JPH0152865B2 - - Google Patents

Info

Publication number
JPH0152865B2
JPH0152865B2 JP57047019A JP4701982A JPH0152865B2 JP H0152865 B2 JPH0152865 B2 JP H0152865B2 JP 57047019 A JP57047019 A JP 57047019A JP 4701982 A JP4701982 A JP 4701982A JP H0152865 B2 JPH0152865 B2 JP H0152865B2
Authority
JP
Japan
Prior art keywords
activated carbon
sulfonated
air
aqueous solution
metal phthalocyanine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57047019A
Other languages
Japanese (ja)
Other versions
JPS58169775A (en
Inventor
Kazumasa Yoshida
Teruji Yamanobe
Kuniaki Inada
Michio Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP57047019A priority Critical patent/JPS58169775A/en
Publication of JPS58169775A publication Critical patent/JPS58169775A/en
Publication of JPH0152865B2 publication Critical patent/JPH0152865B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は空気電池に用いる空気電極の製造方法
の改良に関するものである。 従来の空気電極の製造方法は、活性炭等に酸素
還元能力を強めるため金属フタロシアニン等の触
媒を用いていたが、金属フタロシアニンが水に不
溶のため、キノリン等の有機溶媒に飽和になるま
で溶解し、この溶液に活性炭を浸漬し、引上げ乾
燥し、有機溶媒を飛散させ活性炭表面に触媒を析
出させて製造していた。 金属フタロシアニンは、一般に顔料として利用
するもので、ほとんどの液体に不溶であり、キノ
リン、NN−ジメチルフオルムアミド、α−クロ
ルナフタリン等のごく限られた有機溶媒にしか溶
解せず、その上、飽和溶解量が微量であり、溶媒
に対して1〜2%重量しか溶解しなかつた。 したがつて、活性炭に触媒を有効量まで付着さ
せるためには、溶液の含浸から溶媒の飛散乾燥、
触媒の析出までの工程を8回程度繰返さねばなら
ず、大巾に手数と時間のかかる製造方法であつ
た。また、これら有機溶媒は一般に人体に対して
有害性が強く、蒸発飛散させるには、安全上充分
な高価な装置を使用せねばならず、製造設備等に
欠点を有していた。 また、従来はスルフオン基を有する金属フタロ
シアニンを用い水に可溶にせしめ、電極製造の作
業量の改善と安全衛生上の問題とを解決すること
も検討された。 すなわち、金属フタロシアニンを加熱下で発煙
硫酸を作用させ、フタロシアニン環の外殻ベンゼ
ン環にスルフオン基を導入し、水に可溶にせし
め、炭素材料と共存させて加熱処理し空気電極を
製造するため、有害な有機溶媒を使用せず、作業
上の改善があつた。しかしこの製造方法は発煙硫
酸との反応時の条件がわずか変動すると、スルフ
オン基導入数に大きな変化が起り、水への溶解に
差違を生じ、炭素と共存もミクロ的に均一になら
ず、空気電極の特性にバラツキを生じる欠点があ
つた。 本発明はスルフオン化フタル酸アンモニウムに
金属粉を加えさらに中和しスルフオン化金属フタ
ロシアニン塩とし、空気電極を製造することによ
り、従来の欠点を改善することを目的とするもの
である。 本発明の製造方法の実施例を説明する。 本発明はまず、4スルフオフタル酸−3アンモ
ニウム20g、銅粉1.2g、尿素30gと水35gとを、硬
質コニカルビーカーに取り、均一に混合しながら
加熱し、210℃程度に保持して反応を行なわせた
のち、冷却し微酸性水溶液を形成する。この溶液
中に塩化アンモニウムの飽和溶液を10〜20c.c.加え
加温して生成した該スルフオン化フタル酸アンモ
ニウムを原料とした銅フタロシアニンテトラ−4
スルフオン酸アンモニウム塩含有水溶液に、径が
25μm以下の微粒の活性炭を浸漬し、活性炭に対
して、10重量%になるように水溶液より吸着させ
たものを乾燥し、窒素ガス等の不活性ガス雰囲気
中で、300℃〜1300℃で加熱処理し、この加熱処
理品に、活性炭およそ60重量部に対してポリテト
ラフルオロエチレン(PTFE)40重量部になるよ
うに、PTFEを加えて空気電極を製造するもので
ある。 本発明に用いるスルフオン基を有する金属フタ
ロシアニンは、スルフオン化したフタル酸を原料
としている。このため外殻ベンゼン環に親水性の
スルフオン基(−SO3X)を4個導入でき、水に
対して安定した溶解度を持つため、活性炭への吸
着が均一に行なわれる。さらに、ミクロ的にも活
性炭と均一な共存が行なわれるものである。この
ことは発煙硫酸を用いた場合、スルフオン基の数
が1〜4個の間で反応条件によつて変動があつた
のに対して、本発明はすでにスルフオン化したフ
タル酸を原料としているため、生成したスルフオ
ン化フタロシアニンの金属塩はすべて外殻に4個
のスルフオン基を有するものである。したがつて
水溶液への溶解度は常に一定のため均一な濃度の
水溶液が得られるこのため水溶液と活性炭とを混
合し活性炭に吸着させる時、常に均一な溶解状態
での吸着が可能であり、ロツトによる溶解度の変
動の影響がなくなる。すなわち、作業管理、およ
び該空気電極を使用した電池の品質の安定化等極
めて信頼性のよい空気電極を製造することができ
る。 なお、原料に用いるスルフオン化フタル酸塩と
しては、アンモニウム塩C6H3(CO2NH42
SO3NH4の他にカリウム塩、マグネシウム塩、ナ
トリウム塩、バリウム塩、ストロンチウム塩等用
いることができる。 また、金属塩としては銅の他に、ニツケル、
鉄、コバルト、ルテニウムなどの遷移金属を用い
て形成したスルフオン化金属フタロシアニン塩を
用いても、同様な結果が得られる。 本発明の実施例によりなる空気電極を用いたボ
タン型空気電池を、図面にもとずいて説明する。 1は正極端子を兼ねた正極缶で底部に空気供給
孔2を有している。3は空気電極で親液性の半透
膜4と接している。5は苛性アルカリ電解液を保
持している電解液保持層で、保液性、耐液性に優
れた不織布または多孔体であり、負極体6と接し
ている。7は通過性のよい空気拡散紙で、多数の
微孔を持つたPTFEシート8を介して空気電極と
接し、他面は空気供給孔2が設けられている正極
缶1の底部に接している。9は負極缶でガスケツ
ト10を介して正極缶1の開口部を折曲して電池
を封口している。 次に本発明の空気電極を用いたボタン型空気電
池と従来電池とを比較する。 径11.6mm、高さ5.4mmの空気電池である本発明
品〔A〕と、発煙硫酸による金属フタロシアニン
を用いた同型の従来品〔B〕とを、各100個を25
℃で1.5mAの定電流放電し、その平均電圧と、バ
ラツキ巾としてシグマー(σ)とを下表に示し
た。
The present invention relates to an improvement in a method for manufacturing an air electrode used in an air battery. Conventional methods for manufacturing air electrodes use catalysts such as metal phthalocyanine to enhance the oxygen reduction ability of activated carbon, etc. However, metal phthalocyanine is insoluble in water, so it cannot be dissolved in organic solvents such as quinoline until it becomes saturated. It was produced by immersing activated carbon in this solution, pulling it up and drying it, scattering the organic solvent and depositing the catalyst on the surface of the activated carbon. Metal phthalocyanines are generally used as pigments and are insoluble in most liquids, soluble only in a limited number of organic solvents such as quinoline, NN-dimethylformamide, and α-chlornaphthalene. The amount dissolved was very small, and only 1 to 2% of the weight of the solvent was dissolved. Therefore, in order to deposit an effective amount of catalyst on activated carbon, it is necessary to impregnate the activated carbon with a solution, evaporate the solvent, and dry it.
The process up to the precipitation of the catalyst had to be repeated about eight times, making it a very laborious and time-consuming manufacturing method. In addition, these organic solvents are generally highly harmful to the human body, and in order to evaporate and scatter them, it is necessary to use equipment that is sufficiently expensive for safety reasons, and has disadvantages in manufacturing equipment and the like. Furthermore, it has been considered to improve the workload of electrode production and to solve health and safety problems by using metal phthalocyanine having a sulfon group and making it soluble in water. That is, metal phthalocyanine is treated with fuming sulfuric acid under heating to introduce a sulfon group into the outer benzene ring of the phthalocyanine ring, making it soluble in water, and heating it in coexistence with a carbon material to produce an air electrode. , no harmful organic solvents were used, and the process was improved. However, with this production method, if the conditions during the reaction with fuming sulfuric acid change slightly, the number of sulfon groups introduced will change significantly, resulting in differences in solubility in water, coexistence with carbon will not be microscopically uniform, and air The drawback was that the characteristics of the electrodes varied. The present invention aims to improve the drawbacks of the conventional method by adding metal powder to sulfonated ammonium phthalate and further neutralizing it to form a sulfonated metal phthalocyanine salt to produce an air electrode. Examples of the manufacturing method of the present invention will be described. In the present invention, first, 20 g of tri-ammonium 4-sulfophthalate, 1.2 g of copper powder, 30 g of urea, and 35 g of water are placed in a hard conical beaker, heated while uniformly mixed, and kept at about 210°C to carry out the reaction. After cooling, a slightly acidic aqueous solution is formed. Copper phthalocyanine tetra-4 made from the sulfonated ammonium phthalate produced by adding 10 to 20 c.c. of a saturated solution of ammonium chloride to this solution and heating it.
In an aqueous solution containing ammonium sulfonate salt,
Activated carbon particles of 25 μm or less are soaked and adsorbed from an aqueous solution to 10% by weight of the activated carbon, then dried and heated at 300°C to 1300°C in an inert gas atmosphere such as nitrogen gas. The air electrode is manufactured by adding PTFE to the heat-treated product in an amount of about 60 parts by weight of activated carbon and 40 parts by weight of polytetrafluoroethylene (PTFE). The metal phthalocyanine having a sulfon group used in the present invention is made from sulfonated phthalic acid. Therefore, four hydrophilic sulfon groups (-SO 3 Furthermore, it coexists evenly with activated carbon on a microscopic level. This is because when using fuming sulfuric acid, the number of sulfon groups varied between 1 and 4 depending on the reaction conditions, whereas in the present invention, phthalic acid, which has already been sulfonated, is used as a raw material. All of the metal salts of sulfonated phthalocyanine produced have four sulfon groups in their outer shells. Therefore, since the solubility in an aqueous solution is always constant, an aqueous solution with a uniform concentration can be obtained.For this reason, when an aqueous solution and activated carbon are mixed and adsorbed on the activated carbon, it is possible to always adsorb in a uniform dissolved state. The effects of solubility fluctuations are eliminated. That is, it is possible to manufacture an air electrode with extremely high reliability in terms of work management and stabilization of the quality of batteries using the air electrode. The sulfonated phthalate used as a raw material is ammonium salt C 6 H 3 (CO 2 NH 4 ) 2 .
In addition to SO 3 NH 4 , potassium salts, magnesium salts, sodium salts, barium salts, strontium salts, etc. can be used. In addition to copper, metal salts include nickel,
Similar results can be obtained using sulfonated metal phthalocyanine salts formed using transition metals such as iron, cobalt, and ruthenium. A button-type air cell using an air electrode according to an embodiment of the present invention will be explained based on the drawings. Reference numeral 1 denotes a positive electrode can that also serves as a positive electrode terminal, and has an air supply hole 2 at the bottom. 3 is an air electrode which is in contact with a lyophilic semipermeable membrane 4. Reference numeral 5 denotes an electrolyte holding layer holding a caustic alkaline electrolyte, which is a nonwoven fabric or porous material with excellent liquid retention and liquid resistance, and is in contact with the negative electrode body 6 . 7 is an air diffusion paper with good permeability, which is in contact with the air electrode via a PTFE sheet 8 having many micropores, and the other side is in contact with the bottom of the positive electrode can 1 where the air supply holes 2 are provided. . Reference numeral 9 denotes a negative electrode can, and the opening of the positive electrode can 1 is bent through a gasket 10 to seal the battery. Next, a button-type air battery using the air electrode of the present invention will be compared with a conventional battery. The product of the present invention [A], which is an air battery with a diameter of 11.6 mm and a height of 5.4 mm, and a conventional product of the same type [B] that uses metal phthalocyanine made of fuming sulfuric acid, 100 each, were made into 25
A constant current of 1.5 mA was discharged at ℃, and the average voltage and sigma (σ) as the variation range are shown in the table below.

【表】 上表本発明による空気電池〔A〕は放電中の平
均電圧が高く、またバラツキ巾の小さいことがわ
かる。これは本発明品に用いたスルフオン化フタ
ロシアニンの金属塩は、すべて外殻に4個のスル
フオン基を有しているためである。 以上のように、本発明のスルフオン化フタル酸
アンモニウムから製造されたスルフオン化金属フ
タロシアニン塩の触媒を用いた空気電極を有する
空気電池は、優れた放電性能を有するものであ
る。
[Table] It can be seen from the above table that the air battery [A] according to the present invention has a high average voltage during discharge and a small variation range. This is because all the metal salts of sulfonated phthalocyanine used in the products of the present invention have four sulfon groups in their outer shells. As described above, an air battery having an air electrode using a catalyst of a sulfonated metal phthalocyanine salt produced from sulfonated ammonium phthalate of the present invention has excellent discharge performance.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明によりなる空気電池の断面図であ
る。 1……正極缶、2……空気供給孔、3……空気
電極、4……半透膜、6……負極体。
The figure is a sectional view of an air battery according to the present invention. 1... Positive electrode can, 2... Air supply hole, 3... Air electrode, 4... Semipermeable membrane, 6... Negative electrode body.

Claims (1)

【特許請求の範囲】[Claims] 1 スルフオン化フタル酸アンモニウムを主とし
た水溶液に金属粉を加え加熱し、さらに中和し、
生成したスルフオン化金属フタロシアニン塩水溶
液に活性炭を浸漬し、該活性炭にスルフオン化金
属フタロシアニン塩を吸着せしめ、該活性炭を乾
燥後不活性ガス雰囲気中で加熱処理し、さらにポ
リテトラフルオロエチレンを加えて形成すること
を特徴とする空気電極の製造方法。
1 Metal powder is added to an aqueous solution mainly containing sulfonated ammonium phthalate, heated, and further neutralized.
Activated carbon is immersed in the generated sulfonated metal phthalocyanine salt aqueous solution, the sulfonated metal phthalocyanine salt is adsorbed onto the activated carbon, the activated carbon is dried and then heat-treated in an inert gas atmosphere, and polytetrafluoroethylene is further added to form the activated carbon. A method for manufacturing an air electrode, characterized by:
JP57047019A 1982-03-24 1982-03-24 Air cell Granted JPS58169775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57047019A JPS58169775A (en) 1982-03-24 1982-03-24 Air cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57047019A JPS58169775A (en) 1982-03-24 1982-03-24 Air cell

Publications (2)

Publication Number Publication Date
JPS58169775A JPS58169775A (en) 1983-10-06
JPH0152865B2 true JPH0152865B2 (en) 1989-11-10

Family

ID=12763462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57047019A Granted JPS58169775A (en) 1982-03-24 1982-03-24 Air cell

Country Status (1)

Country Link
JP (1) JPS58169775A (en)

Also Published As

Publication number Publication date
JPS58169775A (en) 1983-10-06

Similar Documents

Publication Publication Date Title
US4058482A (en) Fuel cell electrode
US3899354A (en) Gas electrodes and a process for producing them
US3395049A (en) Method of making a porous electrode
DE3618840A1 (en) METHANOL / AIR FUEL CELLS
KR20040058330A (en) Electrophoretically deposited hydrophilic coatings for fuel cell diffuser/current collector
JPS59166688A (en) Conductive layer on surface of solid electrolyte and production thereof
JPH0152865B2 (en)
US5234768A (en) Gas permeable member
US7462373B2 (en) Method for producing manganese oxide nanoparticle dispersed material and electrode
US4468362A (en) Method of preparing an electrode backing layer
Musilova et al. Carbon electrodes with phthalocyanine catalyst in acid medium
US3242011A (en) Method of making fuel cell electrodes
JPS6010424B2 (en) air battery
JPH08111226A (en) Solid polyelectrolyte type electrochemistry cell and its preparation
CN110357221B (en) C @ Bi/rGO electro-adsorption composite active material, and preparation and application thereof
DE2549083A1 (en) Cathode for fuel cells driven by oxygen in acid electrolyte - using catalyst which includes iron phthalocyanine polymers
US3661648A (en) Preparation of cuprous chloride electrodes
JPS62240784A (en) Cathode film unit and its production
US2646454A (en) Process for the manufacture of battery electrodes and the resulting electrodes
JPS5861569A (en) Air cell
CN113735230B (en) Manganese oxide composite hollow cubic carbon material and preparation method and application thereof
CN114023960B (en) Metal coordination polymer organic positive electrode material and preparation method thereof
JPS5826461A (en) Air cell
JPS5868874A (en) Air cell
US1439994A (en) Process of stabilizing storage-battery electrodes