JPH0152724B2 - - Google Patents

Info

Publication number
JPH0152724B2
JPH0152724B2 JP57030612A JP3061282A JPH0152724B2 JP H0152724 B2 JPH0152724 B2 JP H0152724B2 JP 57030612 A JP57030612 A JP 57030612A JP 3061282 A JP3061282 A JP 3061282A JP H0152724 B2 JPH0152724 B2 JP H0152724B2
Authority
JP
Japan
Prior art keywords
optical fiber
core
organic polymer
polymer compound
plastic optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57030612A
Other languages
Japanese (ja)
Other versions
JPS58149003A (en
Inventor
Toshikuni Kaino
Kaname Jinguji
Shigeo Nara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57030612A priority Critical patent/JPS58149003A/en
Publication of JPS58149003A publication Critical patent/JPS58149003A/en
Publication of JPH0152724B2 publication Critical patent/JPH0152724B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳现な説明】 本発明は重氎玠化したメチルメタクリレヌト重
合䜓を含む芯及び該芯よりも屈折率の䜎い重合䜓
を含むさやを有し、可芖光域から近赀倖光域にわ
たり䜎損倱なプラスチツク光フアむバの補造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention has a core containing a deuterated methyl methacrylate polymer and a sheath containing a polymer having a lower refractive index than the core. This invention relates to a method of manufacturing lossy plastic optical fiber.

埓来、ポリスチレンあるいはポリメチルメタク
リレヌトに代衚される透明性に優れた有機高分子
化合物により芯を圢成し、その芯成分よりも屈折
率の䜎い有機高分子化合物をさや成分ずした同心
状の芯−さや構造により耇合光フアむバを構成
し、その光フアむバの䞀端に入射した光を光フア
むバの長さ方向に沿぀お内郚で党反射させお䌝達
させるプラスチツク光フアむバは良く知られおい
る。この皮の光フアむバを぀くる䞊で考慮すべき
こずは、光フアむバ内郚を光が䌝達する際に、光
が吞収あるいは散乱されるこずによ぀お光の枛衰
を匷めるような芁因を最小にするこずである。有
機高分子化合物を甚いた光フアむバは、埓来から
知られおいる無機ガラスで補造された光フアむバ
に比べお軜量であり、可撓性に富み、か぀開口数
を倧きくするこずが容易であるずいう特長を有す
るが、ガラス補光フアむバに比べ内郚を䌝達する
光が枛衰する床合が倧きいずいう欠点があ぀た。
本発明は、有機高分子化合物を甚いたプラスチツ
ク光フアむバの光を枛衰する皋床を小さくするこ
ずを指向するものである。
Conventionally, concentric core-sheaths have been made with a core made of a highly transparent organic polymer compound such as polystyrene or polymethyl methacrylate, and a sheath made of an organic polymer compound with a lower refractive index than the core component. Plastic optical fibers are well known in which the structure constitutes a composite optical fiber, and the light incident on one end of the optical fiber is transmitted by total internal reflection along the length of the optical fiber. What should be considered when creating this type of optical fiber is to minimize the factors that increase the attenuation of light due to absorption or scattering when light is transmitted inside the optical fiber. It is. Optical fibers made from organic polymer compounds are lighter, more flexible, and easier to increase numerical aperture than conventionally known optical fibers made from inorganic glass. Although it has advantages, it has the disadvantage that the light transmitted inside it is attenuated to a greater degree than glass optical fibers.
The present invention is directed to reducing the degree of light attenuation of a plastic optical fiber using an organic polymer compound.

本発明者等の知芋によれば、有機高分子化合物
を甚いた光フアむバの光䌝送損倱の芁因は、有機
高分子化合物を構成する炭玠−氎玠間の赀倖振動
吞収の高調波に起因するこずが刀明した。第図
はポリメチルメタクリレヌトを芯ずし、フツ玠暹
脂共重合䜓をさやずした埓来から公知の方法によ
぀お補造されたプラスチツク光フアむバの可芖光
域における光䌝送特性を、波長暪軞
ず䌝送損倱dBKm瞊軞ずの関係で瀺した
グラフである。第図から明らかなように、炭玠
−氎玠赀倖振動吞収の倍音が波長544nに、
倍音が622nに、倍音が740nに珟われる。
ここで、倍音の次数が぀増加する毎に吞収匷床
は玄桁䜎䞋する。しかし、これらの吞収のすそ
のためにいわゆる損倱の窓における光䌝送損倱が
倧きくな぀おおり、枛衰量の最小倀ずしお波長
650nで350dBKm、570nで330dBKm、530n
で400dBKmの倀が埗られおいるにずどた぀お
いる。したが぀お、なんらかの方法で炭玠−氎玠
間の振動吞収を小さく、あるいは無くするこずに
よ぀お䜎損倱のプラスチツク光フアむバを補造す
るこずが可胜ずなる。
According to the findings of the present inventors, the cause of optical transmission loss in optical fibers using organic polymer compounds is due to harmonics of infrared vibration absorption between carbon and hydrogen that constitute the organic polymer compound. There was found. Figure 1 shows the optical transmission characteristics in the visible light range of a plastic optical fiber manufactured by a conventionally known method with a core made of polymethyl methacrylate and a sheath made of a fluororesin copolymer. Horizontal axis)
It is a graph shown in relation to transmission loss (dB/Km) (vertical axis). As is clear from Figure 1, the 7th overtone of carbon-hydrogen infrared vibrational absorption is at a wavelength of 544 nm.
The 6th overtone appears at 622nm, and the 5th overtone appears at 740nm.
Here, the absorption intensity decreases by about one order of magnitude each time the order of overtone increases by one. However, due to the base of these absorptions, the optical transmission loss in the so-called loss window increases, and the minimum value of attenuation is determined by the wavelength.
350dB/Km at 650nm, 330dB/Km at 570nm, 530n
A value of 400 dB/Km has been obtained. Therefore, by somehow reducing or eliminating vibrational absorption between carbon and hydrogen, it becomes possible to produce a plastic optical fiber with low loss.

このための方法ずしお、氎玠を重氎玠に眮換
し、炭玠−氎玠−の振動吞収を消倱させ
る方法が考えられる。これに䌎い、炭玠−重氎玠
−間の振動吞収が珟われるが、本発明者
等の知芋によれば、−間の赀倖振動吞収は、
−間の堎合に比べ著しく長波長偎にシフト
し、䟋えば可芖〜近赀倖光域においお生ずる赀倖
振動吞収の倍音は、−では740nである
のに察し、−では990nであり、倍音は、
−では622nであるのに察し、−では
905nであるずいうように、250〜280n皋床高
波長にシフトしおいる。曎に、同次数の倍音でも
−間振動吞収の匷床は−間振動吞収の匷
床に比べお小さくなるこずが明らかずな぀た。
A possible method for this purpose is to replace hydrogen with deuterium to eliminate vibrational absorption of carbon-hydrogen (C-H). Along with this, vibrational absorption between carbon and deuterium (CD) appears, but according to the findings of the present inventors, infrared vibrational absorption between CD
For example, the fifth harmonic of infrared vibration absorption that occurs in the visible to near-infrared light range is 740 nm for C-H, while it is significantly shifted to the longer wavelength side compared to the case between C-H. It is 990nm, and the 6th overtone is
In C-H it is 622nm, while in C-D it is 622nm.
The wavelength is shifted to a higher wavelength by about 250 to 280 nm, such as 905 nm. Furthermore, it has become clear that even for overtones of the same order, the intensity of C-D vibration absorption is smaller than the intensity of C-H vibration absorption.

このように、有機高分子化合物䞭の氎玠を重氎
玠化するこずによ぀お、特に可芖光域〜近赀倖光
域に極めお䜎損倱な窓を有するプラスチツク光フ
アむバの補造が可胜である。
In this manner, by deuterating hydrogen in an organic polymer compound, it is possible to produce a plastic optical fiber having a window with extremely low loss, particularly in the visible light region to near-infrared light region.

有機高分子化合物䞭の氎玠を重氎玠に眮換する
䟋ずしおはメチルメタクリレヌトを重氎玠化し、
重合した暹脂を芯ずしたプラスチツク光フアむバ
が既に提案されおいる特開昭54−65556号公報
参照。圓該方法では、密閉した系においお単量
䜓を重合するが、重合開始剀及び連鎖移動剀の添
加時に混入した塵埃や䞍玔物等を、その埌の工皋
で孔埄0.2〜1Ό皋床のフむルタを甚いお陀去し
ようずしおも、粒状物質は盞倉らず倚く残存す
る。又、密閉系でラム抌出し甚成圢品を重合した
のち、その成圢品を取出しお玡糞装眮に移し替え
る際にも塵埃等の混入は避けられない。曎に、メ
チルメタクリレヌト重合䜓は比范的吞湿性に富
み、垞枩䞋でも24時間埌に0.3〜0.4の吞氎率で
あり〔モダンプラスチツク゚ンサむクロペゞア
Modern Plastic Encyclopedia、1968幎参照〕、
これは重氎玠化された重合䜓に぀いおも同様であ
る。ここで、吞湿に基づく酞玠−氎玠−
結合間の振動吞収は、無機ガラスで補造された光
フアむバにおいおも問題であり、有機高分子化合
物では、損倱の窓に−振動吞収の高調波が珟
われるこずが倚く、少量の氎の存圚によ぀おも光
䌝送特性は䜎䞋する。これらのこずから、この方
法で埗られたプラスチツク光フアむバの枛衰量は
波長690nで147dBKm、波長790nで158dB
Kmが埗られおいるにずどた぀おいる。
An example of replacing hydrogen in an organic polymer compound with deuterium is deuteration of methyl methacrylate.
A plastic optical fiber having a core made of polymerized resin has already been proposed (see Japanese Unexamined Patent Publication No. 1983-65556). In this method, monomers are polymerized in a closed system, but dust and impurities mixed in when adding the polymerization initiator and chain transfer agent are removed in the subsequent process using a filter with a pore size of about 0.2 to 1 ÎŒm. However, a large amount of particulate matter still remains. Further, even when a molded product for ram extrusion is polymerized in a closed system and then taken out and transferred to a spinning device, contamination with dust and the like is unavoidable. Furthermore, methyl methacrylate polymer is relatively highly hygroscopic, with a water absorption rate of 0.3 to 0.4% after 24 hours even at room temperature (see Modern Plastic Encyclopedia, 1968).
This also applies to deuterated polymers. Here, oxygen-hydrogen (O-H) based on moisture absorption
Vibration absorption between bonds is also a problem in optical fibers made of inorganic glass, and in organic polymer compounds, harmonics of O-H vibration absorption often appear in the loss window, and the presence of a small amount of water The optical transmission characteristics also deteriorate. From these facts, the attenuation of the plastic optical fiber obtained using this method is 147 dB/Km at a wavelength of 690 nm and 158 dB/Km at a wavelength of 790 nm.
Km has only been obtained.

本発明はこのような珟状に鑑みおなされたもの
であり、その目的は、可芖光域から近赀倖光域に
おいお光䌝送特性の極めお優れた芯−さや構造を
有し、吞湿に䌎う−振動吞収の圱響のない䜎
損倱プラスチツク光フアむバの補造方法を提䟛す
るこずである。
The present invention was made in view of the current situation, and its purpose is to have a core-sheath structure with extremely excellent light transmission characteristics in the visible light region to the near-infrared light region, and to reduce the O- It is an object of the present invention to provide a method for manufacturing a low-loss plastic optical fiber that is free from the effects of H-vibration absorption.

本発明に぀き抂説すれば、本発明の䜎損倱プラ
スチツク光フアむバの補造方法は、重氎玠化した
メチルメタクリレヌト重合䜓を䞻成分ずする有機
高分子化合物を含む芯ず該芯の呚囲に該芯よりも
屈折率の䜎い重合䜓を䞻成分ずする有機高分子化
合物を含むさやずよりなるプラスチツク光フアむ
バを補造するに圓り、芯を圢成する有機高分子化
合物のガラス転移枩床以䞊の枩床で良奜な掻性を
瀺すラゞカル重合開始剀を甚いお、芯を圢成する
有機高分子化合物の盞圓する単量䜓を、芯を圢成
する有機高分子化合物のガラス転移枩床以䞊の枩
床で密閉系においお塊状重合を行い、生成した有
機高分子化合物及び該さやを圢成する有機高分子
化合物を玡糞口金を通しお溶融玡糞した埌、盎ち
に防湿性に優れた有機高分子化合物で該光フアむ
バを被芆するこずを特城ずするものである。
To summarize the present invention, the method for producing a low-loss plastic optical fiber of the present invention includes a core containing an organic polymer compound mainly composed of a deuterated methyl methacrylate polymer, and a core containing an organic polymer compound containing a deuterated methyl methacrylate polymer as a main component. In manufacturing a plastic optical fiber consisting of a sheath containing an organic polymer compound whose main component is a polymer with a low refractive index, it is necessary to obtain good activity at a temperature higher than the glass transition temperature of the organic polymer compound forming the core. Using the radical polymerization initiator shown below, monomers corresponding to the organic polymer compound forming the core are subjected to bulk polymerization in a closed system at a temperature higher than the glass transition temperature of the organic polymer compound forming the core. After melt-spinning the organic polymer compound and the organic polymer compound forming the sheath through a spinneret, the optical fiber is immediately coated with an organic polymer compound having excellent moisture resistance.

本発明における被芆材料ずしおの防湿性に優れ
た有機高分子化合物ずしおは、䟋えばポリ゚チレ
ン、ポリ塩化ビニル、ポリ塩化ビニリデン、塩化
ビニリデン−塩化ビニル共重合䜓、ポリプロピレ
ン、塩酞ゎム、゚チレン−酢酞ビニル共重合䜓、
ポリ䞉フツ化塩化゚チレン、ポリ四フツ化゚チレ
ン及びポリ゚ステル等を挙げるこずができる。
Examples of organic polymer compounds with excellent moisture resistance as coating materials in the present invention include polyethylene, polyvinyl chloride, polyvinylidene chloride, vinylidene chloride-vinyl chloride copolymer, polypropylene, hydrochloric acid rubber, and ethylene-vinyl acetate copolymer. Union,
Examples include polytrifluorochloroethylene, polytetrafluoroethylene, and polyester.

本発明においおは、埌に詳现に説明する芯−さ
や構造に玡糞された光フアむバを盎ちに被芆する
に圓り、䞀旊防湿性に富む透湿、吞湿性の䜎
いコヌト材を塗垃した埌前蚘被芆を行うこず
が、光フアむバの吞湿に䌎う−基に基づく吞
収損倱の圱響を曎に䜎枛する䞊で効果的である。
このようなコヌト材ずしおは、ポリりレタン、ポ
リブタゞ゚ン、ポリブテン、可撓性の゚ポキシ暹
脂及びアルキド暹脂、フツ玠ゎム、テトラフルオ
ロ゚チレン−ヘキサフルオロプロピレン共重合
䜓、゚チレン−アクリル共重合䜓及び゚チレン−
酢酞ビニル共重合䜓等を適甚するこずができる。
In the present invention, when immediately coating an optical fiber spun into a core-sheath structure, which will be described in detail later, a coating material with high moisture resistance (low moisture permeability and moisture absorption) is first applied, and then the coating is applied. It is effective to further reduce the effect of absorption loss due to O-H groups due to moisture absorption of the optical fiber.
Such coating materials include polyurethane, polybutadiene, polybutene, flexible epoxy resins and alkyd resins, fluorocarbon rubber, tetrafluoroethylene-hexafluoropropylene copolymers, ethylene-acrylic copolymers, and ethylene-acrylic copolymers.
Vinyl acetate copolymers and the like can be applied.

なお、シリコヌン暹脂は、石英ガラス系光フア
むバの䞀次コヌト及びバツフアコヌト甚に甚いら
れおいるが、吞湿性は小さいが透湿性が倧きいた
め、本発明における被芆材料ずしお適しおいるず
は蚀えない。
Although silicone resin is used for the primary coat and buffer coat of silica glass optical fibers, it has low hygroscopicity but high moisture permeability, so it cannot be said to be suitable as a coating material in the present invention.

ここで、本発明においお、防湿性に優れた有機
高分子化合物で光フアむバを盎ちに被芆するず
は、芯−さや構造を有する光フアむバがボビンに
巻取られる以前に被芆が行われるこずを意味す
る。
Here, in the present invention, immediately coating the optical fiber with an organic polymer compound having excellent moisture resistance means that the coating is performed before the optical fiber having a core-sheath structure is wound onto a bobbin.

あるいは、芯−さや構造を有する光フアむバを
䜜補したのち、圓該光フアむバを䞀旊也燥機など
の䜎湿床槜内に保存し、しかるのちに光フアむバ
を取出し、盎ちに被芆を行うこずを意味する。
Alternatively, it means that after producing an optical fiber having a core-sheath structure, the optical fiber is temporarily stored in a low humidity tank such as a dryer, and then the optical fiber is taken out and coated immediately.

このような被芆手法ずしおは、(1)䞀旊抌出機等
で芯−さや構造に玡糞した光フアむバを盎ちに別
の抌出機を通しお被芆を行う手法、(2)芯−さや構
造に玡糞した光フアむバをコヌト液に浞挬しおコ
ヌト材の溶液あるいは溶融コヌテむングを行う手
法及び(3)䞉台の抌出機を甚い、それぞれの抌出機
に芯成分、さや成分及び被芆成分を導入し、溶融
し぀぀玡止口金より䞉重構造に玡糞する手法ある
いは(4)芯−さや構造に玡糞し、ボビンに巻取぀た
光フアむバを、十分な量のシリカゲルの入぀た也
燥噚内に静眮したのち、光フアむバを取出し、盎
ちに抌出機を通しお被芆を行う手法等を適甚する
こずができる。
Such coating methods include (1) a method in which an optical fiber that has been spun into a core-sheath structure using an extruder or the like is immediately coated by passing it through another extruder, and (2) an optical fiber that has been spun into a core-sheath structure is coated. (3) Using three extruders, the core component, sheath component, and coating component are introduced into each extruder, and the core component, sheath component, and coating component are melted and spun. A method of spinning into a triple structure from a spinneret or (4) a method of spinning into a core-sheath structure and winding the optical fiber onto a bobbin is placed in a dryer containing a sufficient amount of silica gel, and then the optical fiber is taken out. , a method of immediately passing the coating through an extruder, etc. can be applied.

本発明においお、䜎損倱プラスチツク光フアむ
バの補造に圓぀おは、密閉系䞭においお、枛圧条
件䞋で蒞留した重氎玠化したメチルメタクリレヌ
ト単量䜓の留分に、同じく蒞留によ぀お埗た重合
開始剀及び連鎖移動剀の留分を添加し、匕続き重
合を行぀た重氎玠化したメチルメタクリレヌト重
合䜓を光フアむバの芯成分ずするこずができ、
又、該単量䜓を密閉系䞭においお重合した埌、密
閉状態を維持したたた埗られた芯を圢成する有機
高分子化合物以䞋芯重合䜓ず略称するを溶融
玡糞しお芯フアむバを埗るこずが望たしい。これ
によ぀お、芯重合䜓䞭ぞの塵埃や䞍玔物の混入が
ないばかりでなく、埮小なボむドの生成も抑制さ
れるため、埗られた光フアむバは散乱損倱が著し
く䜎枛し、埓来のものに比べお極めお䜎損倱なも
のずなる。
In the present invention, in producing a low-loss plastic optical fiber, in a closed system, a fraction of deuterated methyl methacrylate monomer distilled under reduced pressure is added to a polymerization initiator obtained by the same distillation. A deuterated methyl methacrylate polymer, to which fractions of an agent and a chain transfer agent are added and subsequently polymerized, can be used as a core component of an optical fiber,
Further, after polymerizing the monomer in a closed system, a core fiber is obtained by melt-spinning the organic polymer compound (hereinafter referred to as core polymer) that forms the obtained core while maintaining the closed state. This is desirable. This not only prevents dust and impurities from entering the core polymer, but also suppresses the formation of minute voids, resulting in significantly reduced scattering loss in the resulting optical fiber, which is superior to conventional fibers. In comparison, the loss is extremely low.

本発明における光フアむバの芯成分は、重合開
始剀ずしお重氎玠化したメチルメタクリレヌト重
合䜓のガラス転移枩床よりも高い枩床で良奜な掻
性を瀺すラゞカル重合開始剀を甚い、該ガラス転
移枩床以䞊の枩床で重氎玠化したメチルメタクリ
レヌト単量䜓を塊状重合しお重合䜓ずするこずが
できる。
The core component of the optical fiber in the present invention uses a radical polymerization initiator that exhibits good activity at a temperature higher than the glass transition temperature of the deuterated methyl methacrylate polymer as a polymerization initiator. The deuterated methyl methacrylate monomer can be bulk polymerized to form a polymer.

前蚘したような芯重合䜓ぞの塵埃等の粒状物質
の混入を防止するためには、該単量䜓を蒞留する
だけでは䞍十分である。すなわち、蒞留粟補した
該単量䜓に重合開始剀あるいは連鎖移動剀を添加
するに圓぀お0.1Ό皋床の孔埄のフむルタを甚い
ただけでは、䟝然ずしお倚くの埮小な塵埃が入り
蟌み光散乱の原因ずなる。そこで、本発明におい
おは、重合開始剀及び連鎖移動剀を密閉系の装眮
内においお枛圧条件䞋で蒞留し、その留分のみが
蒞留した該単量䜓の留分ず混合するように添加す
るこずが望たしい。これにより、埮小な粒子の混
入を倧幅に抑えるこずができ、光散乱による損倱
を曎に枛少させるこずができる。
In order to prevent particulate matter such as dust from being mixed into the core polymer as described above, it is not sufficient to simply distill the monomer. That is, if only a filter with a pore diameter of about 0.1 ÎŒm is used when adding a polymerization initiator or chain transfer agent to the monomer purified by distillation, a large amount of fine dust will still enter and cause light scattering. Therefore, in the present invention, the polymerization initiator and chain transfer agent are distilled under reduced pressure conditions in a closed system apparatus, and only the distilled fraction is added so as to be mixed with the distilled fraction of the monomer. is desirable. This makes it possible to significantly suppress the incorporation of minute particles and further reduce loss due to light scattering.

その結果、重合開始剀及び連鎖移動剀を添加し
た該単量䜓䞭の塵埃等の粒子は、䟋えば波長
632.8nのHe−Neレヌザ光を照射しお芳察した
堎合、いかなる堎所においおも埓来の1/100、具
䜓的には10cmの光路長圓り0.02〜20個以䞋芳枬
される光点が0.02〜20個以䞋、すなわち、cm3
圓り〜1000個倧抵の堎合個以䞋、換蚀す
ればmm3圓りほが個以䞋の濃床の塵埃ずする
こずができ、cm3圓り個以䞋ずするこずも容易
である。
As a result, particles such as dust in the monomer to which the polymerization initiator and chain transfer agent have been added, for example,
When irradiated with 632.8 nm He-Ne laser light and observed, the number of observed light spots is 1/100 of that of conventional methods, specifically 0.02 to 20 or less per 10 cm optical path length (0.02 to 20 light spots observed per 10 cm optical path length). ), i.e., 1 cm 3
The concentration of dust can be 1 to 1,000 particles per cubic meter (in most cases less than 1 particle), in other words, the concentration of dust can be approximately 1 particle or less per 1 mm 3 , and it is easy to reduce the concentration to 1 particle or less per 1 cm 3 .

本発明においおは、芯重合䜓を溶融玡糞するに
圓り、重氎玠化したメチルメタクリレヌト重合䜓
のガラス転移枩床以䞊の枩床で重合を行぀お埗た
重合䜓を該ガラス転移枩床以䞋に枩床を䞋げるこ
ずなく溶融玡糞装眮ぞ䟛絊するこずにより、内郚
歪の発生及び重合䜓の䜓積倉化に基づく玡糞時の
埮小ボむドの発生等のない散乱損倱の小さい光フ
アむバを埗るこずができる。
In the present invention, when melt-spinning the core polymer, the polymer obtained by polymerizing at a temperature higher than the glass transition temperature of the deuterated methyl methacrylate polymer is lowered to a temperature lower than the glass transition temperature. By supplying the fibers to the melt spinning apparatus without causing any internal strain or the generation of minute voids during spinning due to changes in the volume of the polymer, it is possible to obtain an optical fiber with low scattering loss.

本発明においお、芯−さや構造に玡糞された光
フアむバは、防湿性に優れた有機高分子化合物で
盎ちに被芆がなされるため、埓来のプラスチツク
光フアむバのように䞀旊ボビンに巻取られた状態
に攟眮されるこずに䌎う吞湿が著しく抑制され
る。このため、吞湿による−基に基づく吞収
損倱が非垞に小さく、塵埃、䞍玔物の混入及び埮
小ボむドの発生等を抑制したこずによる散乱損倱
の䜎枛効果を十分に生かすこずが可胜ずなる。
In the present invention, the optical fiber spun into a core-sheath structure is immediately coated with an organic polymer compound with excellent moisture resistance, so it cannot be wound onto a bobbin like a conventional plastic optical fiber. Moisture absorption caused by being left alone is significantly suppressed. Therefore, the absorption loss due to O-H groups due to moisture absorption is extremely small, and it is possible to fully utilize the effect of reducing scattering loss by suppressing the incorporation of dust and impurities and the generation of microvoids.

この結果、−の吞収損倱の圱響が倧きい近
赀倖光域においお、埓来の重氎玠化したメチルメ
タクリレヌト重合䜓を芯ずしたプラスチツク光フ
アむバに比べ、著しく䜎損倱なプラスチツク光フ
アむバを埗るこずが可胜ずなる。又、可芖光域に
おいおも−の振動吞収に基づく吞収損倱がほ
ずんど存圚しなくなるため、埓来の方法によるメ
チルメタクリレヌト重合䜓を芯ずしたプラスチツ
ク光フアむバにおける固有散乱損倱のみの導光損
倱倀たでに䜎損倱ずするこずが可胜ずなり、埓来
に比べ極めお䜎損倱なプラスチツク光フアむバを
埗るこずができる。
As a result, in the near-infrared light region where the influence of O-H absorption loss is large, it is possible to obtain a plastic optical fiber with significantly lower loss than the conventional plastic optical fiber with a core made of deuterated methyl methacrylate polymer. becomes possible. In addition, since there is almost no absorption loss due to C-H vibration absorption in the visible light range, the light guide loss value of only the intrinsic scattering loss in a plastic optical fiber with a methyl methacrylate polymer core by the conventional method can be reduced. This makes it possible to obtain a plastic optical fiber with extremely low loss compared to the conventional one.

本発明においおは、芯成分ずしお甚いる重合䜓
は、呚波数90MHzにおける栞磁気共鳎法で枬定し
お、残存する氎玠が重合䜓100圓り少なくずも
1.0以䞋、望たしくは少なくずも0.5以䞋しか
含たない重氎玠化したメチルメタクリレヌト重合
䜓で圢成されたずきに最良の結果が埗られる。
In the present invention, the polymer used as the core component has a residual hydrogen content of at least
Best results are obtained when formed with deuterated methyl methacrylate polymer containing no more than 1.0 g, preferably at least 0.5 g.

あるいは又、この芯は、少なくずも90モルの
重氎玠化したメチルメタクリレヌトず、他の合成
ビニル単量䜓、䟋えばメチルアクリレヌト、゚チ
ルアクリレヌト、プロピルアクリレヌト及びブチ
ルアクリレヌトのようなアクリル酞アルキル゚ス
テル、あるいはメチルメタクリレヌト、゚チルメ
タクリレヌト、プロピルメタクリレヌト及びブチ
ルメタクリレヌトのようなメタクリル酞アルキル
゚ステルずの共重合䜓から圢成するこずもでき
る。この共重合䜓䞭には、100圓り氎玠を少な
くずも1.0以䞋、望たしくは少なくずも0.8以
䞋しか含たないものずする。この堎合、芯の共重
合䜓の少なくずも90モル、奜たしくは95モル
が重氎玠化したメチルメタクリレヌトから成るこ
ずが、優れた光䌝送特性を埗るうえで望たしい。
共重合䜓ずするこずによ぀お、重氎玠化したメチ
ルメタクリレヌト単独重合䜓に比べ、可撓性が倧
きくなり、機械的匷床も増加するずいう長所が生
じる。重氎玠化したメチルメタクリレヌトではな
い共重合䜓成分が10モル以䞊含たれるず、炭玠
−氎玠結合に基づく振動吞収が増加し、䜎損倱な
プラスチツク光フアむバを埗る䞊で障害ずなる。
Alternatively, the core may contain at least 90 mole percent deuterated methyl methacrylate and other synthetic vinyl monomers, such as acrylic acid alkyl esters such as methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate, or methyl acrylate. It can also be formed from copolymers with methacrylic acid alkyl esters such as methacrylate, ethyl methacrylate, propyl methacrylate and butyl methacrylate. The copolymer should contain at least 1.0 g or less, preferably at least 0.8 g, of hydrogen per 100 g. In this case, at least 90 mol% of the core copolymer, preferably 95 mol%
In order to obtain excellent optical transmission characteristics, it is desirable that the material be made of deuterated methyl methacrylate.
The advantage of using a copolymer is that it has greater flexibility and mechanical strength than a deuterated methyl methacrylate homopolymer. If a copolymer component other than deuterated methyl methacrylate is contained in an amount of 10 mol % or more, vibrational absorption based on carbon-hydrogen bonds increases, which becomes an obstacle to obtaining a low-loss plastic optical fiber.

曎に又、芯は重氎玠化したアクリル酞又はメタ
クリル酞のアルキル゚ステル、䟋えば重氎玠化し
たメチルアクリレヌト、゚チルアクリレヌトプロ
ピルアクリレヌト及びブチルアクリレヌトのよう
な重氎玠化したアクリル酞゚ステルあるいは重氎
玠化した゚チルメタクリレヌト、プロピルメタク
リレヌト、ブチルメタクリレヌト及びベンゞルメ
タクリレヌトのような重氎玠化したメタクリル酞
゚ステルの単量䜓ず、重氎玠化したメチルメタク
リレヌトずの共重合䜓で圢成するこずもできる。
この共重合䜓は、100䞭に氎玠を少なくずも1.0
以䞋、奜たしくは少なくずも0.5以䞋しか含
たないものずする。これにより、優れた光䌝送特
性を極めお容易に埗るこずができる。
Furthermore, the core may be an alkyl ester of deuterated acrylic or methacrylic acid, such as deuterated acrylic ester or deuterated ethyl methacrylate, such as deuterated methyl acrylate, ethyl acrylate propyl acrylate and butyl acrylate. It can also be formed from a copolymer of deuterated methacrylic acid ester monomers such as propyl methacrylate, butyl methacrylate and benzyl methacrylate, and deuterated methyl methacrylate.
This copolymer contains at least 1.0 hydrogen per 100g.
It should contain no more than 0.5 g, preferably at least 0.5 g. Thereby, excellent optical transmission characteristics can be obtained extremely easily.

以䞊のいずれの堎合においおも、重氎玠化した
メチルメタクリレヌト重合䜓又は共重合䜓100
圓りに氎玠を超含むず、残存する−結合
によ぀お、特に近赀倖光域では、赀倖振動吞収の
倍音や倍音に起因する吞収によ぀お、䜎損倱
化の効果が小さくなる。
In any of the above cases, 100 g of deuterated methyl methacrylate polymer or copolymer
If it contains more than 1g of hydrogen, the remaining C-H bonds will reduce the loss due to absorption caused by the 5th and 4th harmonics of infrared vibration absorption, especially in the near-infrared region. becomes smaller.

又、共重合䜓成分も、重氎玠化したメチルメタ
クリレヌトず同様に蒞留が容易であり、重氎玠化
したメチルメタクリレヌト単量䜓䞭に蒞留によ぀
お加えるこずが可胜である必芁がある。これによ
り、䞍玔物及び塵埃の含有量を倧幅に䜎䞋させる
こずができ、したが぀お光散乱の少ない共重合䜓
を芯ずしたプラスチツク光フアむバを埗るこずが
できる。
The copolymer component also needs to be easy to distill, similar to deuterated methyl methacrylate, and to be able to be added to the deuterated methyl methacrylate monomer by distillation. As a result, the content of impurities and dust can be significantly reduced, and therefore a plastic optical fiber having a copolymer core with low light scattering can be obtained.

ここで、重氎玠化したメチルメタクリレヌト
は、ナガむNagai等のゞダヌナル・オブ・ポ
リマヌ・サむ゚ンスJ.Poly.Sci.誌、62、S95
〜981962蚘茉の方法により぀くるこずができ
る。簡単に述べるず、重氎玠化アセトンを青酞ず
反応させお重氎玠化アセトンシアンヒドリンを぀
くり、これを硫酞で凊理しお硫酞塩ずした埌、こ
れを重氎玠化メタノヌルず反応させるこずにより
重氎玠化したメチルメタクリレヌトを埗るこずが
できる。
Here, deuterated methyl methacrylate is described by Nagai et al., Journal of Polymer Science (J.Poly.Sci.), 62 , S95.
-98 (1962). Briefly, deuterated acetone is reacted with hydrocyanic acid to produce deuterated acetone cyanohydrin, which is treated with sulfuric acid to form a sulfate salt, and then reacted with deuterated methanol to form deuterated acetone cyanohydrin. Hydrogenated methyl methacrylate can be obtained.

本発明においおは、芯成分を重合するに圓り、
懞濁重合、乳化重合及び溶液重合等の方法を甚い
るこずは望たしくない。その理由は、懞濁重合や
乳化重合においおは、工業的方法ずしおは高玔床
な重合䜓が埗られるものの、倚量の氎を䜿甚する
ため、氎分䞭の異物が重合䜓に混入するおそれが
あり、又、埗られた重合䜓に氎分が付着あるいは
溶け蟌み䜎損倱なプラスチツク光フアむバを埗る
に圓぀お障害ずなる。又、溶液重合においおも、
溶媒を甚いるので溶媒䞭の䞍玔物あるいは異物の
混入のおそれがあり、異物の分離プロセスが必芁
ずな぀おしたう。そこで本発明では、芯成分をバ
ルク塊状重合するこずによ぀お重合䜓を圢成
する。
In the present invention, when polymerizing the core component,
It is undesirable to use methods such as suspension polymerization, emulsion polymerization and solution polymerization. The reason for this is that although suspension polymerization and emulsion polymerization can produce highly pure polymers as industrial methods, they use a large amount of water, so there is a risk that foreign substances in the water may mix into the polymer. Moreover, moisture adheres to or dissolves in the obtained polymer, which becomes an obstacle in obtaining a low-loss plastic optical fiber. Also, in solution polymerization,
Since a solvent is used, there is a risk of contamination with impurities or foreign substances in the solvent, and a process for separating foreign substances is required. Therefore, in the present invention, a polymer is formed by bulk polymerizing the core component.

前蚘したように、本発明における重合系䞭には
重合開始剀及び連鎖移動剀の少量党単量䜓の
0.001〜0.5モル皋床が含たれる。これらは前
蚘した理由により枛圧䞋で容易に蒞留しうるもの
であるこずが望たしい。このような重合開始剀ず
しおは、ゞ−第玚ブチルパヌオキサむド、ゞク
ミルパヌオキサむド及びクメンヒドロキシパヌオ
キサむド等の有機過酞化物あるいはアゟ−第玚
ブタン、アゟ−−ブタン、アゟ−む゜−プロパ
ン、アゟ−−プロパン及びアゟ−シクロヘキサ
ン等のアルキルアゟ化合物を挙げるこずができ
る。この䞭で特にアルキルアゟ化合物は、重合開
始剀の玫倖光域における電子遷移吞収等の吞収の
すそが可芖光域に圱響を及がすこずが少なく、奜
適に䜿甚するこずができる。又、連鎖移動剀ずし
おは、メルカプタン類が適切であり、䟋えば−
ブチルメルカプタン及び−プロピルメルカプタ
ン等の第玚メルカプタン、第玚ブチルメルカ
プタン及びむ゜プロピルメルカプタン等の第玚
メルカプタン、第玚ブチルメルカプタン及び第
玚ヘキシルメルカプタン等の第玚メルカプタ
ンあるいはプニルメルカプタン等の芳銙族メル
カプタン等を挙げるこずができる。
As mentioned above, the polymerization system of the present invention contains a small amount of a polymerization initiator and a chain transfer agent (a small amount of the total monomer content).
(approximately 0.001 to 0.5 mol%). For the reasons mentioned above, it is desirable that these can be easily distilled under reduced pressure. Such polymerization initiators include organic peroxides such as di-tertiary butyl peroxide, dicumyl peroxide, and cumene hydroxy peroxide, or azo-tertiary butane, azo-n-butane, azo-iso Mention may be made of alkylazo compounds such as -propane, azo-n-propane and azo-cyclohexane. Among these, alkylazo compounds can be particularly preferably used because the absorption path of the polymerization initiator, such as electronic transition absorption in the ultraviolet light region, has little effect on the visible light region. In addition, mercaptans are suitable as chain transfer agents, such as n-
Primary mercaptans such as butyl mercaptan and n-propyl mercaptan, secondary mercaptans such as secondary butyl mercaptan and isopropyl mercaptan, tertiary mercaptans or phenyl mercaptans such as tertiary butyl mercaptan and tertiary hexyl mercaptan. Aromatic mercaptans such as

本発明においお甚いるさや成分は、屈折率が芯
成分の屈折率よりも少なくずも0.5、望たしく
は少なくずも、最も望たしくは少なくずも
䜎い屈折率を有する有機高分子化合物ずする。
特に実質的に無定圢の重合䜓を甚いるこずによ぀
お優れた光䌝送特性を埗るこずができる。かかる
さや成分ずしお、䟋えばフルオロアルキル基の異
る皮のフルオロアルキルメタクリレヌト共重合
䜓は特に奜適である。この堎合、特に粘着性に優
れたフルオロアルキルメタクリレヌトず、熱倉圢
枩床の盞察的に高いフルオロアルキルメタクリレ
ヌトずを組合せた共重合䜓を甚いるこずによ぀
お、特に優れた光透過性を有するプラスチツク光
フアむバを圢成するこずが可胜である。
The sheath component used in the present invention has a refractive index of at least 0.5%, preferably at least 2%, and most preferably at least 5% greater than the refractive index of the core component.
% an organic polymer compound with a low refractive index.
In particular, excellent light transmission properties can be obtained by using a substantially amorphous polymer. As such a sheath component, for example, two types of fluoroalkyl methacrylate copolymers having different fluoroalkyl groups are particularly suitable. In this case, by using a copolymer that combines fluoroalkyl methacrylate, which has particularly excellent adhesiveness, and fluoroalkyl methacrylate, which has a relatively high heat distortion temperature, a plastic optical fiber having particularly excellent light transmittance can be produced. It is possible to form

かかるフルオロアルキルメタクリレヌト共重合
䜓を埗るためには、盞異なる皮のフルオロアル
キルメタクリレヌトを必芁量混合し、重合開始剀
及び連鎖移動剀を添加した埌、枛圧脱気し、酞玠
䞍圚䞋で重合を行う。ここで、共重合䜓の分子量
は、重量平均分子量ずしお䞇〜10䞇の範囲にあ
るこずが望たしい。
In order to obtain such a fluoroalkyl methacrylate copolymer, necessary amounts of two different types of fluoroalkyl methacrylates are mixed, a polymerization initiator and a chain transfer agent are added, deaeration is performed under reduced pressure, and polymerization is carried out in the absence of oxygen. conduct. Here, the molecular weight of the copolymer is preferably in the range of 20,000 to 100,000 as a weight average molecular weight.

さや成分ずしお、フツ化ビニリデン−テトラフ
ルオロ゚チレン共重合䜓にフルオロアルキルメタ
クリレヌト重合䜓を溶融混合した組成物を甚いる
こずによ぀おも、光透過性に優れたプラスチツク
光フアむバを埗るこずが可胜である。
It is also possible to obtain a plastic optical fiber with excellent light transmittance by using a composition obtained by melt-mixing a vinylidene fluoride-tetrafluoroethylene copolymer and a fluoroalkyl methacrylate polymer as the sheath component. .

さや成分ずしおは、このほか、フルオロアルキ
ルメタクリレヌトずフルオロアルキルアクリレヌ
トずの共重合䜓、テトラフルオロ゚チレン、ヘキ
サフルオロプロピレン、フツ化ビニリデン及びト
リフルオロクロロ゚チレン等のフツ玠暹脂の共重
合䜓等が利甚できる。
In addition, copolymers of fluoroalkyl methacrylate and fluoroalkyl acrylate, copolymers of fluororesins such as tetrafluoroethylene, hexafluoropropylene, vinylidene fluoride, and trifluorochloroethylene can be used as the sheath component. .

以䞋実斜䟋により本発明を曎に詳现に説明する
が、本発明はこれらの実斜䟋のみに限定されるも
のではない。なお、実斜䟋䞭に瀺した光フアむバ
の光䌝送特性甚の光源ずしおは、タングステン−
ハロゲンランプを䜿甚し、回折栌子分光噚を甚い
お、波長特性を求めた。
The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples. Note that tungsten was used as a light source for the optical transmission characteristics of the optical fiber shown in the examples.
The wavelength characteristics were determined using a halogen lamp and a diffraction grating spectrometer.

実斜䟋  重氎玠化アセトンに青酞を反応させお埗た重氎
玠化アセトンシアンヒドリンを䞀旊硫酞塩ずした
埌、重氎玠化メタノヌルずの反応により、重氎玠
化したメチルメタクリレヌトを合成し、垞法蒞
留法により粟補した。次いで、この単量䜓、そ
の他の成分を甚いお第〜図に瀺す装眮により
重合、玡糞を行い、第図に瀺す断面を有するプ
ラスチツク光フアむバを補造した。すなわち、第
図は本発明方法に䜿甚したプラスチツク光フア
むバ補造装眮における芯成分の重合工皋の䞀具䜓
䟋を瀺した暡匏図、第図はその玡糞工皋の䞀具
䜓䟋を瀺した暡匏図、第図は本発明方法によ぀
お補造したプラスチツク光フアむバの暪断面抂略
図であり、は単量䜓だめ、は単量䜓蒞留釜、
は単量䜓䟛絊匁、は冷华噚、はコツク、
はスタヌラ、は混合容噚、は混合物䟛絊匁、
はドレンコツク、は重合開始剀だめ、
は重合開始剀䟛絊匁、は重合開始剀蒞留釜、
は連鎖移動剀だめ、は連鎖移動剀䟛絊
匁、は連鎖移動剀蒞留釜、は単量䜓混合
物䟛絊管、は加枛圧匁、は重合容噚、
は加・枛圧口、は重合䜓䟛絊匁、は枛
圧口、は重合䜓貯蔵タンク、は重合䜓䟛
絊匁、は吐出口、は䟛絊口、は保枩
郚、は芯郚甚スクリナヌ抌出機、はさや
郚甚ホツパ、はさや郚甚抌出機、は二重
玡糞口金、は光フアむバ、は芯郚、
はさや郚、は被芆郚を瀺す。
Example 1 Deuterated acetone cyanohydrin obtained by reacting deuterated acetone with hydrocyanic acid was once made into a sulfate salt, and then deuterated methyl methacrylate was synthesized by reaction with deuterated methanol. (distillation method). Next, using this monomer and other components, polymerization and spinning were carried out using the apparatus shown in Figs. 2 and 3 to produce a plastic optical fiber having the cross section shown in Fig. 4. That is, FIG. 2 is a schematic diagram showing a specific example of the core component polymerization process in the plastic optical fiber manufacturing apparatus used in the method of the present invention, and FIG. 3 is a schematic diagram showing a specific example of the spinning process. FIG. 4 is a schematic cross-sectional view of a plastic optical fiber produced by the method of the present invention, in which 1 is a monomer reservoir, 2 is a monomer distillation vessel,
3 is a monomer supply valve, 4 is a cooler, 5 is a kettle, 6
is a stirrer, 7 is a mixing container, 8 is a mixture supply valve,
9 is a drain pot, 10 is a polymerization initiator pot, 11
12 is a polymerization initiator supply valve, 12 is a polymerization initiator distillation pot,
13 is a chain transfer agent reservoir, 14 is a chain transfer agent supply valve, 15 is a chain transfer agent distillation vessel, 16 is a monomer mixture supply pipe, 17 is a pressure regulating valve, 18 is a polymerization container, 1
9 is a pressure increase/depressurization port, 20 is a polymer supply valve, 21 is a pressure reduction port, 22 is a polymer storage tank, 23 is a polymer supply valve, 24 is a discharge port, 25 is a supply port, 26 is a heat retaining part, and 27 is a 28 is a screw extruder for the core, 28 is a hopper for the pod, 29 is an extruder for the pod, 30 is a double spinneret, 31 is an optical fiber, 32 is a core, 33
The sheath portion and 34 represent the covering portion.

粟補埌の重氎玠化したメチルメタクリレヌト単
量䜓を単量䜓だめから単量䜓䟛絊匁を開けお
単量䜓蒞留釜に入れ、同様の手法により重合開
始剀ずしおアゟ−第玚ブタンを重合開始剀蒞留
釜に、又、連鎖移動剀ずしお−ブチルメル
カプタンを連鎖移動剀蒞留釜に入れた。装眮
党䜓を密閉状態にした埌、系を150〜200mmHgの
枛圧ずした。匕続いお、単量䜓蒞留釜を加枩し
お重氎玠化したメチルメタクリレヌトを混合容噚
ぞ移し替えた。この堎合、予め蒞留を行぀お䞭
留分ずした単量䜓では、初留分から所定の量に至
るたでの留分を混合容噚に加え、又、予め蒞留
を行぀おいない堎合は、初留分をドレンコツク
の操䜜によ぀お棄华埌、所定量の䞭留分を混合容
噚に加える。匕続き、重合開始剀蒞留釜及
び連鎖移動剀蒞留釜を加枩し、所定量の重合
開始剀及び連鎖移動剀を混合容噚ぞ移し替え
た。混合容噚を十分かくはんした埌、混合物に
He−Neレヌザ光を照射しお残存する塵埃量を怜
出したずころ、光路長10cm圓り0.02個以䞋の光点
しか芳枬されず、結果ずしお、cm3に぀き個以
䞋の塵埃量であるこずが刀明した。
After purification, the deuterated methyl methacrylate monomer is transferred from the monomer reservoir 1 to the monomer distillation vessel 2 by opening the monomer supply valve 3, and in the same manner as the azo-tertiary monomer as a polymerization initiator. Butane was placed in a polymerization initiator distillation vessel 12, and n-butyl mercaptan as a chain transfer agent was placed in a chain transfer agent distillation vessel 15. After the entire apparatus was sealed, the system was evacuated to 150-200 mmHg. Subsequently, the monomer distillation vessel 2 was heated and the deuterated methyl methacrylate was transferred to the mixing vessel 7. In this case, if the monomer has been distilled in advance to form a middle distillate, add a predetermined amount of the fraction from the initial distillate to the mixing container 7, or if the monomer has not been distilled in advance, Drain the distillate 9
After discarding it by the operation, a predetermined amount of the middle distillate is added to the mixing container 7. Subsequently, the polymerization initiator distillation vessel 12 and the chain transfer agent distillation vessel 15 were heated, and predetermined amounts of the polymerization initiator and chain transfer agent were transferred to the mixing container 7. After stirring the mixing container 7 thoroughly, add
When the amount of remaining dust was detected by irradiating He-Ne laser light, only 0.02 or less light spots were observed per 10 cm of optical path length, which revealed that the amount of dust was less than 1 per 1 cm3 . did.

この混合物を重合容噚ぞ移し、130℃で16
時間塊状重合させた埌、埐埐に昇枩しお重合率を
䞊昇させ、最終的に180℃で重合を完結させ、芯
郚ずなる重氎玠化したメチルメタクリレヌト重合
䜓を埗た。この重合䜓の流動性を維持した状態で
加・枛圧口より也燥窒玠で重合䜓を抌出し、
密閉状態を維持しお吐出口に連結された、第
図に瀺す䟛絊口を経お保枩郚ぞ導入し
た。導入に圓぀おは、保枩郚を枛圧にしお必
芁量の䞊蚘重合䜓を導入した。
This mixture was transferred to a polymerization container 18 and heated to 130°C for 16
After carrying out bulk polymerization for a period of time, the temperature was gradually raised to increase the polymerization rate, and the polymerization was finally completed at 180°C to obtain a deuterated methyl methacrylate polymer that would become the core. While maintaining the fluidity of this polymer, the polymer is extruded with dry nitrogen from the pressurization/decompression port 19,
The liquid was introduced into the heat retaining section 26 through the supply port 25 shown in FIG. 3, which was connected to the discharge port 24 while maintaining a closed state. At the time of introduction, the pressure in the heat retaining section 26 was reduced, and the necessary amount of the above polymer was introduced.

導入された重合䜓をスクリナヌ抌出機に䟛
絊し、同時に、さや郚ずなる有機高分子化合物の
重合䜓ずしお、1H1H5Hオクタフルオロペ
ンチルメタクリレヌトず1H1H3Hテトラフ
ルオロプルピルメタクリレヌトずの比率が70モル
察30モルの共重合䜓を甚い、さや郚甚抌出機
に䟛絊し、二重玡糞口金により芯郚ずな
る重合䜓を200℃で、さや郚ずなる重合䜓を180℃
で抌出しお玡糞した。埗られた光フアむバを
盎ちに別の抌出機図瀺せずを通し、溶融した
ポリ゚チレンで被芆を行い、第図に瀺すような
芯郚の盎埄が0.65mm、さや郚の膜厚が
0.10mm、被芆郚の膜厚が0.30mmのプラスチツ
ク光フアむバを埗た。
The introduced polymer is supplied to the screw extruder 27, and at the same time, 1H, 1H, 5H octafluoropentyl methacrylate and 1H, 1H, 3H tetrafluoroprupyl methacrylate are added as organic polymer compound polymers that will become the sheath part. A copolymer with a ratio of 70 mol % to 30 mol % is used, and the copolymer that will become the pod part is fed to the extruder 29 for the sheath part, and the polymer that will become the core part is heated to 200°C by the double spinneret 30. 180℃
It was extruded and spun. The obtained optical fiber 31 is immediately passed through another extruder (not shown) and coated with molten polyethylene, so that the core part 32 has a diameter of 0.65 mm and the sheath part 33 has a film thickness of 0.65 mm as shown in FIG. but
A plastic optical fiber having a thickness of 0.10 mm and a coating portion 34 of 0.30 mm was obtained.

第図はこのようにしお埗られたプラスチツク
光フアむバの可芖〜近赀倖光域における光䌝送特
性を波長ず䌝送損倱ずの関係で瀺したグラフであ
る。第図から明らかなように、波長520nか
ら720nの幅広い可芖光域にわた぀お50dBKm
以䞋ずいう極めお䜎損倱な倀が埗られ、特に、
575nから705nにわた぀おは30dBKm以䞋、
曎に652〜662nでは20dBKm以䞋ずいう、倚成
分ガラス系光フアむバの可芖光域の導光特性にひ
けをずらない損倱倀ずな぀おいる。䞀方、近赀倖
光域においおも760nから790nにわた぀お
50dBKm以䞋、特に775n前埌では30dBKm以
䞋の導光損倱倀であり、又、855n前埌にも
70dBKm以䞋の損倱倀が埗られおいる。これら
の倀は、重氎玠化したメチルメタクリレヌト重合
䜓を芯ずしたプラスチツク光フアむバにおける埓
来の損倱倀のトツプデヌタである690nにおけ
る147dBKm、790nにおける158dBKmいず
れも前蚘特開昭54−65556公報参照を倧幅に向
䞊させたものであり、本発明方法によ぀お補造さ
れたプラスチツク光フアむバは極めお䜎損倱なも
のである。このように、本発明方法によるプラス
チツク光フアむバの補造方法を甚いるこずによ぀
お、吞湿に䌎う吞収損倱が小さく、散乱損倱の原
因ずなる塵埃や埮小ボむド等が倧幅に䜎枛されお
いるこずがわかる。
FIG. 5 is a graph showing the optical transmission characteristics of the plastic optical fiber thus obtained in the visible to near-infrared light range in terms of the relationship between wavelength and transmission loss. As is clear from Figure 5, 50dB/Km over a wide visible light range from wavelength 520nm to 720nm.
Extremely low loss values such as the following can be obtained, and in particular,
30dB/Km or less from 575nm to 705nm,
Furthermore, the loss value is 20 dB/Km or less in the wavelength range of 652 to 662 nm, which is comparable to the light guiding properties of multi-component glass optical fiber in the visible light range. On the other hand, in the near-infrared light range from 760nm to 790nm,
The light guide loss value is less than 50dB/Km, especially less than 30dB/Km around 775nm, and also less than 30dB/Km at around 855nm.
A loss value of 70dB/Km or less was obtained. These values are 147 dB/Km at 690 nm and 158 dB/Km at 790 nm, which are the top data of conventional loss values for plastic optical fibers made of deuterated methyl methacrylate polymer as the core (both of which are based on the above-mentioned Japanese Patent Application Laid-Open No. 1989-1993). 65556), and the plastic optical fiber produced by the method of the present invention has extremely low loss. Thus, it can be seen that by using the method of manufacturing plastic optical fiber according to the method of the present invention, absorption loss due to moisture absorption is small, and dust and microvoids, etc., which cause scattering loss, are significantly reduced. .

実斜䟋  実斜䟋においお、さや郚ずなる有機高分子化
合物ずしお、フツ化ビニリデン85モル、テトラ
フルオロ゚チレン15モルの共重合䜓75重量
に、1H1H3Hテトラフルオロプロピルメ
タクリレヌト重合䜓25重量を加え、混合溶融し
お均䞀な透明組成物ずし、さや郚甚抌出機に
䟛絊し、二重玡糞口金によ぀お、芯郚ずなる
重合䜓及びさや郚ずなる重合䜓を200℃で抌出し
た。埗られた光フアむバを盎ちに別の抌出機
図瀺せずを通し、溶融したポリ゚チレンで被
芆を行い、プラスチツク光フアむバを埗た。この
プラスチツク光フアむバは波長655nから685n
にわた぀お16dBKmずいうプラスチツク光フ
アむバずしおは極䜎損倱な倀であり、30dBKm
以䞋の波長も、570nから710nの幅広い波長
域にわた぀おいる。又、770nから776nにお
いおも23dBKm、850n前埌でも50dBKmずい
うように近赀倖光域においお著しく䜎損倱な倀が
埗られおいる。
Example 2 In Example 1, 75% by weight of a copolymer of 85% by mole of vinylidene fluoride and 15% by mole of tetrafluoroethylene was used as the organic polymer compound for the sheath part.
25% by weight of 1H, 1H, 3H, and tetrafluoropropyl methacrylate polymers were added to the mixture, mixed and melted to form a uniform transparent composition, which was then fed to the extruder 29 for the sheath section, and then passed through the double spinneret 30. The core polymer and the sheath polymer were extruded at 200°C. The obtained optical fiber 31 was immediately passed through another extruder (not shown) and coated with molten polyethylene to obtain a plastic optical fiber. This plastic optical fiber has a wavelength of 655nm to 685nm.
This is an extremely low loss value for a plastic optical fiber of 16 dB/Km over a distance of 30 dB/Km.
The following wavelengths also cover a wide wavelength range from 570nm to 710nm. In addition, extremely low loss values were obtained in the near-infrared light region, such as 23 dB/Km from 770 nm to 776 nm and 50 dB/Km around 850 nm.

なお、実斜䟋及びで甚いた重氎玠化したメ
チルメタクリレヌト重合䜓䞭の残存氎玠を90MHz
における栞磁気共鳎法で枬定したずころ、この残
存氎玠は重合䜓100圓り0.50であ぀た。
Note that residual hydrogen in the deuterated methyl methacrylate polymer used in Examples 1 and 2 was
This residual hydrogen was measured by nuclear magnetic resonance method at 0.50 g per 100 g of polymer.

実斜䟋  芯甚単量䜓ずしお、重氎玠化したメチルメタク
リレヌト95モルずメチルアクリレヌトモル
の混合物を甚いた以倖は、実斜䟋ず同様にしお
重合し、スクリナヌ抌出機に䟛絊するず共に、さ
や郚ずなる有機高分子化合物ずしお、1H1H
5Hオクタフルオロペンチルメタクリレヌトず、
1H1H3Hテトラフルオロプロピルメタク
リレヌトずの比率が80モル察20モルの共重合
䜓を甚い、さや郚甚抌出機に䟛絊しお、二重
玡糞口金によ぀お、芯郚の盎埄が0.55
mm、さや郚の膜厚が0.10mmの光フアむバ
を埗た。この光フアむバの被芆は第図に瀺すコ
ヌト機により行぀た。すなわち、第図は本発明
方法で䜿甚した光フアむバ甚コヌト機の䞀具䜓䟋
を瀺した暡匏図であり、はコヌト機、は
ヒヌタ、はオリフむスを瀺す。䞊蚘光フアむ
バを盎ちにコヌト機䞭におきヒヌタによ
り加熱溶融させた゚チレン−酢酞ビニル共重合䜓
の融液䞭にオリフむスを通しお導き、被芆成
分を連続的にコヌテむングし、次いで冷华するこ
ずにより、被芆郚の厚さが0.30mmのプラスチ
ツク光フアむバを埗た。第図はこのようにしお
埗られたプラスチツク光フアむバの可芖〜近赀倖
光域における光䌝送特性を波長ず䌝送損倱ずの関
係で瀺したグラフである。第図から明らかなよ
うに、最も䜎損倱な窓は650nにあり、ここで
の損倱倀は30dBKm以䞋であ぀た。又、576n
及び近赀倖光域の770n及び848nにも䜎損倱
の窓があり、それぞれ35dBKm、50dBKm及び
90dBKmを䞋廻る損倱倀が埗られ、埓来に比べ
著しく䜎損倱な共重合䜓を芯郚ずするプラスチツ
ク光フアむバが埗られおいるこずがわかる。
Example 3 95 mol% deuterated methyl methacrylate and 5 mol% methyl acrylate as core monomers
Polymerization was carried out in the same manner as in Example 1, except that a mixture of 1H, 1H,
5H octafluoropentyl methacrylate,
A copolymer with a ratio of 80 mol % to 20 mol % of 1H, 1H, 3H, and tetrafluoropropyl methacrylate is supplied to the extruder 29 for the sheath part, and the core part is formed by a double spinneret 30. The diameter of 32 is 0.55
mm, the thickness of the sheath part 33 is 0.10 mm
I got it. This optical fiber was coated using a coating machine shown in FIG. That is, FIG. 6 is a schematic diagram showing a specific example of an optical fiber coating machine used in the method of the present invention, where 35 is a coating machine, 36 is a heater, and 37 is an orifice. The optical fiber is immediately placed in a coating machine 35, guided through an orifice 37 into a melt of ethylene-vinyl acetate copolymer heated and melted by a heater 36, continuously coated with a coating component, and then cooled. A plastic optical fiber with a coating 34 having a thickness of 0.30 mm was obtained. FIG. 7 is a graph showing the optical transmission characteristics of the plastic optical fiber thus obtained in the visible to near-infrared light range in terms of the relationship between wavelength and transmission loss. As is clear from FIG. 7, the lowest loss window was at 650 nm, and the loss value here was 30 dB/Km or less. Also, 576nm
There are also low-loss windows at 770nm and 848nm in the near-infrared light range, with windows of 35dB/Km, 50dB/Km and 848nm, respectively.
It can be seen that a loss value of less than 90 dB/Km was obtained, indicating that a plastic optical fiber with a copolymer core having significantly lower loss than conventional ones has been obtained.

なお、ここで甚いた重氎玠化したメチルメタク
リレヌト95モルずメチルアクリレヌトモル
の共重合䜓䞭の残存氎玠を90MHzにおける栞磁気
共鳎法で枬定したずころ、この残存氎玠は重合䜓
100圓り、0.95であ぀た。
In addition, 95 mol% of deuterated methyl methacrylate and 5 mol% of methyl acrylate used here
When the residual hydrogen in the copolymer was measured using nuclear magnetic resonance at 90MHz, it was found that the residual hydrogen in the copolymer was
It was 0.95g per 100g.

実斜䟋  実斜䟋においお、芯−さや構造を有する光フ
アむバを二重玡糞口金により抌出しおボ
ビンに巻取぀お埗たのち、これを十分な量のシリ
カゲルの入぀た也燥噚内に静眮した。16時間経過
埌、ボビンを取出し、盎ちに光フアむバを抌出機
に通しお溶融したポリ゚チレンで被芆を行い、プ
ラスチツク光フアむバを埗た。この光フアむバ
は、575nから705nにわたり30dBKm以䞋、
652〜662nでは20dBKm以䞋の極めお䜎損倱な
ものである。たた、760〜790nにわた぀お
50dBKm以䞋、855n前埌でも70dBKm以䞋で
あり、近赀倖光域でも著しく䜎損倱なプラスチツ
ク光フアむバであ぀た。
Example 4 In Example 1, the optical fiber 31 having a core-sheath structure was extruded using the double spinneret 30 and wound around a bobbin, and then it was placed in a dryer containing a sufficient amount of silica gel. I placed it. After 16 hours, the bobbin was removed, and the optical fiber was immediately passed through an extruder and coated with molten polyethylene to obtain a plastic optical fiber. This optical fiber has a wavelength of less than 30dB/Km from 575nm to 705nm.
It has an extremely low loss of 20 dB/Km or less at 652 to 662 nm. Also, over 760-790nm
It was a plastic optical fiber with extremely low loss even in the near-infrared region, with a loss of less than 50 dB/Km and less than 70 dB/Km even at around 855 nm.

以䞊説明したように、本発明方法によるプラス
チツク光フアむバは、埓来の重氎玠化しないメチ
ルメタクリレヌト単量䜓から぀くられた光フアむ
バに比べ、可芖光域〜近赀倖光域の広い範囲にわ
た぀お優れた光䌝送特性を有し、又、埓来の重氎
玠化したメチルメタクリレヌト単量䜓から぀くら
れた光フアむバに比べおも、光フアむバの吞湿に
䌎う氎分による光吞収や、塵埃の存圚による光散
乱の圱響のない、著しく䜎損倱なものである。特
に660n付近の波長における20dBKm以䞋ずい
぀た損倱倀は、プラスチツク光フアむバずしおは
損倱限定倀に近い、極䜎損倱プラスチツク光フア
むバずいえるものである。このように、本発明に
よるプラスチツク光フアむバは、著しく䜎損倱化
されおいるために、Km前埌の距離間の光信号䌝
送媒䜓ずしお、無機ガラス系光フアむバに比べ軜
量か぀可撓性に富む長所を生かした䜿甚法が可胜
になる利点を有する。
As explained above, the plastic optical fiber produced by the method of the present invention can be used over a wider range of visible light to near-infrared light than conventional optical fiber made from non-deuterated methyl methacrylate monomer. It has excellent optical transmission characteristics, and compared to conventional optical fibers made from deuterated methyl methacrylate monomers, it is less susceptible to light absorption due to moisture due to the optical fiber's moisture absorption and light absorption due to the presence of dust. It has no effect of scattering and has extremely low loss. In particular, the loss value of 20 dB/Km or less at a wavelength around 660 nm is close to the loss limit value for a plastic optical fiber, and can be said to be an extremely low loss plastic optical fiber. As described above, the plastic optical fiber according to the present invention has extremely low loss, so it can be used as an optical signal transmission medium over distances of about 1 km, and has the advantages of being lighter and more flexible than inorganic glass optical fiber. It has the advantage of being able to be used to the fullest.

曎に又、本発明方法によるプラスチツク光フア
むバは、䞊蚘のごずく660nに極めお䜎損倱の
窓があるため、衚瀺甚の安䟡なGaAlAs赀色発光
ダむオヌドを光源ずした経枈性に優れた光信号䌝
送システムを構成できる利点を有する。曎に加え
お、本発明方法によるプラスチツク光フアむバ
は、775n前埌で30dBKm以䞋、855n前埌で
70dBKm以䞋の損倱倀であり、光通信甚の近赀
倖光域レヌザヌダむオヌドや発光ダむオヌドを光
源ずしお䜿甚するこずができ、しかも無機ガラス
系光フアむバを甚いた光䌝送方匏ずの結合が容易
であるずいう利点を有する。
Furthermore, since the plastic optical fiber produced by the method of the present invention has an extremely low loss window at 660 nm as described above, it can constitute an economically efficient optical signal transmission system using an inexpensive GaAlAs red light emitting diode for display purposes as a light source. It has the advantage of being able to In addition, the plastic optical fiber produced by the method of the present invention has a wavelength of less than 30 dB/Km at around 775 nm and a wavelength of around 855 nm.
With a loss value of 70 dB/Km or less, near-infrared laser diodes and light emitting diodes for optical communications can be used as light sources, and it is easy to combine with optical transmission systems using inorganic glass optical fibers. It has the advantage of being

【図面の簡単な説明】[Brief explanation of drawings]

第図は埓来の方法によ぀お補造したプラスチ
ツク光フアむバの可芖光域における光䌝送特性
を、波長ず䌝送損倱ずの関係で瀺したグラフ、第
図は本発明方法に䜿甚したプラスチツク光フア
むバ補造装眮における芯成分の重合工皋の䞀具䜓
䟋を瀺した暡匏図、第図はその玡糞工皋の䞀具
䜓䟋を瀺した暡匏図、第図は本発明方法によ぀
お補造したプラスチツク光フアむバの暪断面抂略
図、第図は本発明方法実斜䟋によ぀お補
造したプラスチツク光フアむバの可芖〜近赀倖光
域における光䌝送特性を波長ず䌝送損倱ずの関係
で瀺したグラフ、第図は本発明方法実斜䟋
に䜿甚した光フアむバ甚コヌト機の䞀具䜓䟋
を瀺した暡匏図、第図は本発明方法実斜䟋
によ぀お補造したプラスチツク光フアむバの
可芖〜近赀倖光域における光䌝送特性を波長ず䌝
送損倱ずの関係で瀺したグラフである。   単量䜓だめ、  単量䜓蒞留釜、 
 冷华噚、  混合容噚、  混合物䟛絊
匁、  ドレンコツク、  重合開始剀だ
め、  重合開始剀蒞留釜、  連鎖移
動剀だめ、  連鎖移動剀蒞留釜、  
単量䜓混合物䟛絊管、  加・枛圧匁、
  重合容噚、  加・枛圧口、  枛
圧口、  重合䜓貯蔵タンク、  保枩
郚、  芯郚甚スクリナヌ抌出機、  
さや郚甚抌出機、  二重玡糞口金、 
 光フアむバ、  芯郚、  さや郚、
  被芆郚、  コヌト機、  ヒ
ヌタ、  オリフむス。
Figure 1 is a graph showing the optical transmission characteristics of plastic optical fibers manufactured by the conventional method in the visible light range in relation to wavelength and transmission loss, and Figure 2 is a graph of the plastic optical fibers used in the method of the present invention. FIG. 3 is a schematic diagram showing a specific example of the core component polymerization process in the manufacturing apparatus, FIG. 3 is a schematic diagram showing a specific example of the spinning process, and FIG. FIG. 5 is a graph showing the optical transmission characteristics of the plastic optical fiber produced by the method of the present invention (Example 1) in the visible to near-infrared light range in relation to wavelength and transmission loss. , FIG. 6 is a schematic diagram showing a specific example of an optical fiber coating machine used in the method of the present invention (Example 3), and FIG. 7 is a schematic diagram showing a plastic light coater manufactured by the method of the present invention (Example 3). 1 is a graph showing the optical transmission characteristics of a fiber in the visible to near-infrared light region in relation to wavelength and transmission loss. 1... Monomer reservoir, 2... Monomer distillation pot, 4...
...Cooler, 7...Mixing container, 8...Mixture supply valve, 9...Drain pot, 10...Polymerization initiator reservoir, 12...Polymerization initiator distillation pot, 13...Chain transfer agent reservoir, 15... Chain transfer agent distillation pot, 16...
Monomer mixture supply pipe, 17... pressure reduction valve, 18
... Polymerization container, 19 ... Pressure/decompression port, 21 ... Pressure reduction port, 22 ... Polymer storage tank, 26 ... Heat retention section, 27 ... Screw extruder for core section, 29 ...
Extruder for pod section, 30...Double spinneret, 31...
...Optical fiber, 32...Core part, 33...Sheath part,
34...Coating section, 35...Coating machine, 36...Heater, 37...Orifice.

Claims (1)

【特蚱請求の範囲】  重氎玠化したメチルメタクリレヌト重合䜓を
䞻成分ずする有機高分子化合物を含む芯ず該芯の
呚囲に該芯よりも屈折率の䜎い重合䜓を䞻成分ず
する有機高分子化合物を含むさやずよりなるプラ
スチツク光フアむバを補造するに圓り、芯を圢成
する有機高分子化合物のガラス転移枩床以䞊の枩
床で良奜な掻性を瀺すラゞカル重合開始剀を甚い
お、芯を圢成する有機高分子化合物の盞圓する単
量䜓を、芯を圢成する有機高分子化合物のガラス
転移枩床以䞊の枩床で密閉系䞭においお塊状重合
を行い、生成した有機高分子化合物及び該さやを
圢成する有機高分子化合物を玡糞口金を通しお溶
融玡糞した埌、盎ちに防湿性に優れた有機高分子
化合物で該光フアむバを被芆するこずを特城ずす
る䜎損倱プラスチツク光フアむバの補造方法。  芯を圢成する有機高分子化合物をそのガラス
転移枩床以䞋に䞋げるこずなく溶融玡糞装眮に䟛
絊する特蚱請求の範囲第項に蚘茉の䜎損倱プラ
スチツク光フアむバの補造方法。  芯を圢成する有機高分子化合物の盞圓する単
量䜓、重合開始剀及び連鎖移動剀を密閉系の装眮
内で枛圧䞋においお蒞留し、匕き続いお密閉系を
保぀たたたそれらの留分を混合埌塊状重合を行う
特蚱請求の範囲第項又は第項に蚘茉の䜎損倱
プラスチツク光フアむバの補造方法。
[Scope of Claims] 1. A core containing an organic polymer compound whose main component is a deuterated methyl methacrylate polymer, and an organic polymer whose main component is a polymer having a refractive index lower than that of the core, surrounding the core. In producing a plastic optical fiber consisting of a sheath containing a molecular compound, the core is formed using a radical polymerization initiator that exhibits good activity at a temperature higher than the glass transition temperature of the organic polymer compound forming the core. The corresponding monomer of the organic polymer compound is subjected to bulk polymerization in a closed system at a temperature higher than the glass transition temperature of the organic polymer compound forming the core, and the resulting organic polymer compound and the organic polymer forming the sheath are A method for producing a low-loss plastic optical fiber, which comprises melt-spinning a polymer compound through a spinneret and then immediately coating the optical fiber with an organic polymer compound having excellent moisture resistance. 2. The method for producing a low-loss plastic optical fiber according to claim 1, wherein the organic polymer compound forming the core is fed to a melt spinning device without lowering it below its glass transition temperature. 3. Distilling the corresponding monomers, polymerization initiator, and chain transfer agent of the organic polymer compound forming the core under reduced pressure in a closed system apparatus, and subsequently mixing these fractions while maintaining the closed system. A method for producing a low-loss plastic optical fiber according to claim 1 or 2, which comprises performing post-bulk polymerization.
JP57030612A 1982-03-01 1982-03-01 Production of low loss optical fiber of plastic Granted JPS58149003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57030612A JPS58149003A (en) 1982-03-01 1982-03-01 Production of low loss optical fiber of plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57030612A JPS58149003A (en) 1982-03-01 1982-03-01 Production of low loss optical fiber of plastic

Publications (2)

Publication Number Publication Date
JPS58149003A JPS58149003A (en) 1983-09-05
JPH0152724B2 true JPH0152724B2 (en) 1989-11-09

Family

ID=12308692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57030612A Granted JPS58149003A (en) 1982-03-01 1982-03-01 Production of low loss optical fiber of plastic

Country Status (1)

Country Link
JP (1) JPS58149003A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254005A (en) * 1984-05-30 1985-12-14 Mitsubishi Rayon Co Ltd Plastic optical transmissive fiber
JP2005049830A (en) 2003-07-14 2005-02-24 Fuji Photo Film Co Ltd Optical signal transmission system
CN103814319B (en) * 2011-09-14 2017-07-14 䞉菱化孊株匏䌚瀟 Plastic optical fiber cable

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100734A (en) * 1975-02-28 1976-09-06 Sumitomo Electric Industries
JPS5465556A (en) * 1977-10-14 1979-05-26 Du Pont Lowwdamping optical fibers of heavyyhydrogenized polymer
JPS55103504A (en) * 1979-02-01 1980-08-07 Nippon Telegr & Teleph Corp <Ntt> Production of plastic optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100734A (en) * 1975-02-28 1976-09-06 Sumitomo Electric Industries
JPS5465556A (en) * 1977-10-14 1979-05-26 Du Pont Lowwdamping optical fibers of heavyyhydrogenized polymer
JPS55103504A (en) * 1979-02-01 1980-08-07 Nippon Telegr & Teleph Corp <Ntt> Production of plastic optical fiber

Also Published As

Publication number Publication date
JPS58149003A (en) 1983-09-05

Similar Documents

Publication Publication Date Title
US4381269A (en) Fabrication of a low-loss plastic optical fiber
US4138194A (en) Low attenuation optical fiber of deuterated polymer
JPS6018963B2 (en) Method of manufacturing low-attenuation all-plastic optical fiber
US5111526A (en) Plastic optical fibers and process for the production thereof
JPH0610683B2 (en) Plastic fiber optic fiber
USRE34901E (en) Optical waveguide with polymer core and polymer cladding
EP0226020A2 (en) Plastic optical fibers and transparent resin used therefor
AU620864B2 (en) Optical waveguide
JPH0152724B2 (en)
US4779954A (en) Plastic optical fiber resistant to heat and humidity
JPS6120909A (en) Plastic optical fiber
USRE31868E (en) Low attenuation optical fiber of deuterated polymer
JPH0324641B2 (en)
NL9000661A (en) METHOD FOR MANUFACTURING OPTICAL FIBERS
CA2223380A1 (en) Acrylic flexible light pipe of improved photo-thermal stability
JPS6367164B2 (en)
US4889408A (en) Plastic optical fiber less attenuating light and process for producing the same
JPS63115106A (en) Plastic optical fiber
JPH07239420A (en) Wide range plastic optical fiber
JPH0323885B2 (en)
JPS5965803A (en) Plastic optical fiber of low loss
JPS5868003A (en) Plastic optical fiber with small loss and its manufacture
JPS64681B2 (en)
JPS597310A (en) Optical transmission fiber
JPS60222804A (en) Light transmitting fiber