JPH0151960B2 - - Google Patents

Info

Publication number
JPH0151960B2
JPH0151960B2 JP57172235A JP17223582A JPH0151960B2 JP H0151960 B2 JPH0151960 B2 JP H0151960B2 JP 57172235 A JP57172235 A JP 57172235A JP 17223582 A JP17223582 A JP 17223582A JP H0151960 B2 JPH0151960 B2 JP H0151960B2
Authority
JP
Japan
Prior art keywords
furnace
carbonization
furnace body
combustion
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57172235A
Other languages
Japanese (ja)
Other versions
JPS5963598A (en
Inventor
Ume Matsuoka
Akira Koizumi
Jun Ishihama
Masayuki Sugyama
Noboru Yamashita
Kaoru Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO HOSHASEN IGAKU SOGO KENKYUSHOCHO
NIIGATA TETSUKOSHO KK
Original Assignee
KAGAKU GIJUTSUCHO HOSHASEN IGAKU SOGO KENKYUSHOCHO
NIIGATA TETSUKOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO HOSHASEN IGAKU SOGO KENKYUSHOCHO, NIIGATA TETSUKOSHO KK filed Critical KAGAKU GIJUTSUCHO HOSHASEN IGAKU SOGO KENKYUSHOCHO
Priority to JP17223582A priority Critical patent/JPS5963598A/en
Publication of JPS5963598A publication Critical patent/JPS5963598A/en
Publication of JPH0151960B2 publication Critical patent/JPH0151960B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】 本発明は、完全にガス洩れを防止しかつ粉塵の
発生を少なくした汚泥等の乾留焼却方法及び装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for carbonizing sludge, etc., which completely prevents gas leakage and reduces the generation of dust.

従来、脱水汚泥等の高含水可燃物を乾燥焼却す
る装置としては、多段式乾留装置が用いられるこ
とが多い。この装置は第1図に示すように通常の
多段焼却炉と同じ構造の多段乾留炉1、再燃焼炉
2、熱風発生炉3等から構成されている。上記多
段乾留炉1は堅形円筒状の鋼板製の外殻1aを有
し、この外穀の内側に耐火材1bが内張りされて
いる。さらに耐火煉瓦の炉床1cで多段に仕切ら
れている。この多段乾留炉1の中心には、縦方向
の回転軸1dが設けられ、、この回転軸1dには
金属製のアーム1eが取付けられている。この多
段乾留炉1の上部の投入口1fより、例えば脱水
汚泥のような被処理物を投入するとともに、多段
乾留炉1下方の熱風導入口1gより熱風発生炉3
で発生された加熱用熱風を吹込む。被処理物はア
ーム1eによつて撹拌されながら乾燥されつつ、
一段おきに仕切段の中心部および周部より下段に
落されて、徐々に下方に移動する。この多段乾留
炉1の下方段は乾留帯となつており、この部分に
一般的な焼却炉に比べて少ない空気が空気導入口
1hより吹込まれる。乾燥した被処理物は乾留帯
で乾留が行われ、乾留物は外部へ取り出される。
乾留帯で発生した可燃性ガスは、上記熱風ととも
に、上部の乾燥帯で被処理物を乾燥せしめた後、
排ガスは排ガス導出口1iより導出され再燃焼炉
2へ導入される。再燃焼炉2には排ガス中の可燃
性ガスを完全に燃焼させるため、空気Aさらに必
要に応じて燃料Bが吹込まれる。また熱風発生炉
3には、熱風を発生させるための空気Aおよび燃
料Bが導入されている。ところで、上記多段乾留
炉1は、通常の被処理物を対象としているため、
特殊な被処理物を処理するには問題がある。例え
ばアルフア線を放出する放射性物質を多数の動物
に投与し、その影響を研究する実験施設等では、
放射性物質で汚染した糞、尿、食べ残し飼料等が
大量に発生する。これらを洗浄した排水はそのま
ま放流することが出来ないので、含有する有機物
を微生物処理し、さらに活性炭吸着処理等を行な
つた後放流する。このような排水処理設備から発
生する高水分汚泥(例えば含有水分98%程度の動
物の糞、飼料、余剰汚泥等)は腐敗性がありかつ
量が多いため、そのまま貯蔵することは出来な
い。水分を10%以下となるように乾燥すれば腐敗
しにくいが、大きな減容はできずかつ吸湿すれば
腐敗するので、長期間の保管は極めて困難であ
る。この汚泥を大きな減容比で安定な状態にする
ためには焼却処理するのが最適である。しかしこ
のような汚泥を焼却する場合、上記のような装置
では次のような問題点がある。
Conventionally, a multistage carbonization apparatus is often used as an apparatus for drying and incinerating highly water-containing combustible materials such as dehydrated sludge. As shown in FIG. 1, this apparatus is comprised of a multistage carbonization furnace 1, a reburning furnace 2, a hot air generating furnace 3, etc., which have the same structure as a normal multistage incinerator. The multi-stage carbonization furnace 1 has a rigid cylindrical outer shell 1a made of a steel plate, and the inner side of the outer shell is lined with a refractory material 1b. Furthermore, it is divided into multiple stages by a firebrick hearth 1c. A vertical rotating shaft 1d is provided at the center of the multistage carbonization furnace 1, and a metal arm 1e is attached to this rotating shaft 1d. The material to be treated, such as dehydrated sludge, is inputted into the input port 1f at the top of the multistage carbonization furnace 1, and the hot air generating furnace 3 is input through the hot air inlet 1g at the bottom of the multistage carbonization furnace
Blow in hot air for heating generated by The object to be treated is dried while being stirred by the arm 1e,
Every other step is dropped from the center and periphery of the partition step to the lower step and gradually moves downward. The lower stage of this multi-stage carbonization furnace 1 is a carbonization zone, and a smaller amount of air than in a general incinerator is blown into this area from the air inlet 1h. The dried material to be treated is carbonized in a carbonization zone, and the carbonized product is taken out to the outside.
The flammable gas generated in the carbonization zone is used together with the hot air to dry the material to be treated in the upper drying zone.
The exhaust gas is led out from the exhaust gas outlet 1i and introduced into the reburning furnace 2. In order to completely burn the combustible gas in the exhaust gas, air A and fuel B are blown into the reburning furnace 2 as necessary. Moreover, air A and fuel B for generating hot air are introduced into the hot air generating furnace 3. By the way, since the above-mentioned multistage carbonization furnace 1 is intended for ordinary processing objects,
There are problems when processing special objects. For example, in experimental facilities that administer alpha-emitting radioactive substances to large numbers of animals and study their effects,
Large amounts of feces, urine, uneaten feed, etc. contaminated with radioactive materials will be generated. Since the waste water that has been washed cannot be discharged as it is, the organic matter contained therein is treated with microorganisms, and then treated with activated carbon adsorption and the like before being discharged. High-moisture sludge (for example, animal excrement, feed, surplus sludge, etc. with a water content of about 98%) generated from such wastewater treatment facilities is perishable and in large quantities, so it cannot be stored as is. If it is dried to a moisture content of 10% or less, it will not spoil easily, but it is extremely difficult to store it for a long time because it cannot be reduced in volume significantly and will rot if it absorbs moisture. In order to bring this sludge into a stable state with a large volume reduction ratio, it is best to incinerate it. However, when incinerating such sludge, the above-mentioned apparatus has the following problems.

(1) 装置の気密性に対する配慮が少ない。例えば
軸封にはサンドシールが使われる等厳密なシー
ルがされていない。このため微量のダストの外
気放散も避けなければならない放射性物質、特
にアルフア核種を含む廃棄物の処理は不適当で
ある。
(1) There is little consideration given to the airtightness of the equipment. For example, the shaft seal is not strictly sealed, such as using a sand seal. For this reason, it is inappropriate to dispose of waste containing radioactive materials, especially alpha nuclides, which must also avoid dispersing small amounts of dust into the outside air.

(2) 炉内の耐火材および耐火煉瓦等の寿命が短か
いので、点検、補修頻度が高く、放射性物質等
を含有する被処理物を処理する場合には、炉内
の粉塵の飛散防止、補修作業者の保護対策その
他に多大な費用、労力を必要とする。
(2) Since the lifespan of the refractory materials and refractory bricks inside the furnace is short, inspections and repairs are frequent, and when processing objects containing radioactive materials, etc., it is necessary to prevent the scattering of dust inside the furnace. A large amount of cost and effort is required in addition to protective measures for repair workers.

(3) 炉の内張りに耐火材を使用し、多段に仕切る
炉床に耐火練瓦を使用しているため炉の小型化
が困難で通常の汚泥焼却炉などと比較して処理
量の少ない放射性の被処理物の乾留焼却炉には
適用しにくい。
(3) Because the lining of the furnace is made of refractory material and the multi-tiered hearth is made of refractory bricks, it is difficult to miniaturize the furnace, and the amount of radioactive materials that can be processed is lower than that of ordinary sludge incinerators. It is difficult to apply this method to carbonization incinerators for materials to be treated.

(4) 加熱熱源として熱風を多段炉内に吹込むた
め、排ガス量が多くなるとともにガス流速が早
くなり排ガス中の粉塵量(通常5.6〜19.0g/
Nm3程度)が多い。このため排ガス中の放射性
物質が厳しく規制されている放射性物質を含む
被処理物の処理には不適当である。
(4) Since hot air is blown into the multistage furnace as a heating heat source, the amount of exhaust gas increases and the gas flow rate increases, reducing the amount of dust in the exhaust gas (usually 5.6 to 19.0g/
(about Nm 3 ). Therefore, it is unsuitable for processing objects containing radioactive substances, for which radioactive substances in exhaust gas are strictly regulated.

(5) 耐火材や耐火煉瓦の表面は多孔性でかつ加熱
により細かいクラツクが発生するので、この部
分に被処理物が蓄積し、その除去が困難であ
る。(放射性物質による汚染を除去することを
除染という) 本発明は上記の事情に鑑みてなしたもので、金
属製多段炉とサイクロン型再燃焼炉とを主体に
し、排ガス量が少なくかつ排ガス中に含有する粉
塵量も可及的に少なくできる汚泥等の乾燥焼却方
法及び装置を提供するものである。
(5) The surfaces of refractory materials and refractory bricks are porous and fine cracks are generated by heating, so substances to be treated accumulate in these areas and are difficult to remove. (Removal of contamination by radioactive substances is called decontamination.) The present invention was made in view of the above circumstances, and is mainly based on a metal multi-stage furnace and a cyclone-type afterburning furnace, and the amount of exhaust gas is small and the exhaust gas is The purpose of the present invention is to provide a method and apparatus for drying and incinerating sludge, etc., which can reduce the amount of dust contained in the sludge as much as possible.

以下本発明の一実施例を図面を参照して詳細に
説明する。第2図ないし第4図は本発明を放射性
物質を含有する汚泥の処理に適用した場合の実施
例で、第2図は装置の概略構成図である。放射性
物質を含有する高水分汚泥Dは適量の可燃性の脱
水助材E(例えば木粉、乾燥汚泥等)が混合され、
脱水機11より脱水される。脱水機11として例
えば高圧縮真空吸引式脱水機を使用すれば、前記
高水分汚泥は水分50〜60%程度に脱水され、脱水
ケーキFとして脱水ケーキホツパ12に一時貯蔵
される。なおHは液である。この貯蔵された脱
水ケーキFは、図示しないフイーダで金属製の多
段炉21の上部に投入される。この際ホツパ、フ
イーダは多段炉21の気密性を保持して脱水ケー
キFの投入が出来るようになつている。投入され
た脱水ケーキFは金属製の多段炉21の上方より
下方へ順次移行しつつ乾燥帯域、乾留帯域を通過
する。さらに燃焼帯域で多段炉21の下部から量
を制限して導入される空気Aによつて燃焼し、下
部より灰Gとなつて取出され、密封された状態で
安全に保管される。また多段炉21の上部から排
出される燃焼ガス、乾留生成ガスおよび脱水ケー
キより発生した水蒸気は、サイクロン型の再燃焼
炉31に送られる。再燃焼炉31に導入された可
燃性の乾留生成ガスを含む排ガスは、粉塵の相当
部分が除去されるとともに、導入された空気Aに
より完全に燃焼される。尚導入される空気Aは、
多段炉21および再燃焼炉31の熱負荷を低減さ
せるため、予じめヒータ等で加熱しておくことも
できる。完全に燃焼されたガスは次に排ガス処理
装置13に入り含有する粉塵が除去され、ガス温
度が降下される。この排ガス処理装置13は放射
性廃棄物の焼却において一般に用いられる湿式又
は乾式の装置である。この排ガス処理装置13で
大部分の粉塵が除去され、温度の下つた排ガス
は、微細粒子を捕集する高性能エアフイルタ14
に通された後、ブロア15によりスタツク16よ
り大気中に放出される。
An embodiment of the present invention will be described in detail below with reference to the drawings. 2 to 4 show examples in which the present invention is applied to the treatment of sludge containing radioactive materials, and FIG. 2 is a schematic diagram of the apparatus. High moisture sludge D containing radioactive substances is mixed with an appropriate amount of flammable dehydration aid E (e.g. wood flour, dried sludge, etc.),
The water is dehydrated by a dehydrator 11. If, for example, a high compression vacuum suction type dehydrator is used as the dehydrator 11, the high moisture sludge is dehydrated to about 50 to 60% water content and temporarily stored in the dehydrated cake hopper 12 as a dehydrated cake F. Note that H is a liquid. This stored dehydrated cake F is fed into the upper part of a metal multi-stage furnace 21 by a feeder (not shown). At this time, the hopper and feeder are designed to maintain the airtightness of the multistage furnace 21 so that the dehydrated cake F can be charged therein. The charged dehydrated cake F passes through a drying zone and a carbonization zone while sequentially moving from the top to the bottom of the metal multi-stage furnace 21. Further, in the combustion zone, the ash is combusted by a limited amount of air A introduced from the lower part of the multi-stage furnace 21, and the ash G is taken out from the lower part and stored safely in a sealed state. Further, the combustion gas discharged from the upper part of the multistage furnace 21, the carbonized product gas, and the steam generated from the dehydrated cake are sent to a cyclone-type reburning furnace 31. The exhaust gas containing the flammable carbonized gas introduced into the reburning furnace 31 is completely combusted by the introduced air A while a considerable portion of the dust is removed. The air A introduced is
In order to reduce the heat load on the multistage furnace 21 and the reburning furnace 31, they can be heated in advance with a heater or the like. The completely combusted gas then enters the exhaust gas treatment device 13, where the contained dust is removed and the gas temperature is lowered. This exhaust gas treatment device 13 is a wet or dry type device generally used in incineration of radioactive waste. Most of the dust is removed by this exhaust gas treatment device 13, and the cooled exhaust gas is passed through a high-performance air filter 14 that collects fine particles.
After being passed through the air, the air is discharged from the stack 16 into the atmosphere by the blower 15.

上記装置のうち金属性の多段炉21は放射性物
質等を含有する被処理物を乾燥乾留したのち焼却
処理する重要な機能を有し、サイクロン型の再燃
焼炉31は金属を主体として小型に形成され、上
記多段炉21で発生した乾留生成ガスを完全燃焼
させるとともに粉塵を補集する機能を有するもの
である。
Of the above devices, the metallic multi-stage furnace 21 has an important function of drying and carbonizing the processed material containing radioactive materials and then incinerating it, and the cyclone-type reburning furnace 31 is made of metal and is small in size. It has the function of completely burning the carbonized gas generated in the multi-stage furnace 21 and collecting dust.

第3図a,bは金属製の多段炉21の縦断面図
および横断面図であり、図中21aは円筒状の耐
熱鋼(例えばインコロイ800相当の遠心鋳銅)製
の炉本体である。炉本体21aの外周には炉内を
間接加熱するヒータ21b、例えば電気ヒータが
取付けられている。このヒータ21bは炉本体2
1aの上下方向に数分割し、それぞれのヒータ
に、対応する炉内の温度を検出し所要の温度に保
持できるような温度検出器と温度調整器(図示せ
ず)を備えている。このヒータ21bの外側には
断熱材21cが取付けられている。断熱材21c
の外側には外面保護用の鋼製の外装板21dが取
付けられている。また炉本体21aの下部は外装
板21dの下面から露出しており、この露出部分
21eの外周には環状の凸部21fが設けられて
いる。多段炉21は上記凸部21fが基台22に
取付けられた下部梁22dに固定された炉本体支
持部材22eに乗せられ、かつ支柱22a…およ
び支柱22a…を連絡する上部梁22b…によつ
て支持されている。また炉本体21aの下方には
空気導入口21pが取付けられ下端には灰取出口
21gが設けられている。また炉本体21aの上
端部は断熱材21cより上部に突出して上部開口
端21hとなつており、この上部開口端21hの
外周には、伸縮継手21iの上縁が気密に取付け
られ、伸縮継手21iの下縁は鋼製の外装板21
d上面に気密に取付けられている。この突出した
上部開口端21hおよび伸縮継手21iを覆つ
て、内側に耐火断熱材21qが取付けられた鋼製
の外装板21d′が設けられ、炉本体21aの蓋体
21jを形成している。この蓋体21jは上部蓋
体21j′と下部蓋体21j″に上下に分割されてお
り、上部蓋体21j′と下部蓋体21j″とは、たが
いに外装板21d′によつて形成されたフランジ部
を介してボルト・ナツト等により着脱自在にかつ
気密性を保持して取付けられている。またこの下
部蓋体21j″の外装板21d′は炉本体21aの外
装板21dの上面に気密に取付けられている。上
記蓋体21jには被処理物の投入口21mおよび
排ガス導出口21nが設けられている。また上記
炉本体21aの内部には、その中心を上下に貫通
する金属製の回転軸23が設けられている。この
回転軸23の下方は、炉本体21a(下方の露出
部21e)を貫通して上記炉本体支持部材22e
に支持された下部軸受23aに回転自在かつ気密
を保持して取付けられている。また回転軸23の
下端には、図示しない電動機及び変速機を介して
回転軸23に回転駆動力を伝達する歯車23bが
取付けられている。上記下部軸受23aと炉本体
21aの底面との間には下部伸縮継手23cが気
密に取付けられている。また回転軸23の上端
は、上記蓋体21jを貫通し蓋体21jの外装板
21d′の上面に支持部材22cを介して取付けら
れた上部軸受23dに回転自在に支持されてい
る。この上部軸受23dと上記蓋体21jの外装
板21dの上面との間には上部伸縮継手23eが
設けられている。なお上記伸縮継手21i,23
c,23eは例えば全金属製のベロー型伸縮継手
を使用でき、これにより炉本体21a、回転軸2
3の加熱による伸びは炉の気密性を損うことなく
吸収されるようになつている。尚上部軸受23d
は回転軸の軸受として一般的に用いられるもの
で、容易に回転軸23から抜き出せる構造であ
る。この上部軸受23dには公知のシールガス機
構(図示せず)があり、多段炉21の内部圧力よ
りわずかに高い圧力の不活性ガスまたは空気等を
シールガスとして、上部軸受23dと回転軸23
との間隙に流すことにより、多段炉21内のガス
が外部に漏れないようにしている。また炉本体2
1aの内部は仕切段24…により多段に仕切られ
ている。また仕切板24の中央開口部の中心を通
る回転軸23には各仕初段24…上の被処理物を
撹拌する撹拌部材25…が取付けられている。こ
の撹拌部材には、回転軸23に対して対称な位置
にアーム25a,25aが取付けられ、このアー
ム25a,25aの下部には、仕切段24上の被
処理物を中心部に掻寄せるブレード5b…が取付
けられている。またアーム25a,25aの上部
には、上位の仕切段の中央開口部より落される被
処理物を仕切段24の外周部にすべり落す陣笠状
の案内部材25cの下縁が取付けられ、この案内
部材25cの頂部は回転軸23に取付けられてい
る。尚21mは被処理物を炉本体21aの内部に
導入する投入口、21nは被処理物を焼却して発
生する排ガスを炉本体21aの外部へ導出する排
ガス導出口である。この排ガス導出口21nは炉
本体21aの中間部(乾燥帯の下部)に取付ける
こともできる。
FIGS. 3a and 3b are longitudinal and cross-sectional views of a metal multi-stage furnace 21, in which 21a is a cylindrical furnace body made of heat-resistant steel (for example, centrifugal cast copper equivalent to Incoloy 800). A heater 21b, for example, an electric heater, is attached to the outer periphery of the furnace body 21a to indirectly heat the inside of the furnace. This heater 21b is the furnace main body 2
1a is divided into several parts in the vertical direction, and each heater is equipped with a temperature detector and a temperature regulator (not shown) that can detect the temperature in the corresponding furnace and maintain it at a desired temperature. A heat insulating material 21c is attached to the outside of this heater 21b. Insulation material 21c
A steel exterior plate 21d for protecting the exterior surface is attached to the outside of the housing. Further, the lower portion of the furnace body 21a is exposed from the lower surface of the exterior plate 21d, and an annular convex portion 21f is provided on the outer periphery of this exposed portion 21e. The multistage furnace 21 has the convex portion 21f mounted on a furnace body support member 22e fixed to a lower beam 22d attached to a base 22, and is supported by upper beams 22b connecting the pillars 22a and the pillars 22a. Supported. Further, an air inlet 21p is attached to the lower part of the furnace body 21a, and an ash outlet 21g is provided at the lower end. The upper end of the furnace body 21a protrudes above the heat insulating material 21c to form an upper open end 21h, and the upper edge of the expansion joint 21i is airtightly attached to the outer periphery of the upper open end 21h. The lower edge of the steel exterior plate 21
d It is airtightly attached to the top surface. A steel exterior plate 21d' to which a refractory heat insulating material 21q is attached inside is provided to cover the protruding upper opening end 21h and the expansion joint 21i, and forms a lid 21j of the furnace body 21a. This lid body 21j is vertically divided into an upper lid body 21j' and a lower lid body 21j'', and the upper lid body 21j' and the lower lid body 21j'' are each formed by an exterior plate 21d'. It is attached removably and airtightly using bolts, nuts, etc. via the flange. The outer plate 21d' of the lower cover 21j'' is airtightly attached to the upper surface of the outer plate 21d of the furnace body 21a.The cover 21j is provided with an inlet 21m for the material to be treated and an exhaust gas outlet 21n. Further, inside the furnace body 21a, there is provided a metal rotating shaft 23 that vertically passes through the center of the furnace body 21a. ) through the furnace body support member 22e.
The lower bearing 23a is rotatably and airtightly attached to the lower bearing 23a supported by the lower bearing 23a. Further, a gear 23b is attached to the lower end of the rotating shaft 23 for transmitting rotational driving force to the rotating shaft 23 via an electric motor and a transmission (not shown). A lower expansion joint 23c is airtightly attached between the lower bearing 23a and the bottom surface of the furnace body 21a. The upper end of the rotating shaft 23 is rotatably supported by an upper bearing 23d that passes through the lid 21j and is attached to the upper surface of the exterior plate 21d' of the lid 21j via a support member 22c. An upper expansion joint 23e is provided between the upper bearing 23d and the upper surface of the exterior plate 21d of the lid 21j. Note that the expansion joints 21i, 23
For example, an all-metal bellows type expansion joint can be used for c and 23e, which connects the furnace body 21a and the rotating shaft 2.
The elongation due to heating in No. 3 can be absorbed without impairing the airtightness of the furnace. Furthermore, upper bearing 23d
is commonly used as a bearing for a rotating shaft, and has a structure that allows it to be easily extracted from the rotating shaft 23. This upper bearing 23d has a known sealing gas mechanism (not shown), which uses an inert gas or air, etc. at a pressure slightly higher than the internal pressure of the multistage furnace 21 as a sealing gas, between the upper bearing 23d and the rotating shaft 23.
The gas inside the multi-stage furnace 21 is prevented from leaking to the outside by flowing through the gap between the two. Also, the furnace body 2
The interior of 1a is partitioned into multiple stages by partition stages 24. Further, a stirring member 25 for stirring the objects to be processed on each feed stage 24 is attached to the rotating shaft 23 passing through the center of the central opening of the partition plate 24. Arms 25a, 25a are attached to this stirring member at symmetrical positions with respect to the rotating shaft 23, and a blade 5b is provided at the lower part of the arms 25a, 25a for scraping the material to be processed on the partition stage 24 toward the center. ...is installed. Further, a lower edge of a guide member 25c in the shape of a canopy is attached to the upper part of the arms 25a, 25a, and the lower edge of the guide member 25c is attached to the outer circumference of the partition step 24 so that the workpiece dropped from the central opening of the upper partition step slides onto the outer periphery of the partition step 24. The top of the member 25c is attached to the rotating shaft 23. Note that 21m is an inlet for introducing the material to be treated into the inside of the furnace body 21a, and 21n is an exhaust gas outlet for leading out the exhaust gas generated by incinerating the material to be treated to the outside of the furnace body 21a. This exhaust gas outlet 21n can also be attached to the middle part (lower part of the drying zone) of the furnace body 21a.

また再燃焼炉31は次のような構成となつてい
る。すなわち、第4図に示すように下部がコーン
状に形成された円筒状の耐熱鋼製の炉体31aが
設けられ、この炉体31aの上面略中央にはガス
排出口31b、側部上方には炉体31aに対し接
線方向に設けられた排ガス導入口31c、コーン
側部には空気導入口31d、コーン下端には灰取
出口31eがそれぞれ取付けられている。また炉
体31aの円筒状部外周面にはヒータ31fが取
付けられている。このヒータ31fおよびヒータ
31fが取付けられていない炉体31aを覆い、
かつ上記の各導出入口31b,31c,31d,
31eが外部に開口するように、断熱材31gが
取付けられている。さらに炉体31aの内部上面
には該炉体31aの円筒状部との間に適宜間隙を
隔てられ、かつ該円筒状部と同心状となつてお
り、下端が該円筒状部の下端部近くまで延長され
ている耐熱性材料で作られた燃焼筒31hが、該
燃焼筒31hの内面延長内にガス排出口31bが
ある様に設けられている。
Further, the reburning furnace 31 has the following configuration. That is, as shown in FIG. 4, a cylindrical furnace body 31a made of heat-resistant steel with a cone-shaped lower part is provided. An exhaust gas inlet 31c is provided tangentially to the furnace body 31a, an air inlet 31d is attached to the side of the cone, and an ash outlet 31e is attached to the lower end of the cone. Further, a heater 31f is attached to the outer peripheral surface of the cylindrical portion of the furnace body 31a. This heater 31f and the furnace body 31a to which the heater 31f is not attached are covered,
and each of the above-mentioned outlet/outlet ports 31b, 31c, 31d,
A heat insulating material 31g is attached so that 31e opens to the outside. Further, the inner upper surface of the furnace body 31a is provided with an appropriate gap between it and the cylindrical portion of the furnace body 31a, is concentric with the cylindrical portion, and has a lower end near the lower end of the cylindrical portion. A combustion tube 31h made of a heat-resistant material is provided so that a gas outlet 31b is located within the extension of the inner surface of the combustion tube 31h.

次はこのように構成された本発明に係る装置の
操作を説明する。
Next, the operation of the apparatus according to the present invention configured as described above will be explained.

放射性物質を含有する高水分の汚泥(以下汚泥
と記す)は、要すれば凝集助剤を添加したのち木
粉等の可燃性の脱水助剤を混合したのち脱水機1
1により脱水する。脱水機11により水分50%〜
60%程度に脱水した汚泥は脱水ケーキホツパ12
からフイーダにより多段炉21の気密性を保持し
ながら投入口21mを経て投入される。投入され
た汚泥は、撹拌部材25の低速回転により中央部
に掻寄せられ、仕切段24の中央開口部より下段
に落され、陣笠状の案内部材25cによつて仕切
段24の上面外周部に落される。尚撹拌部材25
の回転速度は、汚泥の炉内における必要保持時間
より定められる。このようにして汚泥は多段炉2
1内を上方より下方に徐々に移行し、乾燥し、乾
留、燃焼帯域を通過する。この間汚泥はヒータ2
1bによる外部よりの間接加熱と後述する多段炉
21下部の燃焼帯域で生じる高温の燃焼ガスによ
つて乾燥、乾留される。この場合、多段炉21内
の各部分を所要の温度に保持するよう外部加熱量
を制御できるので比較的低温度(600℃程度)で
完全な乾燥、乾留が行なわれる。乾留によつて可
燃分が大巾に減少した乾留残渣はさらに下部の燃
焼帯域に落ち、多段炉21の下部より量を制限し
て吹込まれる空気により燃焼されあるいは燃焼さ
れながら下段に落され、数段にわたつて燃焼され
るので、さらに燃焼が促進される。この燃焼の際
発生する燃焼ガスの量は、乾留によつて乾留残渣
中の可燃分が大巾に減少しているため、乾留せず
に直接燃焼した場合に比べ少ない。灰は多段炉2
1の下部の灰取出口21gより取出される。また
汚泥の含水量によつては多段炉21と再燃焼炉3
1の間で、排ガスの温度が低下し排ガス中の水分
および乾留生成ガスが凝縮する場合もあるが、こ
の際、多段炉21の中間部(乾燥帯域の下方)に
排ガス導出口21nを設け、炉本体21aの外周
に分割して取付けたヒータ21bの上部のものの
加熱量を大きくし排ガス温度を高め凝縮を防止す
る。
High-moisture sludge containing radioactive materials (hereinafter referred to as sludge) is processed into dehydrator 1 after adding a coagulation aid if necessary and then mixing with a combustible dewatering aid such as wood flour.
Dehydrate according to step 1. Dehydrator 11 reduces moisture to 50% or more
Sludge that has been dehydrated to about 60% is dehydrated cake hopper 12.
From there, the feeder feeds the multistage furnace 21 through the input port 21m while maintaining airtightness. The introduced sludge is scraped up to the center by the slow rotation of the stirring member 25, dropped to the lower stage from the central opening of the partition stage 24, and is moved to the outer periphery of the upper surface of the partition stage 24 by the shade-shaped guide member 25c. be dropped. Additionally, stirring member 25
The rotation speed of is determined by the required retention time of sludge in the furnace. In this way, the sludge is transferred to the multi-stage furnace 2.
1, it gradually moves from the top to the bottom, dries, carbonizes, and passes through the combustion zone. During this time, the sludge is heated to heater 2.
It is dried and carbonized by indirect heating from the outside by 1b and high-temperature combustion gas generated in the combustion zone at the bottom of the multistage furnace 21, which will be described later. In this case, since the amount of external heating can be controlled to maintain each part in the multistage furnace 21 at a required temperature, complete drying and carbonization can be performed at a relatively low temperature (about 600° C.). The carbonization residue, whose combustible content has been greatly reduced by carbonization, further falls into the lower combustion zone, where it is combusted by air blown in a limited amount from the lower part of the multistage furnace 21, or is dropped to the lower stage while being combusted. Since the fuel is burned in several stages, the combustion is further promoted. The amount of combustion gas generated during this combustion is smaller than that in the case of direct combustion without carbonization, because the combustible content in the carbonization residue is greatly reduced by carbonization. Ash is in multi-stage furnace 2
The ash is taken out from the ash outlet 21g at the bottom of 1. Depending on the water content of the sludge, the multi-stage furnace 21 and the afterburning furnace 3 may be used.
1, the temperature of the exhaust gas may drop and the moisture in the exhaust gas and the carbonized gas may condense.In this case, an exhaust gas outlet 21n is provided in the middle part of the multistage furnace 21 (below the drying zone). The heating amount of the upper part of the heater 21b, which is attached separately to the outer periphery of the furnace body 21a, is increased to increase the exhaust gas temperature and prevent condensation.

多段炉21の乾燥帯域で発生した水蒸気、乾留
帯域で生じ可燃性ガスを含む乾留生成ガスおよび
燃焼帯域で発生した燃焼ガスよりなる排ガスは排
ガス導出口21nより出て、若燃焼炉31に導入
される。排ガス導入口31cは炉体31aに接線
方向に取付けられているので、サイクロン作用に
より粉塵は下方に落ちるとともに、導入排ガスは
旋回流となつて、ヒータ31fによつて加熱され
ている炉体31aおよび燃焼筒31hの間を通る
ことにより十分予熱されて、燃焼筒の下部に導入
され空気導入口31dより供給される空気と混合
されて燃焼筒31h内に燃焼されるので可燃性ガ
スは完全に燃焼されたガス排出口31bより次の
工程に送られる。
Exhaust gas consisting of water vapor generated in the drying zone of the multistage furnace 21, carbonization product gas generated in the carbonization zone containing combustible gas, and combustion gas generated in the combustion zone exits from the exhaust gas outlet 21n and is introduced into the young combustion furnace 31. Ru. Since the exhaust gas inlet 31c is attached to the furnace body 31a in a tangential direction, the dust falls downward due to the cyclone action, and the introduced exhaust gas becomes a swirling flow that flows through the furnace body 31a and the furnace body 31a, which are heated by the heater 31f. The combustible gas is fully preheated by passing between the combustion tubes 31h, is introduced into the lower part of the combustion tube, is mixed with air supplied from the air inlet 31d, and is combusted in the combustion tube 31h, so that the combustible gas is completely combusted. The gas is sent to the next process through the gas discharge port 31b.

以上述べた如く本発明による乾留焼却装置は下
記に示す利点をもつている。まず多段炉は(1)炉本
体が金属材料で出来ているので炉本体の内部のガ
スが漏洩し易い個所を覆いかつ炉本体の熱による
伸びを吸収できる伸縮継手を使用することにより
炉全体の気密性が容易に得られる。(2)炉本体が金
属製であり間接加熱の加熱量を制御できるので炉
本体が比較的低い所要の温度に容易に保持できる
ので炉の耐久性が増し、寿命が長くかつ十分な乾
燥乾留を行なうことが出来る。(3)耐火断熱材が雰
囲気温度の低い炉の上部のみしか使われていない
ため耐火断熱材の破損の生じる率は極めて少な
い。したがつて多段炉の補修作業が少ない。(4)炉
本体が金属製で、表面が滑らかであるため放射性
物質を含む粉塵等は表面付着だけであり、除染は
耐火断熱材に比べて極めて容易である。(5)炉本体
が金属製で間接加熱部を有しその外側に断熱材が
設けられるので小型の炉が容易に製作出来る。(6)
加熱方法として外部ヒータによる間接加熱が用い
られるので、加熱用熱風や燃料油等のバーナを必
要としない。さらに、汚泥の乾留により可燃分が
大巾に減少した乾留残渣を燃焼させるに必要な空
気の量および燃焼により発生する燃焼ガスの量は
少なくなる。したがつて、炉内を上昇するガス速
度は小さく、同伴される粉塵も少ない。さらに排
ガス処理系における処理装置、フイルター等の容
量は小さくてよい。
As described above, the carbonization incinerator according to the present invention has the following advantages. First of all, the multi-stage furnace (1) has a furnace body made of metal, so by using expansion joints that can cover the parts of the furnace body where gas tends to leak and absorb the elongation of the furnace body due to heat, Airtightness can be easily achieved. (2) Since the furnace body is made of metal and the amount of indirect heating can be controlled, the furnace body can be easily maintained at a relatively low required temperature, increasing the durability of the furnace, ensuring a long life and sufficient dry carbonization. It can be done. (3) Since the refractory insulation material is used only in the upper part of the furnace where the ambient temperature is low, the chance of damage to the refractory insulation material is extremely low. Therefore, there is less repair work for multi-stage furnaces. (4) Since the furnace body is made of metal and has a smooth surface, dust containing radioactive substances only adheres to the surface, making decontamination much easier than with fireproof insulation materials. (5) Since the furnace body is made of metal and has an indirect heating section, and a heat insulating material is provided on the outside, a small furnace can be easily manufactured. (6)
Since indirect heating using an external heater is used as a heating method, there is no need for hot air for heating or a burner for fuel oil or the like. Furthermore, the amount of air required to combust the carbonized residue whose combustible content has been greatly reduced by the carbonization of sludge and the amount of combustion gas generated by combustion are reduced. Therefore, the gas velocity rising through the furnace is low and less dust is entrained. Furthermore, the capacity of the treatment device, filter, etc. in the exhaust gas treatment system may be small.

また実施例の再燃焼炉においては同心状に燃焼
筒を内装した耐熱鋼製でサイクロン型であるの
で、(1)導入された排ガスは炉体と燃焼筒の間を旋
回し粉塵が落されるとともに、炉体からの間接加
熱と燃焼筒の両面より十分予熱された後空気が混
合されて燃焼筒に入るので含有する可燃性乾留ガ
スは完全に燃焼される。(2)さらに炉体は火焔に直
接ふれず、乾留焼却炉より導入される比較的低い
温度のガスに接触しているので、長期間使用して
も熱影響による劣化がなく耐久性が増す。従つて
最も点検補修の頻度の高い燃焼筒のみ交換すれば
よいようになつている。(3)乾留により発生した可
燃ガスおよび乾燥により発生した水蒸気を含んだ
燃焼ガスを多段炉の最上部から抜くと、被処理物
投入口部分で被処理物が高温の燃焼ガスにさらさ
れて乾燥し、しばしばつまりが生ずる(特に回分
的に被処理物を投入する場合、この現象が顕著に
生ずる)とともに、多段炉の最上部の温度を下げ
ると、多段炉と再燃焼炉との間で上記燃焼ガスが
凝縮する恐れがあるが、ガス導出口を多段炉の高
さ方向の略中間部分に取付けて、乾留により発生
した可燃ガスおよび乾燥により発生した水蒸気を
含んだ燃焼ガスを多段炉の上記ガス導出口のみよ
り導出し、該燃焼ガスを再燃焼炉に導入して燃焼
させるようにすると、上記の問題点が解消され、
多段炉の最上部の温度が下げられて被処理物がつ
まることなく多段炉にスムーズに供給されるよう
になり、また回転軸の軸受部分が高温のためシー
ルが難しくなるのが改善されるとともに、多段炉
と再燃焼炉との間で上記燃焼ガスが凝縮すること
もない。
In addition, the reburning furnace of this example is made of heat-resistant steel and is of a cyclone type with a concentric combustion tube inside, so (1) the introduced exhaust gas swirls between the furnace body and the combustion tube and dust is dropped. At the same time, air is mixed with indirect heating from the furnace body and sufficiently preheated from both sides of the combustion tube and enters the combustion tube, so that the combustible carbonized gas contained therein is completely combusted. (2) Furthermore, since the furnace body does not come into direct contact with the flames, but rather with the relatively low temperature gas introduced from the carbonization incinerator, there is no deterioration due to heat effects even after long-term use, increasing durability. Therefore, only the combustion tube that is inspected and repaired most frequently needs to be replaced. (3) When the combustion gas containing the flammable gas generated by carbonization and the water vapor generated by drying is extracted from the top of the multistage furnace, the material to be processed is exposed to the high temperature combustion gas at the material inlet and dried. However, clogging often occurs (this phenomenon occurs particularly when the materials to be processed are introduced in batches), and when the temperature at the top of the multi-stage furnace is lowered, the above-mentioned problems occur between the multi-stage furnace and the reburning furnace. Although there is a risk that the combustion gas may condense, a gas outlet is installed approximately in the middle of the multi-stage furnace in the height direction, and the combustion gas containing the combustible gas generated by carbonization and the water vapor generated from drying is transferred to the upper part of the multi-stage furnace. If the combustion gas is led out only from the gas outlet and then introduced into the reburning furnace and combusted, the above problems are solved.
The temperature at the top of the multi-stage furnace has been lowered, allowing the material to be processed to be smoothly fed into the multi-stage furnace without clogging, and the problem of the bearing part of the rotating shaft being difficult to seal due to its high temperature has been improved. Also, the combustion gas does not condense between the multistage furnace and the reburning furnace.

以上説明したように放射性物質を含有する汚泥
処理に際し、このような多段炉および再燃焼炉を
組込むことにより、補修の費用が減少し、また排
ガス量、粉塵量が少ないことにより排ガス処理設
備の容量縮少など、安全性の面、運転経費、補修
費、設備費等の面における利益は極めて大きいも
のである。
As explained above, when treating sludge containing radioactive materials, by incorporating such a multi-stage furnace and reburning furnace, repair costs can be reduced, and the capacity of the exhaust gas treatment equipment can be increased by reducing the amount of exhaust gas and dust. The benefits in terms of safety, operating costs, repair costs, equipment costs, etc. are extremely large.

尚実施例では被処理物として放射性物質を含有
する汚泥を対象として説明したが、汚泥のみでな
く使用済の活性炭、細断された紙、布等の可燃物
および動物死体等にも適用できることはいうまで
もない。
In the examples, the treatment target was sludge containing radioactive materials, but it can also be applied not only to sludge but also to combustible materials such as used activated carbon, shredded paper and cloth, and animal carcasses. Needless to say.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の乾留焼却炉の概略フロー図、第
2図は本発明の装置を使用した処理装置の全体を
示す概略構成図、第3図a,bは、金属製多段炉
の一実施例を示すもので、第3図aは縦断面図、
bは横断面図、第4図はサイクロン型の再燃焼炉
の縦断面図である。 21……多段炉、21a……炉本体、21b…
…ヒータ、21d……外装板、21d′……蓋体の
外装板、21g……灰取出口、21h……上部開
口端、21i……伸縮継手、21j……蓋体、2
1j′……上部蓋体、21j″……下部蓋体、21m
……投入口、21n……排ガス導出口、21p…
…空気導入口、21q……耐火断熱材、23……
回転軸、23a……下部軸受、23c……下部伸
縮継手、23d……上部軸受、23e……上部伸
縮継手、24……仕切段、25……撹拌部材、2
5a……アーム、25b……ブレード、25c…
…案内部材、31……再燃焼炉、A……空気、F
……脱水ケーキ、G……灰。
Fig. 1 is a schematic flow diagram of a conventional carbonization incinerator, Fig. 2 is a schematic configuration diagram showing the entire processing equipment using the device of the present invention, and Fig. 3 a and b are an example of an implementation of a metal multi-stage incinerator. For example, Figure 3a is a vertical cross-sectional view;
b is a cross-sectional view, and FIG. 4 is a longitudinal cross-sectional view of a cyclone-type reburning furnace. 21...Multi-stage furnace, 21a...Furnace body, 21b...
...Heater, 21d...Exterior plate, 21d'...Exterior plate of lid body, 21g...Ash removal outlet, 21h...Top opening end, 21i...Expansion joint, 21j...Lid body, 2
1j′...Upper lid body, 21j''...Lower lid body, 21m
...Inlet, 21n...Exhaust gas outlet, 21p...
...Air inlet, 21q...Fireproof insulation material, 23...
Rotating shaft, 23a...Lower bearing, 23c...Lower expansion joint, 23d...Upper bearing, 23e...Upper expansion joint, 24...Partition stage, 25...Stirring member, 2
5a...Arm, 25b...Blade, 25c...
...Guide member, 31... Reburning furnace, A... Air, F
...Dehydrated cake, G...ash.

Claims (1)

【特許請求の範囲】 1 外周に上下方向に複数分割されそれぞれ対応
する炉内の温度を制御する電気ヒータにより間接
加熱される密閉可能な円筒状の金属製多段炉の上
部より被処理物を投入し、順次下方に移動させて
乾燥帯域、乾留帯域および燃焼帯域を通過させ、 上記燃焼帯域において空気量を制限して燃焼さ
せ、燃焼灰を炉下部よりとり出すとともに発生し
た燃焼ガスを直接加熱の熱源とし、かつ上記間接
加熱の熱源である複数分割された電気ヒータで炉
内の各部分を所要の温度に制御して上記乾留帯域
の変動を防止しながら、上記乾燥、乾留を行い、 乾留により発生した可燃ガスおよび乾燥により
発生した水蒸気とを含んだ燃焼ガスを再燃焼炉に
導入して燃焼させることを特徴とする乾留焼却方
法。 2 乾留により発生した可燃ガスおよび乾燥によ
り発生した水蒸気を含んだ燃焼ガスを多段炉の高
さ方向中間部のみより導出する特許請求の範囲第
1項記載の乾留焼却方法。 3 上部が開口した円筒状の金属製の炉本体と、
間接加熱部として前記炉本体外周に上下方向に複
数分割されそれぞれ対応する炉内の温度を制御す
る電気ヒータと、前記電気ヒータの外方側に設け
られた断熱材と、前記断熱材の外方側に設けられ
た炉外装板と、前記炉本体の上端開口部と接する
ことなく該上端開口部を覆い前記炉外装板に気密
に取付けられる蓋外装板を有する蓋体と、前記炉
本体中心に取付けられ被処理物を順次下段に掻き
落とすアームの付いた回転軸と、炉本体下部に設
けられた焼却灰の取出し口および空気の導入口
と、前記蓋体に設けられた被処理物投入口と、前
記蓋体または前記炉本体に設けられたガス導出口
とを具備することを特徴とする乾留焼却装置。 4 ガス導出口が多段炉の高さ方向の略中間部分
に取付けられた特許請求の範囲第3項記載の乾留
焼却炉。
[Claims] 1. A workpiece is introduced into a sealable cylindrical metal multi-stage furnace that is divided vertically into a plurality of furnaces and indirectly heated by electric heaters that control the temperature in each furnace. The ash is then moved downward and passed through a drying zone, a carbonization zone and a combustion zone, where it is combusted with a limited amount of air.The combustion ash is taken out from the bottom of the furnace and the generated combustion gas is directly heated. The drying and carbonization are performed while controlling each part of the furnace to the required temperature to prevent fluctuations in the carbonization zone using a plurality of divided electric heaters that serve as heat sources and heat sources for the indirect heating. A carbonization incineration method characterized by introducing combustion gas containing generated combustible gas and water vapor generated by drying into a reburning furnace and burning it. 2. The carbonization incineration method according to claim 1, wherein the combustion gas containing the combustible gas generated by carbonization and the water vapor generated by drying is extracted only from the middle part in the height direction of the multistage furnace. 3. A cylindrical metal furnace body with an open top,
an electric heater that is divided into a plurality of parts in the vertical direction on the outer periphery of the furnace body as an indirect heating part and controls the temperature in the corresponding furnace; a heat insulating material provided on the outer side of the electric heater; and a heat insulating material provided on the outer side of the heat insulating material. a lid body having a furnace exterior plate provided on the side, a lid exterior plate that covers the upper end opening of the furnace body without contacting the upper end opening and is airtightly attached to the furnace exterior plate; A rotating shaft with an attached arm that sequentially scrapes the objects to be processed to the lower stage, an incineration ash take-out port and an air inlet provided at the bottom of the furnace body, and an inlet for the objects to be processed provided in the lid body. and a gas outlet provided in the lid or the furnace body. 4. The carbonization incinerator according to claim 3, wherein the gas outlet port is attached to a substantially middle portion in the height direction of the multistage furnace.
JP17223582A 1982-09-30 1982-09-30 Device and method of dry-distillating and burning sludge andthe like Granted JPS5963598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17223582A JPS5963598A (en) 1982-09-30 1982-09-30 Device and method of dry-distillating and burning sludge andthe like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17223582A JPS5963598A (en) 1982-09-30 1982-09-30 Device and method of dry-distillating and burning sludge andthe like

Publications (2)

Publication Number Publication Date
JPS5963598A JPS5963598A (en) 1984-04-11
JPH0151960B2 true JPH0151960B2 (en) 1989-11-07

Family

ID=15938112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17223582A Granted JPS5963598A (en) 1982-09-30 1982-09-30 Device and method of dry-distillating and burning sludge andthe like

Country Status (1)

Country Link
JP (1) JPS5963598A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021777A (en) * 2013-07-17 2015-02-02 宇部興産機械株式会社 Contaminated object process method and contaminated object process system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518771A (en) * 1974-07-12 1976-01-23 Denryoku Chuo Kenkyujo HOSHASEIKOTAIHAIKIBUTSUNO SHOKYAKU HOSHIKI
JPS5137463A (en) * 1974-09-24 1976-03-29 Seiko Instr & Electronics Paipumagajin no paatsutsumekomisochi
JPS5565817A (en) * 1978-11-09 1980-05-17 Mitsui Eng & Shipbuild Co Ltd Treatment of radioactive solid waste
JPS5645679A (en) * 1979-09-21 1981-04-25 Fumio Kobayashi Piece of japanese chess with advancing direction mark
JPS57133399A (en) * 1981-02-13 1982-08-18 Hidemasa Tsuruta Method of burning low level radioactive waste

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518771A (en) * 1974-07-12 1976-01-23 Denryoku Chuo Kenkyujo HOSHASEIKOTAIHAIKIBUTSUNO SHOKYAKU HOSHIKI
JPS5137463A (en) * 1974-09-24 1976-03-29 Seiko Instr & Electronics Paipumagajin no paatsutsumekomisochi
JPS5565817A (en) * 1978-11-09 1980-05-17 Mitsui Eng & Shipbuild Co Ltd Treatment of radioactive solid waste
JPS5645679A (en) * 1979-09-21 1981-04-25 Fumio Kobayashi Piece of japanese chess with advancing direction mark
JPS57133399A (en) * 1981-02-13 1982-08-18 Hidemasa Tsuruta Method of burning low level radioactive waste

Also Published As

Publication number Publication date
JPS5963598A (en) 1984-04-11

Similar Documents

Publication Publication Date Title
JPS6246765B2 (en)
US3267890A (en) Municipal incinerator
KR102188473B1 (en) Carbonizing furnace
US3772998A (en) Method of and apparatus for the combustion of sludge
WO1997049953A1 (en) Method for fusion treating a solid waste for gasification
US5297957A (en) Organic waste incinerator
US4466361A (en) Method and apparatus for waste incineration
US3777680A (en) Furnace for combined incineration of rubbish, garbage, and sewage sludge
US3577940A (en) Incinerator
US3827379A (en) Rotary kiln type solid waste incinerating system and method
JPS6119307Y2 (en)
JPH11286684A (en) Continuous carbonization furnace
EP0577759B1 (en) Concurrent-flow multiple hearth furnace for the incineration of sewage sludge filter-cake
JPH0151960B2 (en)
US1929880A (en) Process of incinerating and equipment therefor
ES308219A1 (en) Apparatus for effecting contact between solids and gases
US2577000A (en) Apparatus for incinerating waste material
JP4317085B2 (en) Externally heated rotary kiln
JPS5893785A (en) Manufacture of pyrolytic gas and device for carrying out it
CN219867894U (en) Incinerator with ash treatment function
JP7200703B2 (en) carbonization furnace
RU2154237C1 (en) Device for burning combustible materials and wastes
JP3822228B1 (en) Carbonization system
JPH11294731A (en) Incineration method of incinerator
JPS58224217A (en) Sludge combustion process