請求の範囲】 1 ワーク成形部を金属焼結層より構成した金型
の製造方法であつて、焼結性金属粉末と合成樹脂
バインダとを混練した可塑性物を金型素材に貼着
して前記ワーク成形部を粗造りする工程と、前記
可塑性物に、常温では固体の合成樹脂を有機溶剤
に溶解した合成樹脂液を塗布して前記焼結性金属
粉末相互間に存する気孔に含浸させる工程と、前
記可塑性物を加熱して半硬化させる工程と、前記
半硬化した可塑性物を研削して前記ワーク成形部
の形状を仕上げる工程と、前記可塑性物の周りに
囲いを設け、次いで該可塑性物の表面をセラミツ
ク粉末で覆い、その後セラミツク粉末の上に通気
性バツクアツプを形成する工程と、前記可塑性物
中の前記合成樹脂バインダを熱分解する共に前記
焼結性金属粉末を焼結して前記金属焼結層を得る
工程とを用いることを特徴とする金型の製造方
法。 2 ワーク成形部を金属焼結層より構成した金型
の製造方法であつて、焼結性金属粉末と合成樹脂
バインダとを混練した可塑性物を金型素材に貼着
して前記ワーク成形部を粗造りする工程と、前記
可塑性物に、常温では固体の合成樹脂を有機溶剤
に溶解した合成樹脂液を塗布して前記焼結性金属
粉末相互間に存する気孔に含浸させる工程と、前
記可塑性物を加熱して半硬化させる工程と、前記
半硬化した可塑性物を研削して前記ワーク成形部
の形状を仕上げる工程と、前記可塑性物の周りに
囲いを設け、次いで該可塑性物の表面をセラミツ
ク粉末で覆い、その後セラミツク粉末の上に通気
性バツクアツプを形成する工程と、前記可塑性物
中の前記合成樹脂バインダを熱分解する共に前記
焼結性金属粉末を焼結して前記金属焼結層を得る
工程と、前記金属焼結層に溶浸処理を施す工程と
を用いることを特徴とする金型の製造方法。
[Scope of Claims] 1. A method for manufacturing a mold in which a workpiece forming part is composed of a sintered metal layer, which method comprises adhering a plastic material obtained by kneading sinterable metal powder and a synthetic resin binder to a mold material. a step of rough-forming the workpiece molding part, and applying a synthetic resin liquid, which is a synthetic resin solid at room temperature dissolved in an organic solvent, to the plastic material to impregnate the pores existing between the sinterable metal powders. a step of heating the plastic material to semi-harden it; a step of grinding the semi-hardened plastic material to finish the shape of the workpiece forming part; providing an enclosure around the plastic material; covering the surface of the object with ceramic powder and then forming an air-permeable back-up on the ceramic powder; thermally decomposing the synthetic resin binder in the plastic material and sintering the sinterable metal powder; A method for manufacturing a mold, characterized by using a step of obtaining a metal sintered layer. 2. A method for manufacturing a mold in which a workpiece forming part is composed of a sintered metal layer, the workpiece forming part being formed by adhering a plastic material obtained by kneading sinterable metal powder and a synthetic resin binder to a mold material. a step of roughly forming the plastic material; a step of applying a synthetic resin solution prepared by dissolving a synthetic resin, which is solid at room temperature, in an organic solvent, to the plastic material to impregnate the pores existing between the sinterable metal powder; a step of heating and semi-hardening the semi-hardened plastic material, a step of grinding the semi-hardened plastic material to finish the shape of the workpiece forming part, providing an enclosure around the plastic material, and then covering the surface of the plastic material with ceramic powder. and then forming an air-permeable back-up on the ceramic powder, and thermally decomposing the synthetic resin binder in the plastic material and sintering the sinterable metal powder to obtain the metal sintered layer. A method for manufacturing a mold, comprising: a step of infiltrating the sintered metal layer.
JP7711484A 1984-04-17 1984-04-17 Production of metallic mold Granted JPS60221502A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7711484A JPS60221502A (en) 1984-04-17 1984-04-17 Production of metallic mold
IN283/MAS/85A IN164639B (en) 1984-04-17 1985-04-15
BE2/60664A BE902202A (en) 1984-04-17 1985-04-16 METHOD FOR MANUFACTURING FORMS AND SO MADE FORMS.
BR8501808A BR8501808A (en) 1984-04-17 1985-04-16 PROCESS FOR MANUFACTURING A TEMPLATE WITH A WORKING PART FORMED OF A SINTERIZED METALLIC MATERIAL AND PROCESS FOR MANUFACTURING A PAIR OF MOLDS AND TEMPLATE WITH A WORKING PART FORMED OF A SINTERIZED METALLIC MATERIAL AND MOLD OF INCLUDING A WORKING PART A TEMPLATE TO MAKE A PIECE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7711484A JPS60221502A (en) 1984-04-17 1984-04-17 Production of metallic mold

Publications (2)

Publication Number Publication Date
JPS60221502A JPS60221502A (en) 1985-11-06
JPH0153321B2 true JPH0153321B2 (en) 1989-11-14

Family

ID=13624756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7711484A Granted JPS60221502A (en) 1984-04-17 1984-04-17 Production of metallic mold

Country Status (1)

Country Link
JP (1) JPS60221502A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637642B2 (en) * 1987-05-30 1994-05-18 株式会社東伸精工 Metal materials for arts and crafts that can be easily engraved or cut, and a method for manufacturing a sintered product using the metal material
JPH01192433A (en) * 1987-09-22 1989-08-02 Hikifune:Kk Die and its manufacture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936524A (en) * 1972-08-08 1974-04-04
JPS5265111A (en) * 1975-11-25 1977-05-30 Inoue Japax Res Inc Production process of wear-resisting material
JPS5642643A (en) * 1979-09-14 1981-04-20 Yoshihiro Kamo Reinforcing resin pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936524A (en) * 1972-08-08 1974-04-04
JPS5265111A (en) * 1975-11-25 1977-05-30 Inoue Japax Res Inc Production process of wear-resisting material
JPS5642643A (en) * 1979-09-14 1981-04-20 Yoshihiro Kamo Reinforcing resin pipe

Also Published As

Publication number Publication date
JPS60221502A (en) 1985-11-06

Similar Documents

Publication Publication Date Title
AU2011244998B2 (en) Method for the manufacture of a shaped body as well as green compact
US5453242A (en) Process for producing sintered-iron molded parts with pore-free zones
DE19726961C1 (en) Production of porous or highly porous metal, ceramic or composite moulding with cohesive structure
US4657734A (en) Method for preparing a sliding face of a machine tool
US4280841A (en) Method for manufacturing a mechanical seal ring
US3809553A (en) Metal foil-making process
US5190094A (en) Heteroporous form tool for manufacturing casting moulds and process for its manufacture
JPH0153321B2 (en)
JP4290850B2 (en) Press forming method of disk-shaped parts made of aluminum matrix composite
KR100723126B1 (en) Method for manufacturing molds and dies by thermal spraying
JPH0153323B2 (en)
JPH0153322B2 (en)
JPS60230906A (en) Production of die
KR910007298B1 (en) The make method for die
JPS613805A (en) Raw material sheet for sintered metallic body and its production
JPS60230920A (en) Production of blank holder
JPS60224701A (en) Production of female die
JPS60221505A (en) Production of metallic mold
JPH0153326B2 (en)
JPS61235502A (en) Wear-resistant structure for composite member
JPS60230908A (en) Production of die
JPH0220687B2 (en)
WO2022095111A1 (en) Manufacturing method for mandrel part, mandrel part, and textile machinery applying same
JP2000038605A (en) Production of parts of fishing reel
JPS60223626A (en) Die