JPH0152017B2 - - Google Patents

Info

Publication number
JPH0152017B2
JPH0152017B2 JP55097384A JP9738480A JPH0152017B2 JP H0152017 B2 JPH0152017 B2 JP H0152017B2 JP 55097384 A JP55097384 A JP 55097384A JP 9738480 A JP9738480 A JP 9738480A JP H0152017 B2 JPH0152017 B2 JP H0152017B2
Authority
JP
Japan
Prior art keywords
balloon
container
gas
subject
helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55097384A
Other languages
Japanese (ja)
Other versions
JPS5722743A (en
Inventor
Toshihito Okuda
Yoshio Nitsuta
Hirohisa Tsubakimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anima Corp
Original Assignee
Anima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anima Corp filed Critical Anima Corp
Priority to JP9738480A priority Critical patent/JPS5722743A/en
Publication of JPS5722743A publication Critical patent/JPS5722743A/en
Publication of JPH0152017B2 publication Critical patent/JPH0152017B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は人工呼吸時において被検者の残気量
の測定が可能な、人工呼吸時における残気量測定
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a residual air amount measuring device during artificial respiration, which is capable of measuring the residual air amount of a subject during artificial respiration.

平静呼気位で保持している肺内のガス量で平静
吸気位から吸い込むことが可能な最大吸気量であ
る予備吸気量と息を出来る限りはいた後で肺の中
に残つている空気量である残気量との和で示され
る機能的残気量(FRC)は人間の呼吸機能の目
安を知る上で重要である。
The amount of gas in the lungs held at the calm expiratory position is the maximum inspiratory volume that can be inhaled from the calm inspiratory position, and the amount of air remaining in the lungs after exhaling as much air as possible. Functional residual capacity (FRC), which is expressed as the sum of a certain residual capacity, is important in knowing the standard of human respiratory function.

例えば手術時に患者に麻酔をかけると患者の臓
器が弛緩し、肺の周囲に存在する例えば胃や腸な
どの臓器においても筋弛緩が発生する。このため
に肺自体も弛緩して肺内のガス量が減少し機能的
残気量(FRC)が減少することになる。機能的
残気量(FRC)が減少すると肺のガス交換機能
が不充分となり、体内への酸素の供給が充分行わ
れなくなる。
For example, when a patient is anesthetized during surgery, the patient's organs relax, and muscle relaxation also occurs in the organs surrounding the lungs, such as the stomach and intestines. This causes the lungs themselves to relax, reducing the amount of gas in the lungs and reducing functional residual capacity (FRC). When the functional residual capacity (FRC) decreases, the gas exchange function of the lungs becomes insufficient, and oxygen is not sufficiently supplied to the body.

従つて麻酔をかけて手術を行つている際に、患
者の機能的残気量(FRC)が所定値以下に減少
した場合には患者の肺内に送り込むガスの圧力を
増加させ謂ゆるピープ圧をかけて弛緩状態となつ
ている肺細胞内に強制的にガスを送り込むことが
必要である。従来の装置では機能的残気量
(FRC)の測定中に被検者の肺にピープ圧を印加
することができず、人工呼吸器と組合せて使用す
る場合の切換操作が必要で取扱いが不便であつ
た。
Therefore, during surgery under anesthesia, if the patient's functional residual capacity (FRC) decreases below a predetermined value, the pressure of the gas delivered into the patient's lungs is increased to increase the so-called peep pressure. It is necessary to force gas into the relaxed lung cells by applying Conventional devices cannot apply peep pressure to the subject's lungs while measuring functional residual capacity (FRC), and when used in conjunction with a ventilator, switching operations are required, making handling inconvenient. It was hot.

この発明は上述のような現状に鑑み、人工呼吸
装置を装着した状態から測定状態に簡単に切換え
て被検者の機能的残気量(FRC)を測定し、且
つその測定中にピープ圧を印加することが可能な
残気量測定装置を提供するものである。
In view of the above-mentioned current situation, this invention measures the functional residual capacity (FRC) of a subject by easily switching from the state in which the artificial respirator is attached to the measurement state, and also measures the peep pressure during the measurement. The present invention provides a residual air amount measuring device that can apply a residual air amount.

この発明では人工呼吸器からの呼気が与えられ
る流入口にバルン収容器が連通して取付けられ、
このバルン収容器にバルンが収容されている。一
方被検者の口腔部に連結される連結口が設けられ
この連結口及び流入口間の連結と連結口及びバル
ン内の連結とを切換える切換弁が取付けられる。
吸入管及び排出管がバルン内に挿入配設され、こ
の吸入管及び排出管流路内に熱伝導度ヘリウムセ
ンサが配設されてバルン内のヘリウムガス濃度が
測定される。又連結口に供給される呼気に対して
与えられるピープ圧に対応して熱伝導度ヘリウム
センサの雰囲気圧が変化してヘリウムセンサの検
出値の変動を補償する手段が設けられている。
In this invention, a balloon container is attached in communication with an inlet to which exhaled air from a respirator is given,
A balloon is accommodated in this balloon container. On the other hand, a connection port connected to the oral cavity of the subject is provided, and a switching valve is attached to switch between connection between the connection port and the inlet and connection between the connection port and the inside of the balloon.
A suction pipe and a discharge pipe are inserted into the balloon, and a thermal conductivity helium sensor is disposed within the flow path of the suction pipe and discharge pipe to measure the helium gas concentration within the balloon. Further, there is provided means for compensating for variations in the detected value of the helium sensor by changing the atmospheric pressure of the thermal conductivity helium sensor in response to the peep pressure applied to the exhaled air supplied to the connection port.

以下この発明の人工呼吸時における残気量測定
装置をその実施例に基づき図面を使用して詳細に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The apparatus for measuring residual air during artificial respiration according to the present invention will be described in detail below based on embodiments thereof, with reference to the drawings.

バルン14が収容されたバルン収容器11が人
工呼吸器Aからの呼気が与えられる流入口12に
連通され、被検者の口腔部に連結される連結口1
7及び流入口12間の連結と、連結口17及びバ
ルン14内の連結とを切換える三方向切換弁19
が設けられる。
A connecting port 1 in which a balloon container 11 containing a balloon 14 is communicated with an inlet 12 through which exhaled air from the artificial respirator A is given, and connected to the oral cavity of the subject.
7 and the inlet 12, and a three-way switching valve 19 that switches between the connection between the connection port 17 and the balloon 14;
is provided.

即ちほゞ正方体筒状の例えば合成樹脂材で形成
されたバルン収容器11が設けられ、このバルン
収容器11の一端面には連通口13が形成され、
バルン収容器11の一側面には加圧口20が形成
される。このバルン収容器11の容積はほゞ2
に形成されている。このバルン収容器11内に例
えばゴム製の容積が1.5のバルン14がその連
通口13と内部が連通するように配設されてい
る。バルン収容器11の連通口13の縁部がバル
ン収容器11側に折り曲げられ、このバルン14
の開口部15がこの連通口13の折り曲げられた
部分の廻りに図示していない手段によつて取付け
られ、この折り曲げられた部分の周囲で固定され
る。
That is, a balloon container 11 made of, for example, a synthetic resin material and having a substantially square cylindrical shape is provided, and a communication port 13 is formed in one end surface of the balloon container 11.
A pressurizing port 20 is formed on one side of the balloon container 11 . The volume of this balloon container 11 is approximately 2
is formed. A balloon 14 made of, for example, rubber and having a volume of 1.5 is disposed within the balloon container 11 so that its inside communicates with the communication port 13. The edge of the communication port 13 of the balloon container 11 is bent toward the balloon container 11, and the balloon 14
An opening 15 is attached around the bent portion of the communication port 13 by means not shown and fixed around the bent portion.

このバルン収容器11の連通口13に流管16
が接続される。この流管16の一端に近く流入口
12が設けられその流入口12側の端部は人工呼
吸器Aからの呼気或はバルン14内の測定用ガス
を切換えて被検者の口腔部側に与える連結口17
とされる。この流入口12と連結口17及び流管
16をそれぞれの流路としてこの切換えを行うよ
うに切換弁19が取付けられている。連結口17
には被検者の口腔部に取付けられるため流管16
と被検者の肺とを連結するマウスピース10が連
結可能な構造となつている。流管16の他端部に
は計量シリンダ21が取付けられ、この計量シリ
ンダ21の近傍において流管16に真空マノメタ
ー22が接続される。
A flow tube 16 is connected to the communication port 13 of this balloon container 11.
is connected. An inlet 12 is provided near one end of this flow tube 16, and the end on the inlet 12 side is used to switch the exhaled air from the respirator A or the measurement gas in the balloon 14 to the oral cavity side of the subject. connection port 17
It is said that A switching valve 19 is installed to perform this switching using the inlet 12, the connecting port 17, and the flow tube 16 as respective flow paths. Connection port 17
The flow tube 16 is attached to the oral cavity of the subject.
It has a structure in which a mouthpiece 10 that connects the mouthpiece and the lungs of the subject can be connected. A metering cylinder 21 is attached to the other end of the flow tube 16, and a vacuum manometer 22 is connected to the flow tube 16 near the metering cylinder 21.

真空マノメター22と連通口13の間において
流管16が三方向切換弁23を介して分岐されて
流管24が設けられる。流管24の端部は測定用
ガス用バルン25に接続され、この端部近くに測
定用ガス取入口26が設けられる。この測定用ガ
ス取入口26には被検者に対して測定用の換気に
使用するHe15%、O285%の混合された測定用ガ
スの充填されたボンベ27が接続される。弁23
と測定用ガス取入口26間において流管24に三
方向切換弁28が取付けられ、この弁28の取付
けられた位置において流管24に排出口29が設
けられている。
Between the vacuum manometer 22 and the communication port 13, the flow tube 16 is branched via a three-way switching valve 23, and a flow tube 24 is provided. The end of the flow tube 24 is connected to a measuring gas balloon 25, and a measuring gas inlet 26 is provided near this end. A cylinder 27 filled with a mixed measuring gas of 15% He and 85% O 2 used for ventilation of the subject is connected to the measuring gas intake port 26 . valve 23
A three-way switching valve 28 is attached to the flow tube 24 between the gas intake port 26 and the measurement gas intake port 26, and a discharge port 29 is provided in the flow tube 24 at the position where the valve 28 is attached.

バルン内に挿入された吸入管及び排出管を介し
てバルン内のHeガスの濃度を測定する熱伝導度
ヘリウムセンサが設けられる。
A thermal conductivity helium sensor is provided to measure the concentration of He gas within the balloon via an inlet tube and an outlet tube inserted into the balloon.

即ちバルン14内に吸入管30及び排出管31
のそれぞれの端部が図示していない手段で固定し
て配設される。その端部がバルン14内に位置す
る吸入管30はバルン14から導出されソーダラ
イムが充填されたソーダライム管32を通つてヘ
リウム分析器33の分析セル33―1に接続され
る。このヘリウム分析器33は収容体35内に配
設され、この収容体35は連管36でバルン収容
器11に連通される。ソーダライム管は筒径を可
能な限り大きくして交換頻度をなるべく少なくす
るのが望ましい。吸入管30のソーダライム管3
2とヘリウム分析器33の分析セル33―1の中
間位置にガス循環用のポンプ34が取付けられて
いる。排出管31はバルン14とヘリウム分析器
33の分析セル33―1間を直接連結した構成と
される。これらの吸入管30及び排出管31とし
てはそのデツドスペースを減少させガス流動の流
速を高速度に維持するため管の内径は0.5〜1mm
程度に設定される。
That is, an inlet pipe 30 and an outlet pipe 31 are provided in the balloon 14.
The ends of each are fixedly disposed by means not shown. The suction pipe 30, the end of which is located inside the balloon 14, is led out from the balloon 14 and connected to an analysis cell 33-1 of a helium analyzer 33 through a soda lime pipe 32 filled with soda lime. This helium analyzer 33 is disposed within a container 35, and this container 35 is communicated with the balloon container 11 through a connecting pipe 36. It is desirable to make the diameter of the soda lime pipe as large as possible to minimize the frequency of replacement. Soda lime pipe 3 of suction pipe 30
2 and the analysis cell 33-1 of the helium analyzer 33, a pump 34 for gas circulation is installed. The discharge pipe 31 is configured to directly connect the balloon 14 and the analysis cell 33-1 of the helium analyzer 33. The inner diameter of these suction pipes 30 and discharge pipes 31 is 0.5 to 1 mm in order to reduce the dead space and maintain a high gas flow velocity.
It is set to a certain degree.

ヘリウム分析器33に使用するヘリウムセンサ
としては例えば熱伝導度ヘリウムセンサが使用さ
れる。これは第4図に示すように白金線を熱して
これでホイートストン橋の一腕を構成し、これに
一定速度で被検ガスを流し当てるような構造のも
のである。各種のガスはそれぞれの比熱伝導度が
異なるので被検ガスを流すことにより白金線の温
度が変化しその抵抗値が変化するので、この抵抗
値変化をホイートストン橋で検出することにより
Heガスの濃度を測定することが可能である。
As the helium sensor used in the helium analyzer 33, for example, a thermal conductivity helium sensor is used. As shown in Figure 4, this is a structure in which a platinum wire is heated to form one arm of the Wheatstone bridge, and the gas to be detected is flowed against it at a constant speed. Various gases have different specific heat conductivities, so by flowing the test gas, the temperature of the platinum wire changes and its resistance value changes. By detecting this change in resistance value at the Wheatstone Bridge,
It is possible to measure the concentration of He gas.

連結口に供給される呼気に対して与えられるピ
ープ圧に応じてヘリウムセンサの検出値の変動を
補償する手段が設けられる。
Means is provided for compensating for variations in the detected value of the helium sensor depending on the peep pressure applied to the exhaled air supplied to the connection port.

即ちバルン収容器11の加圧口20に人工呼吸
器Aのベンチレータ18を連通させるようにして
人工呼吸器Aが取付けられ、このベンチレータ1
8は流管16の流入口12にも連結した状態とさ
れる。さらにこの取付け状態では人工呼吸器Aの
ベンチレータ18はヘリウム分析器33がその内
部に配設される収容体35に連管36を通して連
結されており、分析器33の比較セル33―2の
循環路と連通してバルン33―3が設けられてい
る。この循環路にガス循環用ポンプ34―4が取
付けられている。従つてベンチレータ18が駆動
されてバルン収容器11内の圧力が変化した時に
は、その圧力変化は連管36により収容体35に
伝達されバルン33―3内の圧力も変化するので
常にベンチレータ18の駆動により設定された圧
力条件下でヘリウム分析器33によつてHe濃度
の測定が行われることになる。
That is, the ventilator A is attached so that the pressurizing port 20 of the balloon container 11 communicates with the ventilator 18 of the ventilator A.
8 is also connected to the inlet 12 of the flow tube 16. Further, in this installed state, the ventilator 18 of the respirator A is connected to the container 35 in which the helium analyzer 33 is disposed through the connecting pipe 36, and the circulation path of the comparison cell 33-2 of the analyzer 33 is connected. A balloon 33-3 is provided in communication with the balloon 33-3. A gas circulation pump 34-4 is attached to this circulation path. Therefore, when the ventilator 18 is driven and the pressure inside the balloon container 11 changes, the pressure change is transmitted to the container 35 through the connecting pipe 36 and the pressure inside the balloon 33-3 also changes, so that the ventilator 18 is always driven. The He concentration will be measured by the helium analyzer 33 under the pressure conditions set by .

このような構成のこの発明の残気量測定装置の
動作を以下順を追つて説明する。最初切換弁19
の切換により流管16の流入口12と人工呼吸器
Aとを連通状態にする。この状態で麻酔をかけた
被検者の口腔部にマウスピース10を装着し切換
弁19を切換えて連結口17を介して被検者の口
腔部と人工呼吸器Aを連通し人工呼吸器Aを駆動
させて酸素ガスと空気を混合した呼吸用ガスをベ
ンチレータ18を作動させて強制的に被検者の肺
内に送り込んで人工呼吸を行わせる。
The operation of the residual air amount measuring device of the present invention having such a configuration will be explained in order below. First switching valve 19
By switching , the inlet 12 of the flow tube 16 and the respirator A are brought into communication. In this state, the mouthpiece 10 is attached to the oral cavity of the anesthetized subject, the switching valve 19 is switched, and the oral cavity of the subject is communicated with the respirator A via the connecting port 17. The ventilator 18 is actuated to forcibly feed breathing gas, which is a mixture of oxygen gas and air, into the lungs of the subject to perform artificial respiration.

弁23を切換えて流管16と計量シリンダ21
を連通した状態として計量シリンダ21の操作片
37を引いてバルン14内及び流管16内の残留
ガスを計量シリンダ21内に吸引する。次いで弁
28を切換えて流管24と排気口29を連通させ
弁23を切換えて計量シリンダ21を流管24と
連通させ、計量シリンダ21内に吸引していた残
留ガスを排気口29を通して外部に排気する。必
要に応じて弁23及び28を切換えて何度かバル
ン14内の排気を繰り返す。真空マノメータ22
によつてバルン14及び流管16内の真空度が所
定値に達したことを確認して排気を中止する。
By switching the valve 23, the flow pipe 16 and the measuring cylinder 21
The operation piece 37 of the metering cylinder 21 is pulled in a state in which the gases are in communication with each other, and the residual gas in the balloon 14 and the flow tube 16 is sucked into the metering cylinder 21. Next, the valve 28 is switched to communicate the flow tube 24 and the exhaust port 29, and the valve 23 is switched to communicate the metering cylinder 21 with the flow tube 24, so that the residual gas sucked into the metering cylinder 21 is discharged to the outside through the exhaust port 29. Exhaust. The valves 23 and 28 are switched as necessary to repeatedly evacuate the inside of the balloon 14. Vacuum manometer 22
After confirming that the degree of vacuum within the balloon 14 and flow tube 16 has reached a predetermined value, evacuation is stopped.

弁23を切換えて流管24と計量シリンダ21
とを連通状態とし、弁28を切換えて測定用ガス
バルン25と流管24を連通させる。測定用ガス
バルン25内の測定用ガスが不足の場合には、図
示していないコツクを操作して必要量だけボンベ
27から測定用ガスを測定用ガスバルン25内に
取り入れることが可能である。計量シリンダ21
を操作して所定量の測定用ガスを計量して計量シ
リンダ21内に吸い込む。次いで弁23を切換え
て流管16と計量シリンダ21とを連通状態に
し、計量シリンダ21の操作片37を押し込んで
計量シリンダ21内の計量された測定用ガスをバ
ルン14内に送り込む。測定用ガスのバルン14
内への供給を完了した状態で弁23を切換えて流
管16の弁23側の端部を閉じる。
By switching the valve 23, the flow pipe 24 and the measuring cylinder 21
The measurement gas balloon 25 and the flow tube 24 are brought into communication by switching the valve 28. When the measurement gas in the measurement gas balloon 25 is insufficient, it is possible to take the required amount of measurement gas into the measurement gas balloon 25 from the cylinder 27 by operating a pot (not shown). Measuring cylinder 21
is operated to measure and suck a predetermined amount of gas for measurement into the measuring cylinder 21. Next, the valve 23 is switched to bring the flow pipe 16 and the metering cylinder 21 into communication, and the operation piece 37 of the metering cylinder 21 is pushed in to send the measured gas in the metering cylinder 21 into the balloon 14 . Measuring gas balloon 14
When the supply to the inside is completed, the valve 23 is switched to close the end of the flow pipe 16 on the valve 23 side.

この状態ではバルン14、吸入管30、排出管
31及び流管16が閉じた空間系を形成し、その
空間系内に所定量の測定用ガスが供給されてい
る。この状態でHe分析器33のHe濃度の指示値
が安定したことを確認し、図示していない調整つ
まみによつてこの状態をHe濃度指示計の目盛100
に設定する。この状態は模式的に示すと第2図の
ようになり、バルン14の容積を1.5とし流管
16、吸入管30及び排出管31などで構成され
るデツドスペースをDSとすると系中のHeの量は
次式で表わされる。
In this state, the balloon 14, the suction pipe 30, the discharge pipe 31, and the flow pipe 16 form a closed space system, into which a predetermined amount of measurement gas is supplied. In this state, confirm that the indicated value of the He concentration on the He analyzer 33 is stable, and use the adjustment knob (not shown) to adjust this state to 100 on the scale of the He concentration indicator.
Set to . This state is schematically shown in Figure 2. If the volume of the balloon 14 is 1.5 and the dead space consisting of the flow pipe 16, suction pipe 30, discharge pipe 31, etc. is DS, then the amount of He in the system is is expressed by the following formula.

(1.5+DS)×100 ……(1) 但し、×100はバルン14に初期設定するHe15
%、O285%混合ガスの初期He分析値、つまり
He15%をHe分析器33のメータ指示上100と置
いたものである。
(1.5 + DS) × 100 ... (1) However, × 100 is the initial setting of He15 in balloon 14.
%, initial He analysis value of O2 85% mixed gas, i.e.
15% He is set as 100 on the meter reading of the He analyzer 33.

次に切換弁19を切換えて連結口17と流管1
6を連通させバルン14内とマウスピース10を
介して被検者の肺とを連結状態にする。被検者は
バルン14内の測定用ガスにより呼吸を継続す
る。測定用ガスに含まれるHeは被検者の肺胞に
達しても血中へ吸収されないので被検者の肺L中
に拡散し数分後には一定の濃度になる。He濃度
が平衡に達した時点では第3図に示すような状態
となり、機能的残気量をFRC、ATPS(測定器系
の測定時における温度、気圧及び水蒸気飽和の状
態を指す)への補正係数をBTPS、ソーダライム
に吸着されたCO2の量を△VSとし、平衡時にお
けるHe濃度をxとすれば系内のHe量は次式で表
される。
Next, switch the switching valve 19 to connect the connecting port 17 and the flow pipe 1.
6 is brought into communication with the inside of the balloon 14 and the lungs of the subject via the mouthpiece 10. The subject continues to breathe using the measurement gas in the balloon 14. He contained in the measurement gas is not absorbed into the blood even if it reaches the alveoli of the subject, so it diffuses into the lungs L of the subject and reaches a constant concentration after a few minutes. When the He concentration reaches equilibrium, the state will be as shown in Figure 3, and the functional residual air amount will be corrected to FRC and ATPS (referring to the state of temperature, pressure, and water vapor saturation at the time of measurement with the measuring instrument system). If the coefficient is BTPS, the amount of CO 2 adsorbed by soda lime is ΔVS, and the He concentration at equilibrium is x, the amount of He in the system is expressed by the following equation.

(1.5+DS+FRC/BTPS−△VS)×x ……(2) 但し、×xはHe(15%)の初期設定値をメータ
指示上100とおいたHe分析器33の指示計の指示
値である。
(1.5 + DS + FRC / BTPS - △VS) ×x ... (2) However, ×x is the indicated value of the indicator of the He analyzer 33, where the initial setting value of He (15%) is set as 100 on the meter indication.

(1)、(2)式で表わされる系内のHe量は等しいの
で両式を等号で結んで1.5+D・S=Mとして(3)
式が得られる。
Since the amount of He in the system expressed by equations (1) and (2) is equal, connect both equations with an equal sign and set 1.5+D・S=M (3)
The formula is obtained.

FRC=(100M/x−M+△VS)BTPS ……(3) BTPSは被検者の体内の温度とバルン内の温度
との差に基づく補正係数で37℃1気圧の条件下に
補正するものである。He濃度を測定後切換弁1
9を切換えて被検者の口腔部とバルン14内の連
結を遮断し被検者の口腔部と流入口12を介して
人工呼吸器Aとを連結する。この状態で被検者に
は人工呼吸器Aが装着され人工呼吸が施される状
態に復帰する。次いで弁23を切換えて流管16
を計量シリンダ21に連結する。計量シリンダ2
1の操作片37を引いてバルン14内の排気ガス
を計量シリンダ21内に吸引しガス量を計量す
る。最初にバルン14内に送り込んだ測定用ガス
量とHe濃度測定後に計量シリンダ21で計量さ
れたガス量の差がソーダライムに吸着されたCO2
の量△VSとなる。Mは測定系の容積で与えられ
△VSが計量値により与えられるので、He濃度を
測定すると(3)式よりFRCを求めることができる。
あらかじめ被検者の予備呼気量ERVをスパイロ
メトリーで測定しておけば、残気量は機能的残気
量(FRC)―予備呼気量(ERV)として求める
ことが可能である。
FRC=(100M/x-M+△VS)BTPS...(3) BTPS is a correction coefficient based on the difference between the temperature inside the subject's body and the temperature inside the balloon, and is corrected under the conditions of 37℃ and 1 atm. It is. After measuring He concentration, selector valve 1
9 to cut off the connection between the subject's oral cavity and the inside of the balloon 14, and connect the subject's oral cavity to the respirator A via the inlet 12. In this state, the subject returns to the state where the artificial respirator A is attached and artificial respiration is performed. Then, the valve 23 is switched to open the flow pipe 16.
is connected to the measuring cylinder 21. Measuring cylinder 2
The exhaust gas in the balloon 14 is sucked into the measuring cylinder 21 by pulling the operating piece 37 of No. 1, and the amount of gas is measured. The difference between the amount of measurement gas initially sent into the balloon 14 and the amount of gas measured by the measuring cylinder 21 after measuring the He concentration is the CO 2 adsorbed by the soda lime.
The amount of is △VS. Since M is given by the volume of the measurement system and ΔVS is given by the measured value, FRC can be found from equation (3) when the He concentration is measured.
If the subject's expiratory reserve volume (ERV) is measured in advance using spirometry, the residual volume can be determined as functional residual capacity (FRC) - expiratory reserve volume (ERV).

この発明においてはピープ圧をかけた状態で
He濃度の測定を行うことができる。このピープ
圧の印加は人工呼吸器Aのベンチレータ18の駆
動によつて行われる。He濃度の測定状態におい
てベンチレータ18を駆動してバルン収容器11
内にピープ圧Pを印加すると同時にヘリウム分析
器33の収容体35にも同じピープ圧Pが印加さ
れ、第5図に示すようにこのピープ圧Pによつて
バルン14の容積が△Vだけ減少したものとしソ
ーダライムに吸着されたCO2の量を△V′S、大気
圧をP0としピープ圧Pを印加した状態でのHe濃
度をxp(%)とすると系のHe量は次式で表わされ
る。
In this invention, with peep pressure applied
Helium concentration can be measured. Application of this peep pressure is performed by driving the ventilator 18 of the respirator A. When the He concentration is being measured, the ventilator 18 is driven and the balloon container 11 is
At the same time, the same peep pressure P is applied to the container 35 of the helium analyzer 33, and as shown in FIG. 5, the volume of the balloon 14 is reduced by ΔV as shown in FIG. Assuming that the amount of CO 2 adsorbed by soda lime is △V′S, the atmospheric pressure is P 0 , and the He concentration with peep pressure P applied is x p (%), the amount of He in the system is as follows. It is expressed by the formula.

(1.5+DS−△V+FRC/BTPS−△V′S)×xp ……(4) (4)式で△V=(1.5+DS)×P/P0+P、△V′S= P0/P0+P×△VSであるから、これを用い(1)式と(4) 式を等号で結んで次式が得られる。 (1.5+DS−△V+FRC/BTPS−△V′S)×x p ……(4) In equation (4), △V=(1.5+DS)×P/P 0 +P, △V′S= P 0 /P Since 0 +P×△VS, using this and connecting equations (1) and (4) with an equal sign, the following equation can be obtained.

FRC=(100/xpM−M+P/P0+P・M +P0/P0+P・△V′S)BTPS ……(5) 即ちピープ圧Pを印加した状態でHeの濃度Xp
を測定することによつて(5)式から機能的残気量
(FRC)を求めることができる。
FRC=(100/x p M−M+P/P 0 +P・M +P 0 /P 0 +P・△V′S) BTPS ……(5) In other words, He concentration X p with peep pressure P applied
By measuring , the functional residual capacity (FRC) can be calculated from equation (5).

ピープ圧Pを印加してバルン収容器11内の圧
力が増加するとこの圧力が連管36を通して収容
体35に供給されているので、比較セル33―2
バルン33―3の内圧も増加しヘリウム分析器3
3は増加した圧力条件下で作動する。つまり、ベ
ンチレータ18の往復駆動によつてバルン14―
肺内の加圧、減圧による圧力変化に伴つて、分析
セル33―1の内圧が変動するが同時にヘリウム
分析器33の比較セル33―2の内圧もバルン3
3―3に印加されるベンチレータ18の圧力によ
つて変動する。従つてピープ圧Pに対応してヘリ
ウムセンサ33の検出値に生ずる変動は常に補償
される。
When the pressure inside the balloon container 11 increases by applying the peep pressure P, this pressure is supplied to the container 35 through the connecting pipe 36, so that the comparison cell 33-2
The internal pressure of balloon 33-3 also increases and helium analyzer 3
3 operates under increased pressure conditions. In other words, by reciprocating the ventilator 18, the balloon 14-
As pressure changes due to pressurization and depressurization in the lungs, the internal pressure of the analysis cell 33-1 fluctuates, but at the same time the internal pressure of the comparison cell 33-2 of the helium analyzer 33 changes as well.
It varies depending on the pressure of the ventilator 18 applied to 3-3. Therefore, fluctuations occurring in the detected value of the helium sensor 33 in response to the peep pressure P are always compensated for.

なお実施例には明示してないが、マウスピース
10部分には滅菌フイルタを取付けて使用するの
が衛生上望ましい。又バルン収容器11の一部を
透明にして内部に収容されるバルン14を外部か
ら監視可能な構造とすることもできる。又弁を手
動操作する場合には軽く回転し易い構造とし、手
動切換時の音や切換感触により切換状態が明確に
把握できるものとすることも可能である。
Although not explicitly shown in the embodiments, it is desirable for hygiene reasons to attach a sterilization filter to the mouthpiece 10 portion. Further, a part of the balloon container 11 can be made transparent so that the balloon 14 stored therein can be monitored from the outside. In addition, when the valve is operated manually, it may be structured so that it can be easily rotated, so that the switching state can be clearly understood by the sound and feel of switching manually.

以上詳細に説明したようにこの発明によると機
能的残気量(FRC)をピープ圧を印加した状態
で測定することが可能で、且つピープ圧の印加に
よるHeセンサの検出値の変動が常に補償された
状態での測定が可能な人工呼吸時における残気量
測定装置を提供することができる。
As explained in detail above, according to the present invention, it is possible to measure the functional residual capacity (FRC) while applying peep pressure, and the variation in the detected value of the He sensor due to the application of peep pressure is always compensated for. It is possible to provide a device for measuring residual air during artificial respiration, which is capable of measuring the amount of residual air in a state of

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例の構成を示すブロツ
ク図、第2図及び第3図はピープ圧を印加しない
状態での残気量の測定原理を示す図、第4図は
He濃度計の原理を示す図、第5図はピープ圧を
印加した状態での残気量の測定原理を示す図であ
る。 11:バルン収容器、12:流入口、13:連
通口、14:バルン、16:流管、17:連結
口、18:ベンチレータ、19:切換弁、21:
計量シリンダ、23,28:弁、30:吸入管、
31:排出管、33:ヘリウム分析器、33―
1:分析セル、33―2:比較セル、33―3:
バルン、35:収容体、36:連管。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIGS. 2 and 3 are diagrams showing the principle of measuring the residual air amount without applying peep pressure, and FIG.
FIG. 5 is a diagram showing the principle of the He concentration meter, and is a diagram showing the principle of measuring the amount of residual air when peep pressure is applied. 11: Balloon container, 12: Inflow port, 13: Communication port, 14: Balloon, 16: Flow pipe, 17: Connection port, 18: Ventilator, 19: Switching valve, 21:
Measuring cylinder, 23, 28: valve, 30: suction pipe,
31: Discharge pipe, 33: Helium analyzer, 33-
1: Analysis cell, 33-2: Comparison cell, 33-3:
Balloon, 35: Container, 36: Connecting pipe.

Claims (1)

【特許請求の範囲】 1 人工呼吸器Aを装着した状態から測定状態に
簡単に切換えて被検者の機能的残気量を測定する
測定装置において、 前記人工呼吸器Aから呼気が与えられる流入口
12と連通されたバルン収容器11と、 その収容器11に収容された第1バルン14
と、 被検者の口腔部に連結される連結口17と、 その連結口17及び前記流入口12間の連結と
前記連結口17及び前記第1バルン14内の連結
とを切換える切換弁19と、 前記第1バルン14内に挿入される吸入管30
及び排出管31を介して第1バルン14内のヘリ
ウムガスが分析セル33―1に供給されその濃度
を測定する熱伝導度ヘリウムセンサ33と、 そのヘリウムセンサ33の比較セル33―2の
循環路と連通した第2バルン33―3と、 ヘリウムセンサ33、第2バルン33―3を収
容した収容体35と その収容体35及び前記バルン収容器11に連
通されると共に前記人工呼吸器Aのベンチレータ
18と連通された連管36とを有し、 前記人工呼吸器Aのベンチレータ18によつて
前記収容体35及び前記バルン収容器11内にピ
ープ圧を印加することを特徴とする人工呼吸時に
おける残気量測定装置。
[Scope of Claims] 1. A measurement device that measures the functional residual capacity of a subject by easily switching from a state in which a respirator A is attached to a measurement state, comprising: A balloon container 11 communicating with the inlet 12, and a first balloon 14 accommodated in the container 11.
a connection port 17 connected to the oral cavity of the subject; a switching valve 19 that switches between connection between the connection port 17 and the inlet 12 and connection between the connection port 17 and the inside of the first balloon 14; , a suction pipe 30 inserted into the first balloon 14
The helium gas in the first balloon 14 is supplied to the analysis cell 33-1 via the discharge pipe 31 and the thermal conductivity helium sensor 33 measures its concentration, and the circulation path of the comparison cell 33-2 of the helium sensor 33. a second balloon 33-3 communicating with the helium sensor 33 and a container 35 containing the second balloon 33-3; a container 35 communicating with the container 35 and the balloon container 11 and a ventilator of the respirator A; 18, and a peep pressure is applied within the container 35 and the balloon container 11 by the ventilator 18 of the artificial respirator A. Residual air measurement device.
JP9738480A 1980-07-16 1980-07-16 Measuring device for amount of remaining air in case of artificial breathing Granted JPS5722743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9738480A JPS5722743A (en) 1980-07-16 1980-07-16 Measuring device for amount of remaining air in case of artificial breathing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9738480A JPS5722743A (en) 1980-07-16 1980-07-16 Measuring device for amount of remaining air in case of artificial breathing

Publications (2)

Publication Number Publication Date
JPS5722743A JPS5722743A (en) 1982-02-05
JPH0152017B2 true JPH0152017B2 (en) 1989-11-07

Family

ID=14191008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9738480A Granted JPS5722743A (en) 1980-07-16 1980-07-16 Measuring device for amount of remaining air in case of artificial breathing

Country Status (1)

Country Link
JP (1) JPS5722743A (en)

Also Published As

Publication number Publication date
JPS5722743A (en) 1982-02-05

Similar Documents

Publication Publication Date Title
US4188946A (en) Controllable partial rebreathing anesthesia circuit and respiratory assist device
AU689371B2 (en) A pneumatic system for a ventilator
US3898987A (en) Breathing responsive device and method
US5038792A (en) Oxygen consumption meter
US4502481A (en) Device for manually ventilating a patient
JP3043810B2 (en) Respiratory calorimeter with bidirectional flow monitor
US4301810A (en) Ventilatory muscle training apparatus
US20060201507A1 (en) Stand-alone circle circuit with co2 absorption and sensitive spirometry for measurement of pulmonary uptake
US5957128A (en) Method and device for determination of the functional residual capacity (FRC)
US20090090359A1 (en) Respiratory Anaesthesia Apparatus with Device for Measuring the Xenon Concentration
US20070062534A1 (en) Breathing circuits to facilitate the measurement of cardiac output during controlled and spontaneous ventilation
JPH07155378A (en) Respiration gas feeder
US8925549B2 (en) Flow control adapter for performing spirometry and pulmonary function testing
JPH0223832B2 (en)
JP2007083033A (en) DEVICE FOR SINGLE-BREATH MEASUREMENT OF DIFFUSING CAPACITY (DLco) OF LUNG
JP2795726B2 (en) Device for measuring unknown parameters of test gas
JP3531215B2 (en) Medical oxygen gas supply device
CN107412930A (en) A kind of respiratory assistance apparatus
JP3020606B2 (en) Oxygen consumption meter
WEAVER et al. A practical procedure for measuring functional residual capacity during mechanical ventilation with or without PEEP
JPH0152017B2 (en)
CN110681013A (en) Nonlinear air resistance and flushing module and breathing machine
US5542414A (en) Gas supplying head enclosure with expandable pressure indicator
JPH0584302A (en) Method and device for reducing tidal air exchange of lung
JP2001095921A (en) Method and system for anesthetization