JPH0153140B2 - - Google Patents

Info

Publication number
JPH0153140B2
JPH0153140B2 JP58062784A JP6278483A JPH0153140B2 JP H0153140 B2 JPH0153140 B2 JP H0153140B2 JP 58062784 A JP58062784 A JP 58062784A JP 6278483 A JP6278483 A JP 6278483A JP H0153140 B2 JPH0153140 B2 JP H0153140B2
Authority
JP
Japan
Prior art keywords
mold
firing
iron
particle size
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58062784A
Other languages
Japanese (ja)
Other versions
JPS606242A (en
Inventor
Akira Yanagisawa
Hiroyuki Noguchi
Takeo Nakagawa
Takehiro Inagaki
Yoshikazu Hayashi
Masanobu Tsuchida
Toyoji Fuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinto Industrial Co Ltd
Original Assignee
Shinto Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinto Kogyo KK filed Critical Shinto Kogyo KK
Priority to JP6278483A priority Critical patent/JPS606242A/en
Priority to SU843725402A priority patent/SU1632366A3/en
Priority to MX200937A priority patent/MX161282A/en
Priority to CA000451448A priority patent/CA1266159A/en
Priority to KR1019840001857A priority patent/KR910000953B1/en
Priority to AU26640/84A priority patent/AU566385B2/en
Priority to EP84103966A priority patent/EP0121929B1/en
Priority to AT84103966T priority patent/ATE64876T1/en
Priority to IN247/MAS/84A priority patent/IN160636B/en
Priority to DE8484103966T priority patent/DE3484752D1/en
Priority to BR8401651A priority patent/BR8401651A/en
Publication of JPS606242A publication Critical patent/JPS606242A/en
Publication of JPH0153140B2 publication Critical patent/JPH0153140B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/02Other methods of shaping glass by casting molten glass, e.g. injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • B22C9/061Materials which make up the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/007Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/26Producing shaped prefabricated articles from the material by slip-casting, i.e. by casting a suspension or dispersion of the material in a liquid-absorbent or porous mould, the liquid being allowed to soak into or pass through the walls of the mould; Moulds therefor ; specially for manufacturing articles starting from a ceramic slip; Moulds therefor
    • B28B1/261Moulds therefor
    • B28B1/262Mould materials; Manufacture of moulds or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3814Porous moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/30Moulds
    • B29C51/36Moulds specially adapted for vacuum forming, Manufacture thereof
    • B29C51/365Porous moulds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B9/00Blowing glass; Production of hollow glass articles
    • C03B9/30Details of blowing glass; Use of materials for the moulds
    • C03B9/34Glass-blowing moulds not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B9/00Blowing glass; Production of hollow glass articles
    • C03B9/30Details of blowing glass; Use of materials for the moulds
    • C03B9/48Use of materials for the moulds

Description

【発明の詳細な説明】 本発明は複合耐久鋳型の製造法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing composite durable molds.

アルミ合金鋳物などを得るための鋳型とりわけ
多数回の使用に耐える鋳型としては一般に金型が
用いられている。金型は、製造に手間と時間がか
かり、きわめてコストが高い反面、耐久性が良好
な長所から大量生産用の鋳型として利用度が高
い。しかしながら、多品種少量生産あるいは試作
用などにおいては、金型ほど耐久性はなくとも、
安価で容易に製造できる耐久鋳型が望まれてい
る。このような目的のための耐久鋳型として、多
数のセラミツク系耐久鋳型が従来より提案されて
いるが、型強度が不足したり、鋳肌が悪かつた
り、必ずしも製造法が容易でない等の理由により
ほとんど実用化されていないのが実情である。
BACKGROUND ART Metal molds are generally used as molds for obtaining aluminum alloy castings, especially as molds that can withstand multiple uses. Molds require a lot of effort and time to manufacture and are extremely expensive, but they are also highly used as molds for mass production because of their good durability. However, in high-mix low-volume production or prototyping, even if it is not as durable as a mold,
Durable molds that are inexpensive and easy to manufacture are desired. Many ceramic durable molds have been proposed as durable molds for such purposes, but due to reasons such as insufficient mold strength, poor casting surface, and not necessarily easy manufacturing methods, The reality is that it has hardly been put into practical use.

本発明は前記したような事情から研究を重ねて
創案されたもので、その目的とするところは、十
分な強度と耐久性を有すると共に鋳型面及び鋳肌
が良好で複雑形状製品を容易に鋳造できる複合耐
久鋳型を簡単な工程で比較的能率よく安価に製造
できる方法を提供することにある。
The present invention was created after repeated research in view of the above-mentioned circumstances, and its purpose is to easily cast products with complex shapes that have sufficient strength and durability, as well as good mold surfaces and casting surfaces. To provide a method by which a durable composite mold can be produced relatively efficiently and inexpensively through simple steps.

また、本発明の他の目的とするところは、上記
特性に加え、曲げ強度などの強度特性が一段と優
れ、かつ寸法変化も少ないこの種複合耐久鋳型を
製造する方法を提供することにある。
Another object of the present invention is to provide a method for manufacturing this type of composite durable mold which has even better strength properties such as bending strength in addition to the above properties and has less dimensional change.

また、本発明は、耐久鋳型を得るにあたり、粒
径500μm以下の鉄系粉と粒径300μm以下の耐火
物粉および粘結材を重量比で(1〜5):(1〜
5):1に配合し、あるいはさらに鋼繊維を1〜
10容量%添加してスラリー状の混合物を作り、こ
れを適宜流し込みにより成形し、この成形体を自
然乾燥又は/及び1次焼成後、酸化性雰囲気中で
600〜1000℃にて焼成する方法としたものである。
In addition, in obtaining a durable mold, the present invention uses iron-based powder with a particle size of 500 μm or less, refractory powder with a particle size of 300 μm or less, and a caking agent in a weight ratio of (1 to 5): (1 to 5).
5): Add steel fiber to 1 or further add steel fiber to 1 to 1.
Add 10% by volume to make a slurry-like mixture, mold this by pouring as appropriate, and dry this molded product naturally and/or after primary firing, in an oxidizing atmosphere.
This method involves firing at 600 to 1000°C.

以下本発明の実施例を添付図面に基いて説明す
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図ないし第3図は本発明により製造した複
合耐久型の一例を示すもので、鉄系粉と耐火物粉
を骨材とする複合焼成体1からなつている。この
複合焼成体1は、外周部に焼成された緻密な硬化
層2が形成されると共に、この硬化層2の内側に
未焼成混合物からなるバツキング層3が形成さ
れ、型面5、湯道6及び湯口7はそれぞれ前記硬
化層2で構成され、硬化層2及びバツキング層3
を貫いてピン用穴8が形成される。この硬化層2
又はバツキング層3には、必要に応じ、型冷却、
保温のための導管やヒータ4が埋込まれてもよ
い。
1 to 3 show an example of a composite durable type manufactured according to the present invention, which is composed of a composite fired body 1 made of iron-based powder and refractory powder as aggregates. In this composite fired body 1, a dense hardened layer 2 is formed on the outer periphery, a backing layer 3 made of an unfired mixture is formed inside this hardened layer 2, and a mold surface 5 and a runner 6 are formed. and the sprue 7 are each composed of the hardened layer 2, and the hardened layer 2 and the backing layer 3.
A pin hole 8 is formed through it. This hardened layer 2
Alternatively, the backing layer 3 may include mold cooling,
A conduit or a heater 4 for heat retention may be embedded.

前記硬化層2は、第3図aのように、耐火物粉
に分散した鉄系粉の変化した酸化鉄粒(α−
Fe2O3)20と焼成耐火物粒21との接合組織か
らなつている。前記硬化層2の生成機構は必ずし
も明確ではないが、Feがα−Fe2O3に変化する以
外に特別な複合生成物が認められないことから、
鉄系粉が酸化鉄に変化して体積が大きく増加し、
耐火物粒子を包み込んだ形で焼結されつつ耐火物
粒子の焼成も進行し、耐火物粒子との界面で拡散
接合的な接着が行われた結果と考えられる。
As shown in FIG. 3a, the hardened layer 2 is composed of iron oxide particles (α-
It consists of a bonding structure of Fe 2 O 3 ) 20 and fired refractory particles 21. The formation mechanism of the hardened layer 2 is not necessarily clear, but since no special composite product is observed other than the change of Fe to α-Fe 2 O 3 ,
Iron-based powder changes to iron oxide and the volume increases greatly,
This is thought to be the result of sintering of the refractory particles while enclosing the refractory particles, and diffusion bonding at the interface with the refractory particles.

一方、硬化層2より内側のバツキング層3は、
第3図bのように、未焼成ままの鉄系粉粒子2
0′と耐火物粒子21′の混合組織からなつてい
る。
On the other hand, the backing layer 3 inside the hardened layer 2 is
As shown in Figure 3b, unfired iron powder particles 2
It consists of a mixed structure of 0' and refractory particles 21'.

第4図は本発明により製造した複合耐久鋳型の
他の実施例を示すもので、鉄系粉と耐火物粒にさ
らに鋼繊維9を骨材とする複合焼成体1cからな
つている。この複合焼成体1cは、前記実施例と
同様に外周の緻密な硬化層2とその内側の未焼成
部分からなるバツキング層3からなつているが、
それら硬化層2とバツキング層3及びそれらの層
間に鋼繊維9が分散し、この分散した鋼繊維9に
よりバツキング層3を構成する混合組織を強化
し、また硬化層2とバツキング層3間を架橋して
それらの付着力を増加している。
FIG. 4 shows another embodiment of a composite durable mold manufactured according to the present invention, which is composed of a composite fired body 1c made of iron-based powder, refractory particles, and steel fibers 9 as an aggregate. This composite fired body 1c is composed of a dense hardened layer 2 on the outer periphery and a backing layer 3 made of an unfired part inside the hardened layer 2, as in the above embodiment.
Steel fibers 9 are dispersed between the hardened layer 2 and the backing layer 3, and the dispersed steel fibers 9 strengthen the mixed structure that constitutes the backing layer 3, and also bridge the hardened layer 2 and the backing layer 3. It has increased their adhesion.

次に本発明による複合耐久鋳型の製造法を説明
すると第5図ないし第7図のごとくである。
Next, a method of manufacturing a composite durable mold according to the present invention will be explained as shown in FIGS. 5 to 7.

すなわち、目的とする複合耐久鋳型を得るにあ
たつては、まず、鉄系粉と耐火物粉を混合し、鋼
繊維を用いる場合にはこれを前記骨材と混合し、
これに粘結材を添加し、十分に混合撹拌してスラ
リー状の混合資料10を得る。粘結材はペントナ
イト等公知のものを用いることもできるし、硬化
過程で蒸発する成分を有するもの、たとえばシリ
カゾルなどを用いることもできる。
That is, in order to obtain the desired composite durable mold, first, iron-based powder and refractory powder are mixed, and when steel fiber is used, this is mixed with the aggregate,
A caking agent is added to this, and the mixture is thoroughly mixed and stirred to obtain a slurry-like mixed material 10. As the caking agent, a known material such as pentonite can be used, or a material having a component that evaporates during the curing process, such as silica sol, can also be used.

「鉄系粉」としては、鋳鉄粉、純鉄粉、電解粉
などの鉄粉、あるいは鋼粉を用いることができ
る。
As the "iron-based powder", iron powder such as cast iron powder, pure iron powder, electrolytic powder, or steel powder can be used.

また、「耐火物粉」としては、耐火度が高く、
高温での変形率が小さく、鉄系粉と接合しやすい
性質のもの、たとえばムライト、ジルコニウム、
溶融シリカ、溶融ジルコン、シリマナイト、カイ
アナイト、クロマイト、高アルミナ・シヤモツ
ト、ケイソウ土、パーライト、滑石マグネシアな
ど任意のものを用い得る。粘結材がシリカゾルの
ようなものである場合には、これがPH2〜3で安
定状態にあることから、中性又は酸性の耐火物粉
が適当といえよう。
In addition, as a "refractory powder", it has a high degree of fire resistance,
Materials with low deformation rate at high temperatures and easy to bond with iron-based powders, such as mullite, zirconium,
Any of the following materials may be used: fused silica, fused zircon, sillimanite, kyanite, chromite, high alumina syamoto, diatomaceous earth, perlite, talc magnesia, and the like. When the binder is something like silica sol, it is stable at pH 2 to 3, so neutral or acidic refractory powder is appropriate.

「鋼繊維」としては快削鋼などを用いることも
できるが、できればステンレス系のものを用い
る。ステンレス系の鋼繊維は焼成時にも酸化によ
り消失しないため、硬化層及びバツキング層の両
層に対する補強効果が高い。もちろん、快削鋼な
どを用いてもバツキング層の補強効果は得られ、
電裂防止、耐火物粉の脱落防止のメリツトはあ
る。鋼繊維としては、それ自体の強度が高くかつ
表面積の大きいもの、たとえばビビリ振動切削に
より生成したものが好適である。
Although free-cutting steel can be used as the "steel fiber," stainless steel is preferably used. Since stainless steel fibers do not disappear due to oxidation during firing, they have a high reinforcing effect on both the hardened layer and the backing layer. Of course, the reinforcing effect of the buckling layer can also be obtained by using free-cutting steel, etc.
It has the advantage of preventing electric cracking and preventing refractory powder from falling off. Preferably, the steel fiber itself is high in strength and has a large surface area, such as one produced by chatter vibration cutting.

前記鉄系粉と耐火物粉と粘結材の配合比は、一
般に重量比で(1〜5):(1〜5):1程度が適
当である。この配合比により強度と熱伝導性及び
肌性状などの各特性をバランスよく達成すること
ができる。配合比の下限を1:1:1としたの
は、鋳型として使用可能な最低限の強度を得るた
めであり、上限を規定したのは、鋳型の成型性か
ら、骨材が多すぎると、粘結材の被覆能が低下
し、強度の低下や鋳型表面の安定性劣化を生じさ
せるからである。そして、鉄系粉の上限を規定し
たのは、鉄系粉の添加を過度にすると、鋳型に十
分な強度が得られず、また、型面の表面性状が悪
化して転写性を損うからであり、耐火物粉の上限
を規定したのは、強度が損われるからである。
The appropriate mixing ratio of the iron-based powder, refractory powder, and binder is generally about (1-5):(1-5):1 by weight. This blending ratio makes it possible to achieve a good balance of properties such as strength, thermal conductivity, and skin texture. The lower limit of the mixing ratio was set at 1:1:1 in order to obtain the minimum strength that can be used as a mold, and the upper limit was set because of the moldability of the mold, if too much aggregate is used. This is because the covering ability of the caking material is reduced, resulting in a reduction in strength and deterioration in stability of the mold surface. The reason for setting the upper limit for iron-based powder is that if too much iron-based powder is added, the mold will not have sufficient strength, and the surface quality of the mold surface will deteriorate, impairing transferability. The reason why the upper limit for the amount of refractory powder was specified was that the strength would be impaired.

鋼繊維を併用する場合、その添加量は1〜10容
積%が適当である。1%未満では強度向上及び寸
法安定性の効果は期待できない。また上限を10%
としたのは、フアイバーボールが生じやすく、良
好なスラリー状資料が得られなくなるおそれがあ
り、また、硬化層表面への析出が過剰となつて肌
を悪くし、かつコスト的にも不利だからである。
When steel fibers are used in combination, the appropriate amount is 1 to 10% by volume. If it is less than 1%, no effect on strength improvement or dimensional stability can be expected. In addition, the upper limit is 10%
This is because fiber balls are likely to occur, making it difficult to obtain a good slurry material, and excessive precipitation on the surface of the hardened layer will worsen the texture, and it is also disadvantageous in terms of cost. be.

なお、鉄系粉の粒度は一般に最大寸法で50〜
500μmの範囲、耐火物粉の粒度は概ね最大寸法
で50〜300μmの範囲が望ましい。その理由は、
型面の表面あらさないし転写性の面からは粒度の
小さなことが望ましいが、反面においてクラツク
が入りやすくなるからであり、上限を設定したの
は強度の点と鋳型表面性状の点からである。鋼繊
維を併用する場合には、製造する型の寸法などに
より、たとえば長さ1〜30mm、太さ20〜400μm
のような諸元のものを用いればよい。
In addition, the particle size of iron-based powder is generally 50~50 in the maximum dimension.
The particle size of the refractory powder is preferably in the range of 50 to 300 μm in the maximum dimension. The reason is,
A small particle size is desirable from the standpoint of preventing surface roughness on the mold surface and improving transferability, but on the other hand, this makes it easier for cracks to form.The upper limit was set from the standpoint of strength and mold surface properties. When using steel fibers, the length may be 1 to 30 mm and the thickness may be 20 to 400 μm depending on the dimensions of the mold to be manufactured.
It is sufficient to use one with specifications such as .

次に、本発明は、前記のようにして得たスラリ
ー状の混合資料10を所望形状に成形する。これ
は、たとえば第5図のように模形又は現物12を
セツトした型枠11に混合資料10を流し込み、
所定時間放置することにより行う。この際に、固
化促進のために硬化剤を加えたり、充填性を助長
するため振動を加えたり、スクイズすることも効
果的である。
Next, in the present invention, the slurry-like mixed material 10 obtained as described above is molded into a desired shape. This is done by pouring the mixed material 10 into a mold 11 in which a model or actual object 12 is set, as shown in FIG.
This is done by leaving it for a predetermined period of time. At this time, it is also effective to add a curing agent to promote solidification, to apply vibration to promote filling properties, or to squeeze.

そして、この成形時に型枠内にピンやパイプ類
を装入することでピン穴8や冷却、保温用の埋込
み機構4が得られる。
By inserting pins and pipes into the mold during this molding, pin holes 8 and embedding mechanisms 4 for cooling and heat retention are obtained.

このようにして得られた成形体13を型枠11
から脱型したのち、亀裂防止、歪発生の防止を図
るため、1〜48Hrの自然乾燥を行う。粘結材が
蒸発成分を含むものである場合など必要に応じ
て、自然乾燥に代えあるいは自然乾燥に加え、成
形体13に直接着火するなどの方法により1次焼
成を行つてもよい。
The molded body 13 thus obtained is placed in the formwork 11.
After demolding, air drying is performed for 1 to 48 hours to prevent cracks and distortion. If necessary, such as when the binder contains an evaporative component, primary firing may be performed by directly igniting the molded body 13 in place of or in addition to natural drying.

次いで、この工程を終えた成形体13を、酸化
性雰囲気中で焼成する。酸化性雰囲気は空気でも
よいし、酸素供給を行つたいわゆる酸素富化空気
でもよい。焼成条件は配合比、粒度鋳型寸法など
にもよるが、一般に焼成温度600〜1000℃程度、
焼成時間1〜50Hrを採用するのがよい。焼成温
度の下限を600℃とし焼成時間の下限を1時間と
したのは、焼成が不十分となり、本発明の特徴で
ある硬化層が生成されないからである。焼成温度
の上限を1000℃としたのは硬化層は生成されるも
のの表面が荒れて鋳肌面を損うからである。ま
た、焼成時間の上限を50Hrとしたのは、焼成時
間が長いほど強度は向上するものの硬化層は限度
以上成長せずかえつて表面の荒れを起させる不利
があり、また生産性も低下するからである。この
焼成工程により耐火物粉の焼成と鉄系粉の酸化の
進行による前記硬化層2が次第にされる。
Next, the molded body 13 that has completed this step is fired in an oxidizing atmosphere. The oxidizing atmosphere may be air or may be so-called oxygen-enriched air supplied with oxygen. Firing conditions depend on the blending ratio, particle size, mold dimensions, etc., but generally the firing temperature is around 600-1000℃,
It is best to use a firing time of 1 to 50 hours. The reason why the lower limit of the firing temperature was set to 600° C. and the lower limit of the firing time was set to 1 hour is that the firing would be insufficient and the hardened layer, which is a feature of the present invention, would not be generated. The upper limit of the firing temperature was set at 1000°C because although a hardened layer is formed, the surface becomes rough and damages the casting surface. In addition, the upper limit of the firing time was set at 50 hours because although the longer the firing time, the stronger the strength, the hardened layer will not grow beyond the limit and will instead cause surface roughness, which is disadvantageous and will also reduce productivity. It is. Through this firing step, the hardened layer 2 is gradually formed by firing the refractory powder and progressing the oxidation of the iron-based powder.

以上の工程により第1図ないし第4図のような
複合耐久鋳型が完成する。そこであとは、型面5
に塗型を施し、鋳造装置に取付けて、注湯、離型
を行えばよい。この鋳造においては、鋳型が流し
込み成形で作られるため模型やモデルに対する転
写性がきわめてよく、かつまた型面が焼成によつ
て緻密な硬化層2となるため鋳肌も良好となる。
さらに、鉄系粉の酸化した硬化層2が鋳型外周部
を形成するため型強度が高く、また、熱伝導性も
良好となり、急熱、急冷によつても亀裂、欠け、
ボロツキなどの発生がなく、鋳型において重要な
コーナー部の欠け等が生じない。そして、骨材と
して鋼繊維を併用した場合にはより強度が高いも
のとなると共に、寸法変化が低減される。さら
に、本発明により製造した複合耐久鋳型は金型に
比較して熱伝導率が低く、溶湯の低速での流入で
も湯回りが良好となる。従つて低圧、低速の鋳込
みでも複雑形状あるいは薄肉形状の鋳造が可能と
なる。
Through the above steps, a composite durable mold as shown in FIGS. 1 to 4 is completed. So all that is left is mold surface 5.
All you have to do is apply a mold to the mold, attach it to a casting machine, pour the molten metal, and release the mold. In this casting, since the mold is made by pour molding, the transferability to the model is extremely good, and since the mold surface becomes a dense hardened layer 2 by firing, the casting surface is also good.
Furthermore, since the hardened layer 2 made of oxidized iron-based powder forms the outer periphery of the mold, the mold strength is high and the thermal conductivity is also good, preventing cracks and chips from being caused by rapid heating or cooling.
There is no occurrence of crumbling, and no chipping of important corner parts of the mold occurs. When steel fibers are also used as aggregate, the strength becomes higher and dimensional changes are reduced. Furthermore, the composite durable mold manufactured according to the present invention has a lower thermal conductivity than a metal mold, and the molten metal flows well even when the molten metal flows in at a low speed. Therefore, even with low pressure and low speed casting, complex shapes or thin wall shapes can be cast.

本発明により製造した複合耐久鋳型を組込む鋳
造装置は任意であるが、後記する鋳造実験に用い
た装置を示すと第8図のごとくである。すなわ
ち、この鋳造装置は、台枠15に前後の固定台1
6a,16bを設け、一方の固定台16aに枠体
17を介して複合焼成体である複合耐久鋳型1a
を取付ける。そして前記台枠15の両側にはガイ
ドロツド18,18を固定し、このガイドロツド
18,18に2枚の取付け板19a,19bをそ
の端部をもつて挿通すると共に両取付け板19
a,19b間をローラベアリングなどのスペーサ
25により結合し、固定台16aに面する一方の
取付け板19aには枠体17を介して複合耐久鋳
型1bを取付ける。
Although any casting apparatus may be used to incorporate the composite durable mold manufactured according to the present invention, the apparatus used in the casting experiment described later is shown in FIG. 8. That is, this casting device has front and rear fixed tables 1 on the underframe 15.
6a and 16b are provided, and a composite durable mold 1a, which is a composite fired body, is mounted on one fixed base 16a via a frame 17.
Install. Guide rods 18, 18 are fixed to both sides of the underframe 15, and two mounting plates 19a, 19b are inserted through these guide rods 18, 18 with their ends, and both mounting plates 19
A and 19b are connected by a spacer 25 such as a roller bearing, and a composite durable mold 1b is attached via a frame 17 to one mounting plate 19a facing the fixed base 16a.

そして、他方の取付け板19bの背面には台枠
15に設けた型開閉用のシリンダ26のピストン
ロツド27を連結すると共に、取付け板19bの
前面には可動板28を配し、この可動板28に複
合耐久鋳型1bのピン穴8,8に対応する押出し
ピン29,29の端部を固定し、これら押出しピ
ン29,29のまわりに、常態において可動板2
8を取付け板19bの前面に押付けるスプリング
30,30を介在させる。そして、可動板28の
背面側には取付け板19bの板厚を貫く突出しピ
ン31,31を設けている。
A piston rod 27 of a cylinder 26 for opening and closing the mold provided on the underframe 15 is connected to the back of the other mounting plate 19b, and a movable plate 28 is arranged on the front of the mounting plate 19b. The ends of the extrusion pins 29, 29 corresponding to the pin holes 8, 8 of the composite durable mold 1b are fixed, and the movable plate 2 is normally placed around these extrusion pins 29, 29.
8 is interposed between the springs 30 and 30 that press the mounting plate 19b against the front surface of the mounting plate 19b. Further, on the rear side of the movable plate 28, protruding pins 31, 31 are provided that penetrate through the thickness of the mounting plate 19b.

この構造を採用した場合には、図示する型閉
め、鋳込み状態からシリンダ26を作動して型開
きを行つた際に、突出しピン31,31が固定台
16bに当接することで可動板28が取付け板1
9bの前方に移動させられ、これにより押出しピ
ン29,29を軸方向に移動して型面に付いてい
る製品の雑型がなされる。そのため、離型時間の
正確な設定と、部分的な荷重のかからない円滑な
離型が可能となる。
When this structure is adopted, when the cylinder 26 is actuated to open the mold from the mold closing and casting state shown in the figure, the movable plate 28 is attached by the ejecting pins 31, 31 coming into contact with the fixed base 16b. Board 1
9b is moved forward, thereby moving the push-out pins 29, 29 in the axial direction to make a rough shape of the product attached to the mold surface. Therefore, it is possible to accurately set the mold release time and to perform mold release smoothly without applying any partial load.

次に本発明の実施例を述べる。 Next, examples of the present invention will be described.

実施例 鉄系粉として鋳鉄粉(粒度100μmアンダ
ー)、耐火物粉として合成ムライト粉(粒度
100μアンダー)を用い、粘結材としてエチル
シリケートを用い、それらを重量配合比で3:
3:1にとつて混合撹拌し混合資料Aを得た。
あわせてステンレス繊維長さ7mm太さ0.19mmを
1〜4容積%の範囲で添加混練し、混合資料B
を得た。それら各混合資料A,Bを夫々模型
(ミシン部品、自動車部品)を入れた型枠に流
し込み成形し、固化した成形体を脱型後着火し
て0.5時間の1次焼成を行い、次いで焼成炉に
て酸性雰囲気で焼成温度900℃で2次焼成を行
い、170×170×50mmの複合耐久鋳型A,Bを得
た。
Examples Cast iron powder (particle size under 100 μm) was used as iron-based powder, synthetic mullite powder (particle size
(under 100μ), and ethyl silicate as a binder, with a weight mixing ratio of 3:
The mixture was mixed and stirred at a ratio of 3:1 to obtain Mixed Material A.
In addition, stainless steel fibers with a length of 7mm and a thickness of 0.19mm were added and kneaded in a range of 1 to 4% by volume to form mixed material B.
I got it. Each of the mixed materials A and B is poured into a mold containing a model (sewing machine parts, automobile parts) and molded, the solidified molded body is removed from the mold, ignited and subjected to primary firing for 0.5 hours, and then fired in a firing furnace. Secondary firing was performed at a firing temperature of 900°C in an acidic atmosphere to obtain composite durable molds A and B of 170 x 170 x 50 mm.

複合耐久鋳型A(鋼繊維添加なし)とB(鋼繊
維添加)について、焼成時間と圧縮強度の関
係、および焼成時間と重量増加の関係を示すと
第9図と第10図のとおりである。焼成時間の
増加と共に圧縮強度は向上し、重量も増加す
る。これは混合資料中の鉄系粉が酸化して硬化
層が生成されたためである。
The relationship between firing time and compressive strength and the relationship between firing time and weight increase are shown in Figures 9 and 10 for composite durable molds A (without steel fiber addition) and B (with steel fiber addition). As the firing time increases, the compressive strength increases and the weight also increases. This is because the iron-based powder in the mixed material was oxidized and a hardened layer was formed.

次に複合耐久鋳型B(鋼繊維添加)について、
曲げ強度試験を行つた結果と寸法変化の測定を
行つた結果を示すと第11図および第12図の
とおりである。
Next, regarding composite durable mold B (steel fiber addition),
The results of the bending strength test and the measurement of dimensional changes are shown in FIGS. 11 and 12.

この第11図と第12図から鋼繊維を添加し
た場合には、曲げ強度が著しく向上し、また鋳
型寸法の変化(伸び)が大幅に抑制されること
がわかる。
It can be seen from FIGS. 11 and 12 that when steel fibers are added, the bending strength is significantly improved and the change in mold dimensions (elongation) is significantly suppressed.

なお、急熱急冷の影響をみるため、800℃5
分加熱、常温5分冷却のサイクルで繰返し加熱
冷却テストを行つたが、24サイクル後も亀裂、
欠けの発生はみられなかつた。
In addition, in order to see the effect of rapid heating and cooling, the
Repeated heating and cooling tests were conducted with a cycle of heating for 5 minutes and cooling at room temperature for 5 minutes, but cracks still appeared after 24 cycles.
No occurrence of chipping was observed.

得られた複合耐久鋳型A,Bにグラフアイト
アルコール溶液で塗型を行い、第8図に示す実
験用鋳造装置に組込み、アルミニウム合金
ADC−12の重力鋳造を行つた。鋳込み条件は、
鋳込み温度700℃、鋳込み時間3〜5秒、離型
時間15〜50秒で行つた。その結果、湯流れ不足
やひけもなく良好な鋳造を行え、鋳肌も良好で
あつた。耐久性は50回の鋳造後も型の損傷は全
く見られず、なお相当回数の鋳造が可能であつ
た。
The obtained composite durable molds A and B were coated with a graphite alcohol solution, and installed in the experimental casting apparatus shown in Fig. 8 to form an aluminum alloy.
Performed gravity casting of ADC-12. The casting conditions are
The casting temperature was 700°C, the casting time was 3 to 5 seconds, and the mold release time was 15 to 50 seconds. As a result, good casting was possible without insufficient flow or sinkage, and the casting surface was also good. As for durability, no damage to the mold was observed even after 50 castings, and a considerable number of castings were still possible.

なお、本発明により製造した耐久鋳型は、アル
ミニウム合金のほか、Zn合金、Mg合金、Cu合
金、普通鋳鉄、ダクタイル鋳鉄などの鋳造に利用
できる。
The durable mold manufactured according to the present invention can be used for casting not only aluminum alloys but also Zn alloys, Mg alloys, Cu alloys, ordinary cast irons, ductile cast irons, and the like.

以上説明した本発明の第1発明によるときに
は、粒径500μm以下の鉄系粉と粒径300μm以下
の耐火材を骨材とし、これに粘結材を重量配合比
で(1〜5):(1〜5):1に混合撹拌してスラ
リー状の混合物を作り、このスラリー状混合物を
流し込み固化させて型面を成形し、成形体を自然
乾燥又は/及び一次焼成後、酸化性雰囲気中で
600〜1000℃にて焼成する工程を採用したため、
十分な強度と耐久性を有すると共に鋳型面や鋳肌
が良好で複雑形状製品を容易に鋳造できる耐久鋳
型とすることができる。そのうえ、流し込み成形
で型面を形成するため、マスターモデル等に付与
されている細かい凹凸も簡単、忠実に転写するこ
とができる。従つて本発明によれば、上記良好な
特性を備えた耐久鋳型を簡単、安価にかつ能率よ
く製造できる効果が得られる。
According to the first aspect of the present invention described above, iron-based powder with a particle size of 500 μm or less and refractory material with a particle size of 300 μm or less are used as aggregate, and a caking agent is added to this in a weight mixing ratio of (1 to 5): 1 to 5): 1 is mixed and stirred to make a slurry mixture, this slurry mixture is poured and solidified to form a mold surface, and the molded body is air-dried and/or after primary firing, in an oxidizing atmosphere.
Because we adopted a firing process at 600-1000℃,
It is possible to obtain a durable mold that has sufficient strength and durability, has a good mold surface and casting surface, and can easily cast products with complex shapes. Furthermore, since the mold surface is formed by pour molding, fine irregularities on the master model etc. can be easily and faithfully transferred. Therefore, according to the present invention, it is possible to produce a durable mold having the above-mentioned favorable characteristics simply, inexpensively, and efficiently.

また、本発明の第2発明によるときには、第1
発明の型材料に鋼繊維を1〜10容量%添加するた
め、その鋼繊維の補強効果により曲げ強度の向上
した耐久鋳型を製造できるという効果が得られ
る。
Further, according to the second aspect of the present invention, the first aspect
Since 1 to 10% by volume of steel fibers are added to the mold material of the invention, it is possible to manufacture durable molds with improved bending strength due to the reinforcing effect of the steel fibers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により製造した複合耐久鋳型の
一例を示す斜視図、第2図はその拡大断面図、第
3図aは第2図における硬化層の部分的拡大図、
第3図bは第2図におけるバツキング層の部分的
拡大図、第4図は本発明の他の実施例を示す断面
図、第5図ないし第7図は本発明による複合耐久
鋳型の製造過程を概略的に示す断面図、第8図は
本発明により製造した鋳型を用いた鋳造装置の一
例を示す断面図、第9図は本発明における焼成時
間と圧縮強度の関係を示すグラフ、第10図は焼
成時間と重量変化の関係を示すグラフ、第11図
は鋼繊維を添加した場合の曲げ強度と添加率との
関係を示すグラフ、第12図は鋼繊維添加率と寸
法変化の関係を示すグラフである。 1,1′……複合焼成体、2……硬化層、3…
…バツキング層。
FIG. 1 is a perspective view showing an example of a composite durable mold manufactured according to the present invention, FIG. 2 is an enlarged sectional view thereof, and FIG. 3a is a partially enlarged view of the hardened layer in FIG.
FIG. 3b is a partially enlarged view of the backing layer in FIG. 2, FIG. 4 is a sectional view showing another embodiment of the present invention, and FIGS. 5 to 7 are manufacturing steps of a composite durable mold according to the present invention. FIG. 8 is a cross-sectional view showing an example of a casting apparatus using a mold manufactured according to the present invention, FIG. 9 is a graph showing the relationship between firing time and compressive strength in the present invention, and FIG. Figure 11 is a graph showing the relationship between firing time and weight change, Figure 11 is a graph showing the relationship between bending strength and addition rate when steel fiber is added, and Figure 12 is a graph showing the relationship between steel fiber addition rate and dimensional change. This is a graph showing. 1, 1'... Composite fired body, 2... Hardened layer, 3...
...Batting layer.

Claims (1)

【特許請求の範囲】 1 粒径500μm以下の鉄系粉と粒径300μm以下
の耐火物を骨材とし、これに粘結材を重量配合比
で(1〜5):(1〜5):1に混合撹拌してスラ
リー状の混合物を得しめ、このスラリー状混合物
を流し込み固化させて型面を成形し、成形体を自
然乾燥又は/及び一次焼成後、酸化性雰囲気中で
600〜1000℃にて焼成することを特徴とする複合
耐久鋳型の製造法。 2 粒径500μm以下の鉄系粉と粒径300μm以下
の耐火物を骨材とし、これに粘結材を重量配合比
で(1〜5):(1〜5):1に配合し、さらに鋼
繊維を1〜10容量%添加して混合撹拌してスラリ
ー状の混合物を得しめ、このスラリー状混合物を
流し込み固化させて型面を成形し、成形体を自然
乾燥又は/及び一次焼成後、酸化性雰囲気中で
600〜1000℃にて焼成することを特徴とする複合
耐久鋳型の製造法。
[Claims] 1. Iron-based powder with a particle size of 500 μm or less and refractory material with a particle size of 300 μm or less are used as aggregate, and a caking agent is added to this in a weight mixing ratio of (1 to 5): (1 to 5): 1 is mixed and stirred to obtain a slurry-like mixture, this slurry-like mixture is poured and solidified to form a mold surface, and the molded body is air-dried and/or after primary firing, in an oxidizing atmosphere.
A method for manufacturing a composite durable mold characterized by firing at 600-1000℃. 2 Iron-based powder with a particle size of 500 μm or less and refractory material with a particle size of 300 μm or less are used as aggregates, and a caking agent is mixed therein in a weight ratio of (1 to 5): (1 to 5): 1, and Add 1 to 10% by volume of steel fibers, mix and stir to obtain a slurry mixture, pour and solidify this slurry mixture to form a mold surface, air dry the molded body and/or after primary firing, in an oxidizing atmosphere
A method for manufacturing a composite durable mold characterized by firing at 600-1000℃.
JP6278483A 1983-04-09 1983-04-09 Durable composite casting mold and its production Granted JPS606242A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP6278483A JPS606242A (en) 1983-04-09 1983-04-09 Durable composite casting mold and its production
SU843725402A SU1632366A3 (en) 1983-04-09 1984-04-06 Wear-resistant split moulding pattern
MX200937A MX161282A (en) 1983-04-09 1984-04-06 FORMING, COMPOSITE AND DURABLE MODEL TO MANUFACTURE THREE-DIMENSIONAL PRODUCTS
CA000451448A CA1266159A (en) 1983-04-09 1984-04-06 Composite and durable forming model with permeability
KR1019840001857A KR910000953B1 (en) 1983-04-09 1984-04-09 Composite and durable forming model with permability
AU26640/84A AU566385B2 (en) 1983-04-09 1984-04-09 Permeable moulds
EP84103966A EP0121929B1 (en) 1983-04-09 1984-04-09 Permeable mold
AT84103966T ATE64876T1 (en) 1983-04-09 1984-04-09 TRANSLUCENT FORM.
IN247/MAS/84A IN160636B (en) 1983-04-09 1984-04-09
DE8484103966T DE3484752D1 (en) 1983-04-09 1984-04-09 PERMANENT SHAPE.
BR8401651A BR8401651A (en) 1983-04-09 1984-04-09 COMPOSITE AND DURABLE SHAPE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6278483A JPS606242A (en) 1983-04-09 1983-04-09 Durable composite casting mold and its production

Publications (2)

Publication Number Publication Date
JPS606242A JPS606242A (en) 1985-01-12
JPH0153140B2 true JPH0153140B2 (en) 1989-11-13

Family

ID=13210320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6278483A Granted JPS606242A (en) 1983-04-09 1983-04-09 Durable composite casting mold and its production

Country Status (1)

Country Link
JP (1) JPS606242A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838288A (en) * 1971-09-20 1973-06-05
JPS4911129A (en) * 1972-05-31 1974-01-31

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838288A (en) * 1971-09-20 1973-06-05
JPS4911129A (en) * 1972-05-31 1974-01-31

Also Published As

Publication number Publication date
JPS606242A (en) 1985-01-12

Similar Documents

Publication Publication Date Title
JP3557430B2 (en) Metal casting mold, metal casting method, and molded article of refractory composition used therefor
US4531705A (en) Composite and durable forming model with permeability
CN105041921B (en) A kind of automobile brake disc and preparation method thereof
JP4352423B2 (en) Metal casting mold
MX2012006584A (en) Foundry mixes containing an organic acid salt and their uses.
EP0121929A2 (en) Permeable mold
EP0993889A1 (en) Foundry exothermic assembly
US2748435A (en) Process for reinforcing shell molds
JP3240023B2 (en) Manufacturing method of durable air-permeable type
US20090114364A1 (en) Material used to combat thermal expansion related defects in high temperature casting processes
JPH0153140B2 (en)
US3692086A (en) Method of making a precision casting layered mold
JPS62227603A (en) Manufacture of ceramics sintered body and molding tool used for said manufacture
JPH0371973B2 (en)
JPS63140740A (en) Mold for casting active metal of high melting point
US3802891A (en) Semi-permanent refractory molds and mold parts
JPS6167540A (en) Casting mold
WO2009046128A1 (en) Material used to combat thermal expansion related defects in the metal casting process
JP4551047B2 (en) Core-forming composition used by filling through-holes in vanishing model casting
JPS6224172B2 (en)
JPS616183A (en) Air permeable bent plug
JPS6153007A (en) Method of heating-molding ceramics
JPH0323253B2 (en)
JPS6152957A (en) Two-liquid type mold coating material
Liu et al. Heat transfer characteristics of lost foam casting process of magnesium alloy