JPH0152978B2 - - Google Patents
Info
- Publication number
- JPH0152978B2 JPH0152978B2 JP57168056A JP16805682A JPH0152978B2 JP H0152978 B2 JPH0152978 B2 JP H0152978B2 JP 57168056 A JP57168056 A JP 57168056A JP 16805682 A JP16805682 A JP 16805682A JP H0152978 B2 JPH0152978 B2 JP H0152978B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- output
- time
- detection element
- time limit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 claims description 43
- 230000010354 integration Effects 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 230000005284 excitation Effects 0.000 description 9
- 230000001419 dependent effect Effects 0.000 description 6
- 238000009499 grossing Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000007257 malfunction Effects 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000005674 electromagnetic induction Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Landscapes
- Emergency Protection Circuit Devices (AREA)
- Protection Of Transformers (AREA)
Description
【発明の詳細な説明】
本発明は、電力系統を保護する保護継電装置に
係り、特に電力系統における電力用変圧器が継続
して過電圧状態になつた場合にこれを保護する過
電圧保護継電装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a protective relay device that protects a power system, and in particular to an overvoltage protective relay that protects a power transformer in a power system when it is continuously in an overvoltage state. Regarding equipment.
変圧器に電圧が印加されている状態では、変圧
器の励磁特性によつて定まる励磁電流が流れてい
るが、この励磁特性が非線形であるため、変圧器
が過電圧にさらされると、過電圧比率に比べて非
常に大きな比率で励磁電流が増加する。励磁電流
は元々変圧器の鉄損、銅損両方に関係し、過負荷
等銅損への影響が大きい減少に比し、変圧器にと
つて厳しいものとなる。 When voltage is applied to a transformer, an excitation current determined by the excitation characteristics of the transformer flows, but since this excitation characteristic is nonlinear, when the transformer is exposed to overvoltage, the overvoltage ratio increases. The excitation current increases at a much larger rate than the current. Excitation current is originally related to both iron loss and copper loss of a transformer, and is more severe for transformers than reductions such as overload, which have a large effect on copper loss.
一方、変圧器保護に一般に使用している比率差
動リレーにとつては、励磁電流は差動電流として
見えるため、上記過電圧による励磁電流の増加は
比率差動リレーで動作できる領域の現象である
が、比率差動リレーは一般に高速であり、変圧器
の過電圧耐量に比らべ非常に早い時間でトリツプ
するため、変圧器の効率運転及び運転率の向上の
面から好ましくなく、比率差動リレーに過電圧時
の励磁電流では動作しないような対策を行なう場
合がある。 On the other hand, for ratio differential relays commonly used to protect transformers, the excitation current appears as a differential current, so the increase in excitation current due to overvoltage described above is a phenomenon in the area where ratio differential relays can operate. However, ratio differential relays are generally high-speed and trip very quickly compared to the overvoltage withstand capacity of the transformer. In some cases, measures are taken to prevent the device from operating under the excitation current during overvoltage.
このような対策を施した場合、変圧器過電圧耐
量に合わせた過電圧保護が不可欠である。即ち、
変圧器過電圧耐量が変圧器の励磁損失できまるこ
とから、電圧に対し強反限時特性の過電圧保護を
行なうのが最適となる。 When taking such measures, it is essential to provide overvoltage protection that matches the overvoltage withstand capacity of the transformer. That is,
Since the overvoltage withstand capacity of a transformer is determined by the excitation loss of the transformer, it is optimal to provide overvoltage protection with strong reaction time characteristics.
電力系統における変圧器の過電圧保護に必要と
される電圧対動作時間特性は第1図に示すような
ものである。第1図において、aは電圧対動作時
間特性を示すグラフ、bは片対数で示した電圧対
動作時間特性を示すグラフであり、1点鎖線及び
2点鎖線はそれぞれ動作値が変動した場合の特性
を示している。 The voltage versus operating time characteristics required for overvoltage protection of transformers in power systems are as shown in FIG. In Figure 1, a is a graph showing the voltage vs. operating time characteristic, b is a graph showing the voltage vs. operating time characteristic expressed in semi-logarithm, and the one-dot chain line and the two-dot chain line represent the changes when the operating value fluctuates. It shows the characteristics.
従来、この種の保護装置は電磁形の誘導円板リ
レー又は、タイマーを内蔵した静止形定限時リレ
ーを有していた。しかし、電磁形の誘導円板リレ
ーは、動作値の誤差が大きい。このため、従来の
装置は超強反限時特性の場合、動作時間の誤差が
第1図bの1点鎖線、2点鎖線のように大きなも
のとなつてしまう欠点があつた。また、静止形定
限時リレーを使用した従来装置は、変圧器の故障
でない過渡的過電圧状態での誤動作をさけるため
に、長限時整定とすれば、大入力域でも動作時間
が遅くなる等の欠点があつた。 Conventionally, this type of protection device has included an electromagnetic induction disk relay or a static timed relay with a built-in timer. However, electromagnetic induction disc relays have large errors in operating values. For this reason, the conventional device has a drawback that, in the case of ultra-strong reversal time-limited characteristics, the error in the operating time becomes large as shown by the one-dot chain line and the two-dot chain line in FIG. 1b. In addition, conventional devices using static fixed-time relays have drawbacks such as slow operation time even in large input ranges, if long-time setting is used to avoid malfunctions in transient overvoltage conditions that are not caused by transformer failure. It was hot.
そこで、所望の保護特性であれば、全電圧領域
を強反限時特性とするのが理想的であるが、現実
的には、
長時間特性部分(低電圧域)を強反限時特性
で得ることは、H/W的に発生する電圧値、積
分特性誤差、特性確認のため行なう試験器材側
の誤差及び安定性上非常に困難である。 Therefore, if the desired protection characteristics are desired, it would be ideal to have strong reaction time characteristics in the entire voltage range, but in reality, it would be better to obtain strong reaction time characteristics in the long-time characteristic portion (low voltage range). This is very difficult due to the voltage value generated by H/W, the integral characteristic error, the error and stability of the test equipment used to confirm the characteristic.
短時間特性部分(高電圧域)においては、最
終的なリレー演算遅れ時間があり、一定速度以
下とはならない特性しか現実的に実現できない
が、この場合、積分回路の特性として非常に短
時間(サージ性)の入力に対しても応動してし
まう可能性があり、リレーとしては誤動作をお
こす可能性があり、一定入力以上の入力に対し
ては、積分回路で対応するのではなく、一般の
過電圧検出レベル検出回路と時限要素によつて
検出する必要がある。 In the short-time characteristic part (high voltage range), there is a final relay calculation delay time, and the only characteristic that can realistically be achieved is that the speed does not drop below a constant speed. There is a possibility that the relay may react to inputs such as surges, which may cause malfunctions as a relay.Inputs above a certain level may be responded to using a general circuit instead of an integrating circuit. Overvoltage detection must be detected by a level detection circuit and a time element.
なお、上記の非常に短時間(サージ性)の入力
としては、系統充電時のPDの鉄共振による過電
圧(系統側には過電圧は発生していない)、雷サ
ージ、開閉サージ等の過電圧(変圧器は当該サー
ジに対し、一定量の耐量を持つているとともに、
システム的にこのようなサージに対する対策(ア
レスタ設置等)を行なつている。)等があり、こ
れらは、この発明の過電圧保護の対象範囲外であ
る。 In addition, the above-mentioned very short-time (surge-like) inputs include overvoltage caused by fero-resonance of the PD during grid charging (no overvoltage occurs on the grid side), overvoltage caused by lightning surges, switching surges, etc. The device has a certain amount of resistance to the surge, and
Systematic measures against such surges (installation of arresters, etc.) are being taken. ), and these are outside the scope of the overvoltage protection of this invention.
この発明は、上記のような従来のものの欠点を
除去するためになされたもので、過電圧とすべき
低電圧領域を長時間の定限時特性、大電圧領域を
高速の定限時特性、かつ中間電圧領域を反限時特
性とすることにより、変圧器の故障でない過渡的
過電圧に誤動作することなく低電圧領域の整定を
容易に行なえる過電圧保護装置を提供することを
目的としている。 This invention was made in order to eliminate the above-mentioned drawbacks of the conventional products. It is an object of the present invention to provide an overvoltage protection device that can easily settle a low voltage region without malfunctioning due to transient overvoltage that is not due to a transformer failure, by making the region have an inverse time limit characteristic.
以下、この発明の一実施例を図について説明す
る。第2図において、接続順に1は動作値整定機
構、2は整流平滑回路、3はレベル検出回路、4
は時限要素、5は上記1〜4から構成される低電
圧検出要素である。 An embodiment of the present invention will be described below with reference to the drawings. In Fig. 2, in the order of connection, 1 is an operating value setting mechanism, 2 is a rectifying and smoothing circuit, 3 is a level detection circuit, and 4 is a rectifying and smoothing circuit.
5 is a time-limiting element, and 5 is a low voltage detection element composed of 1 to 4 described above.
6は動作値整定機構、7は整流平滑回路、8は
関数変換回路、9は積分回路、10はレベル検出
回路、11は上記8〜10より構成される反限時
回路、12は上記6,7,11より構成される電
圧依存の限時回路である。 6 is an operating value setting mechanism, 7 is a rectifying and smoothing circuit, 8 is a function conversion circuit, 9 is an integrating circuit, 10 is a level detection circuit, 11 is an inverse time circuit composed of the above-mentioned 8 to 10, and 12 is the above-mentioned 6, 7. , 11 is a voltage-dependent time limit circuit.
13は動作値整定機構、14は整流平滑回路、
15はレベル検出回路、16は、限時回路12の
出力が付勢されておらず、かつ、レベル検出回路
15の出力が付勢されているときに開となる論理
積回路、17は時限要素、18は上記13〜17
より構成される高電圧検出要素である。 13 is an operating value setting mechanism, 14 is a rectifying and smoothing circuit,
15 is a level detection circuit; 16 is an AND circuit that is open when the output of the time limit circuit 12 is not energized and the output of the level detection circuit 15 is energized; 17 is a time limit element; 18 is above 13-17
This is a high voltage detection element composed of
19は低電圧検出要素5、時限回路12及び高
電圧検出要素18の論理和をとつて、保護出力を
得る論理和回路である。 Reference numeral 19 denotes an OR circuit that performs an OR operation on the low voltage detection element 5, the time limit circuit 12, and the high voltage detection element 18 to obtain a protection output.
第3図は第2図の各要素の組合せ状態を示す電
圧対動作時間特性図である。図中、aは低電圧検
出要素5、bは時限回路12、cは高電圧検出要
素18の動作特性をそれぞれ示す。 FIG. 3 is a voltage vs. operating time characteristic diagram showing a combination of the elements shown in FIG. 2. In the figure, a indicates the operating characteristics of the low voltage detection element 5, b indicates the time limit circuit 12, and c indicates the operating characteristics of the high voltage detection element 18, respectively.
次に動作について説明する。低電圧検出要素5
は入力電圧が比較的に低い電圧領域(第3図に示
すa)のものとなつたときに付勢されるレベル検
出回路3の出力により限時要素4を起動させて時
限計時後に論理和回路19に出力を供給する。こ
の場合、低電圧検出要素5は、動作値対動作時間
特性が、高精度かつ安定であることが必要であ
る。 Next, the operation will be explained. Low voltage detection element 5
starts the time-limiting element 4 by the output of the level detection circuit 3, which is energized when the input voltage is in a relatively low voltage range (a shown in FIG. 3), and after counting the time, the OR circuit 19 is activated. supply the output to. In this case, the low voltage detection element 5 needs to have highly accurate and stable operating value versus operating time characteristics.
一方、限時回路12の関数変換回路8は限時特
性の逆関数特性を有し、これにより入力電圧の大
きさを変換し積分回路9により時限を得ている。
従つて、電圧依存の限時回路12の反限時回路1
1は入力電圧の例えば2乗にほぼ反比例した電圧
対動作時間特性を有する。 On the other hand, the function conversion circuit 8 of the time limit circuit 12 has an inverse function characteristic of the time limit characteristic, thereby converting the magnitude of the input voltage and obtaining a time limit by the integrating circuit 9.
Therefore, the inverse timer circuit 1 of the voltage-dependent timer circuit 12
1 has a voltage vs. operating time characteristic that is approximately inversely proportional to, for example, the square of the input voltage.
なお、積分回路9は高電圧検出要素18の論理
積回路16の出力が付勢されるとリセツトされ
る。これにより、高電圧検出要素18の動作領域
では、限時回路12の動作よりも高電圧検出要素
18の動作が優先する。逆に、電圧依存の限時回
路12の動作域では該限時回路の出力により、高
電圧検出要素18の論理積回路16が禁止される
ので、高電圧検出要素18は出力を付勢すること
がない。 Note that the integration circuit 9 is reset when the output of the AND circuit 16 of the high voltage detection element 18 is activated. As a result, in the operation region of the high voltage detection element 18, the operation of the high voltage detection element 18 has priority over the operation of the time limit circuit 12. Conversely, in the operating range of the voltage-dependent time limit circuit 12, the output of the time limit circuit inhibits the AND circuit 16 of the high voltage detection element 18, so the high voltage detection element 18 does not energize its output. .
高電圧領域の特性が中間域より下の場合にはリ
セツトの必要はないが、前記で述べているよう
に入力がサージ性の突発入力である場合、中間領
域の特性の方が高電圧領域の特性より下となるこ
とは往々にして起こり得ることで、この対策とし
て高電圧領域では限時回路12の積分回路9をリ
セツトし、中間領域の動作域をなくしている。 If the characteristics of the high voltage region are lower than the intermediate region, there is no need to reset, but as mentioned above, if the input is a sudden surge type input, the characteristics of the intermediate region are better than those of the high voltage region. As a countermeasure to this problem, the integrating circuit 9 of the time limit circuit 12 is reset in the high voltage region to eliminate the operating range in the intermediate region.
上記のように、入力が高電圧域の場合には、論
理回路16の出力、即ちレベル検出回路15の出
力により積分回路9をリセツトする。 As mentioned above, when the input is in the high voltage range, the integration circuit 9 is reset by the output of the logic circuit 16, that is, the output of the level detection circuit 15.
ところが、上記構成のみであると、限時回路1
2の出力時点で入力が上昇し、高電圧領域となる
と、高電圧検出要素18のレベル検出回路15の
動作により積分回路9をリセツトするため、限時
要素12の出力が復帰することにより、最終出力
が瞬時復帰することになる。この現象自体は、
元々中間領域、高電圧領域の境界付近で起こるこ
とで、最終出力によりトリツプという動作に至つ
てしまうことを考えれば、出力リレーの焼損の可
能性がある点、又、リレー特性を測定する時に出
力が不安定となる等があり、限時回路12により
出力に至つた場合には高電圧要素18の出力をと
めるため論理回路16が必要となる。 However, with only the above configuration, the time limit circuit 1
When the input rises at the output point of step 2 and enters the high voltage region, the level detection circuit 15 of the high voltage detection element 18 operates to reset the integration circuit 9, so the output of the time limit element 12 is restored and the final output is will return instantly. This phenomenon itself is
Considering that this originally occurs near the boundary between the intermediate region and the high voltage region, and the final output leads to a tripping operation, there is a possibility of burnout of the output relay, and when measuring the relay characteristics, the output If the voltage becomes unstable and the output is reached by the time limit circuit 12, the logic circuit 16 is required to stop the output of the high voltage element 18.
尚、限時回路12と低電圧検出要素5との間に
上記のような対策をとつていないのは、低電圧検
出要素5の動作時間は充分遅く、高電圧検出要素
程細かい強調がいらないためである。 The reason why the above measures are not taken between the time limit circuit 12 and the low voltage detection element 5 is because the operating time of the low voltage detection element 5 is sufficiently slow and does not require as much detailed emphasis as the high voltage detection element. It is.
このような構成により、例えば入力電圧が非常
にゆつくりと上昇し、最終的に高電圧検出要素1
8の動作領域のものになつても、高電圧検出要素
18のレベル検出回路15の出力により限時回路
12の積分回路9がリセツトされてしまい、限時
回路12の出力がリセツトされてしまうのを防い
でいる。 With such a configuration, for example, the input voltage rises very slowly and eventually reaches the high voltage sensing element 1.
8, the output of the level detection circuit 15 of the high voltage detection element 18 resets the integration circuit 9 of the time limit circuit 12, thereby preventing the output of the time limit circuit 12 from being reset. I'm here.
なお、いわゆる動作領域の優先性を決定するた
めに、限時回路12の整流平滑回路7の出力をレ
ベル検出した出力により、高電圧検出要素18の
論理積回路16をロツクすることも可能であるが
(図示せず)、このようにすると、動作時間に対す
る優先性が保たれなくなつてしまう(高電圧検出
要素18が、入力電圧の緩まんな変化のとき、常
に電圧依存の限時回路12によりロツクされてし
まう)。 Incidentally, in order to determine the so-called priority of the operating region, it is also possible to lock the AND circuit 16 of the high voltage detection element 18 using the output obtained by detecting the level of the output of the rectifying and smoothing circuit 7 of the time limit circuit 12. (not shown), and in this way, priority over operating time is no longer maintained (the high voltage sensing element 18 is always locked by the voltage dependent time limit circuit 12 when the input voltage changes slowly). ).
これら低電圧検出要素5、電圧依存の限時回路
12及び高電圧検出要素18の組合せ特性は、第
3図に示すグラフのようになつている。即ち、低
電圧領域は、高精度が容易に得られる低電圧検出
要素5により、中間領域は過渡的過電圧により誤
動作しない強反限時特性をもつ限時回路12によ
り、かつ高電圧領域は安定した高速定限時特性の
高電圧検出要素により保護することができる。 The combined characteristics of the low voltage detection element 5, the voltage-dependent time limit circuit 12, and the high voltage detection element 18 are as shown in the graph shown in FIG. In other words, the low voltage region is handled by the low voltage detection element 5 which can easily obtain high accuracy, the intermediate region is handled by the time limit circuit 12 with strong reversal timing characteristics that do not malfunction due to transient overvoltage, and the high voltage region is determined by the stable high-speed constant voltage detection element 5. It can be protected by a high voltage sensing element of time-limited nature.
なお、上記実施例では汎用性を高めるため、動
作値設定機構を各領域の回路に設けたが、これら
は必ずしも必要でなく、一動作時間特性でもよい
ときは不要となる。 In the above embodiment, in order to increase versatility, an operation value setting mechanism is provided in the circuit of each region, but these are not necessarily necessary, and are unnecessary when one operation time characteristic is sufficient.
以上のように、この発明によれば、低電圧検出
要素、高電圧検出要素及び電圧依存の限時回路を
組み合わせたので、広い入力電圧領域で安定した
高速定限時特性が実現でき、高信頼性の過電圧保
護継電装置が得れる。 As described above, according to the present invention, by combining a low voltage detection element, a high voltage detection element, and a voltage-dependent time-limiting circuit, stable high-speed time-limiting characteristics can be realized in a wide input voltage range, and high reliability can be achieved. An overvoltage protection relay device can be obtained.
第1図は過電圧保護に必要な電圧対動作時間特
性図、第2図は本発明の一実施例を示すブロツク
図、第3図は本発明による電圧対動作時間特性図
である。
1,6,13……動作値設定機構、2,7,1
4……整流平滑回路、3,10,15……レベル
検出回路、4……時限要素、5……低電圧検出要
素、8……関数変換回路、9……積分回路、11
……反限時回路、12……限時回路、16……論
理積回路、17……時限要素、18……高電圧検
出要素、19……論理和回路。
FIG. 1 is a voltage versus operating time characteristic diagram necessary for overvoltage protection, FIG. 2 is a block diagram showing an embodiment of the present invention, and FIG. 3 is a voltage versus operating time characteristic diagram according to the present invention. 1, 6, 13...Operating value setting mechanism, 2, 7, 1
4... Rectifier smoothing circuit, 3, 10, 15... Level detection circuit, 4... Time limit element, 5... Low voltage detection element, 8... Function conversion circuit, 9... Integrating circuit, 11
... Anti-time circuit, 12 ... Time limit circuit, 16 ... AND circuit, 17 ... Time limit element, 18 ... High voltage detection element, 19 ... OR circuit.
Claims (1)
1の設定電圧領域となつたのを検出したときに時
限要素を起動させ、所定時限後に出力をする低電
圧検出要素と、上記第1の設定電圧領域より高い
第2の設定電圧領域に含まれる入力電圧を所定の
関数により変換する関数変換回路と該関数変換回
路の出力を積分する積分回路及び該積分回路の出
力が所定レベル以上となつたときに出力をする検
出回路とを有する時限回路と、上記入力電力が上
記第2の設定電圧領域より高い第3の設定電圧領
域以上となり、かつ上記時限回路の出力が付勢さ
れていないときに時限要素を起動させ、上記積分
回路をリセツトさせて所定時限後に出力をする高
電圧検出要素と、上記低電圧検出要素、時限回路
及び高電圧検出要素の論理和により過電圧保護出
力を得る論理回路とを備えた過電圧保護継電装
置。1. A low voltage detection element that activates a time element when it detects that the input voltage detected from the protected object has entered a predetermined first setting voltage range and outputs an output after a predetermined time limit, and the first setting described above. A function conversion circuit that converts an input voltage included in a second set voltage range higher than the voltage range by a predetermined function, an integration circuit that integrates the output of the function conversion circuit, and an output of the integration circuit that is equal to or higher than a predetermined level. a time limit circuit having a detection circuit that outputs an output when the input power is equal to or higher than a third set voltage range higher than the second set voltage range, and the output of the time limit circuit is not energized; a high-voltage detection element that activates a time-limiting element, resets the integration circuit, and outputs after a predetermined time; a logic circuit that obtains an overvoltage protection output by a logical sum of the low-voltage detection element, the time-limiting circuit, and the high-voltage detection element; Overvoltage protection relay device with
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57168056A JPS5956815A (en) | 1982-09-25 | 1982-09-25 | Overvoltage protecting relaying device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57168056A JPS5956815A (en) | 1982-09-25 | 1982-09-25 | Overvoltage protecting relaying device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5956815A JPS5956815A (en) | 1984-04-02 |
JPH0152978B2 true JPH0152978B2 (en) | 1989-11-10 |
Family
ID=15861005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57168056A Granted JPS5956815A (en) | 1982-09-25 | 1982-09-25 | Overvoltage protecting relaying device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5956815A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7318419B2 (en) * | 2019-08-28 | 2023-08-01 | 富士電機株式会社 | AC system monitoring system |
-
1982
- 1982-09-25 JP JP57168056A patent/JPS5956815A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5956815A (en) | 1984-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5170310A (en) | Fail-resistant solid state interruption system | |
US5179495A (en) | Solid state overload relay | |
US3786311A (en) | Circuit breaker and static trip circuit therefor | |
US4539618A (en) | Digitally controlled overload relay | |
US3465208A (en) | Electric level-responsive circuits | |
GB1594112A (en) | Circuit breaker apparatus including asymetrical fault detector | |
US2885568A (en) | Generator control and protective system | |
US3467890A (en) | Electrical circuit protection devices utilizing capacitor discharge | |
US4590533A (en) | Overvoltage protective relay device | |
US3660722A (en) | Circuit breaker including improved ground fault protective device | |
US4091431A (en) | Ground leakage relay circuit | |
GB1572457A (en) | Fault detecting and indicating apparatus | |
US3634730A (en) | Circuit breaker including improved overcurrent protective device | |
JPH0152978B2 (en) | ||
US6882511B1 (en) | Electronic earth leakage current device | |
US4089033A (en) | High speed bus differential relay | |
EP1220410A2 (en) | An overvoltage protection accessory device for a residual current circuit breaker | |
KR102551607B1 (en) | Leakage Current Detector | |
JPH08273514A (en) | Leakage current detection device | |
US3742306A (en) | Core balance earth leakage protective systems | |
JPS6210086B2 (en) | ||
KR860001479B1 (en) | Electronic control circuit | |
JPS59226614A (en) | Power source for stationary protecting relay | |
SU1001280A2 (en) | Relay for differential protection of bus-bars | |
JPS6232685B2 (en) |