JPH0151793B2 - - Google Patents

Info

Publication number
JPH0151793B2
JPH0151793B2 JP56169655A JP16965581A JPH0151793B2 JP H0151793 B2 JPH0151793 B2 JP H0151793B2 JP 56169655 A JP56169655 A JP 56169655A JP 16965581 A JP16965581 A JP 16965581A JP H0151793 B2 JPH0151793 B2 JP H0151793B2
Authority
JP
Japan
Prior art keywords
pipe
pressure
reactor
tube
radiation shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56169655A
Other languages
Japanese (ja)
Other versions
JPS5871483A (en
Inventor
Takashi Asada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP56169655A priority Critical patent/JPS5871483A/en
Publication of JPS5871483A publication Critical patent/JPS5871483A/en
Publication of JPH0151793B2 publication Critical patent/JPH0151793B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は、圧力管型原子炉の修復方法に関し、
更に詳しくは、その圧力管に原子炉の運転に支障
をきたすような障害が発生した場合に比較的簡単
な作業で改修でき短時間内に原子炉運転再開が可
能となるような方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for repairing a pressure tube nuclear reactor,
More specifically, it relates to a method that can be repaired with relatively simple work and restart reactor operation within a short period of time in the event that a problem occurs in the pressure pipe that interferes with the operation of the reactor. be.

圧力管型原子炉は、燃料集合体を一体ずつ独立
に圧力管内に収め、圧力管の周囲に中性子を減速
して熱中性子に変える減速材を満し、圧力管の内
部に冷却水を流して燃料から熱エネルギーを取出
す構造の原子炉であつて、具体的には、例えば日
本のATR、カナダのCANDU、英国のSGHWR
がある。
In a pressure tube reactor, each fuel assembly is housed individually in a pressure tube, the pressure tube is surrounded by a moderator that slows down neutrons into thermal neutrons, and cooling water is allowed to flow inside the pressure tube. A nuclear reactor with a structure that extracts thermal energy from fuel, such as ATR in Japan, CANDU in Canada, and SGHWR in the UK.
There is.

圧力管型原子炉における圧力管およびそれに関
連する機器は、特に重要な部材であるから、それ
らに障害が生じないように設計上、様々な配慮
(形状、材質等に関して)がなされていて、その
信頼性は大きいのであるが、圧力管等に亀裂や変
形、損傷などの障害が発生した場合を想定した対
処方法についても十分検討しておく必要がある。
The pressure pipes and related equipment in a pressure tube reactor are particularly important components, so various considerations (in terms of shape, material, etc.) have been taken in their design to prevent them from being damaged. Although it is highly reliable, it is also necessary to thoroughly consider how to deal with failures such as cracks, deformation, and damage in pressure pipes.

本発明は、かかる検討の中から生まれ、さらに
多くの創意を傾注して完成されたもので、以下に
その詳細を述べる。
The present invention was born from such studies and was completed by devoting much creativity to the invention, and will be described in detail below.

圧力管型原子炉における圧力管本体には、その
上下にロールドジヨイント法等により圧力管延長
部が連結されているが、本発明ではこれらを一括
して圧力管と称している。
In a pressure tube reactor, pressure tube extensions are connected above and below to the pressure tube main body by a rolled joint method or the like, and in the present invention, these are collectively referred to as pressure tubes.

圧力管に原子炉の運転に支障をきたすような障
害、例えば水素遅れ割れや疲労等による亀裂発
生、燃料引抜き時の損傷など、が発生した場合、
従来、障害を起した圧力管を交換する方法、ある
いは障害を起した圧力管をそのまま残して冷却材
流路を遮断(施栓)して運転を再開する方法が考
えられている。
If a problem occurs in the pressure pipe that may impede the operation of the reactor, such as hydrogen delayed cracking, cracking due to fatigue, damage during fuel extraction, etc.
Conventionally, methods have been considered to replace the faulty pressure pipe, or to leave the faulty pressure pipe as is and shut off (plug) the coolant flow path to resume operation.

しかしながら、圧力管を交換する場合は、この
交換作業を高放射線下で行なわなければならず、
しかも溶接作業などに伴う作業工数が多くなるた
め、作業は困難なものとなる。また、圧力管を単
に施栓する場合は、施栓作業自体は容易である
が、障害が発生した圧力管を引抜くことができ
ず、それ故、障害発生の原因究明が困難になると
いう欠点がある。
However, when replacing pressure pipes, this replacement work must be done under high radiation conditions.
Moreover, the work becomes difficult because the number of man-hours involved in welding work increases. In addition, when simply plugging a pressure pipe, although the plugging process itself is easy, it has the disadvantage that it is not possible to pull out the pressure pipe where a fault has occurred, making it difficult to investigate the cause of the fault. .

本発明の目的は、上記のような従来考えられて
いた方法の様々な欠点を解消し、圧力管に障害が
起つた場合、原子炉の運転を比較的短期間内に再
開でき、改修作業も軽減化され、しかも圧力管の
障害発生の原因究明を直接的に行なえるような圧
力管型原子炉の修復方法を提供することにある。
The purpose of the present invention is to eliminate the various drawbacks of the conventionally considered methods as described above, and to make it possible to resume operation of the nuclear reactor within a relatively short period of time in the event of a failure in the pressure pipe, and to eliminate the need for repair work. It is an object of the present invention to provide a method for repairing a pressure tube type nuclear reactor which reduces the amount of damage caused and allows the cause of a pressure tube failure to be directly investigated.

要約すると本発明は、原子炉の運転に支障をき
たすような障害が圧力管に発生した場合、障害を
起した圧力管に接続されている入口管及び出口管
に施栓して該圧力管を引抜き、代りに放射線遮蔽
用プラグ管を挿入するように構成した圧力管型原
子炉の修復方法である。
In summary, the present invention provides a system for, when a fault occurs in a pressure pipe that impedes the operation of a nuclear reactor, plugging the inlet pipe and outlet pipe connected to the faulty pressure pipe and pulling out the pressure pipe. This is a method for repairing a pressure tube reactor configured to insert a radiation shielding plug tube instead.

以下、図面に基づき本発明の一実施例について
更に詳しく説明する。第1図は修復作業完了時の
原子炉構造を示す説明図、第2図は本発明で用い
る放射線遮蔽用プラグ管の挿入図である。
Hereinafter, one embodiment of the present invention will be described in more detail based on the drawings. FIG. 1 is an explanatory view showing the reactor structure upon completion of repair work, and FIG. 2 is an inserted view of the radiation shielding plug pipe used in the present invention.

圧力管型原子炉本体は、煉炭状のカランドリア
タンク1、圧力管2、燃料集合体、および鉄水遮
蔽体3などで構成される。カランドリアタンク1
の内部には減速材の重水が満たされ、圧力管2は
正方形格子に配列されたカランドリア管4に挿入
される。核燃料集合体は圧力管2内にあり、炉心
下部の入口管5を通つて流入する軽水冷却材によ
つて冷却され、冷却材は炉内で沸騰して蒸気と水
の2相流となり、一次冷却系の出口管6を通り、
蒸気ドラム7で気水分離され、蒸気はタービン系
へ、水は下降管8を経て再循環ポンプ9により水
ドラム10に送られ、入口管5から再び炉内に送
り込まれる。
The pressure tube type nuclear reactor body is composed of a briquette-like calandria tank 1, a pressure tube 2, a fuel assembly, an iron water shield 3, and the like. calandria tank 1
is filled with heavy water as a moderator, and the pressure tubes 2 are inserted into calandria tubes 4 arranged in a square grid. The nuclear fuel assembly is located in the pressure tube 2 and is cooled by light water coolant flowing through the inlet tube 5 at the bottom of the core, which boils in the reactor and becomes a two-phase flow of steam and water. Pass through the cooling system outlet pipe 6,
Steam and water are separated in the steam drum 7, and the steam is sent to the turbine system, the water is sent to the water drum 10 via the downcomer pipe 8 by the recirculation pump 9, and is sent into the furnace again from the inlet pipe 5.

さて、圧力管2に、原子炉の運転に支障を来た
すような障害が起つた場合を想定する。もし、原
子炉運転中であれば、直ちに炉の運転を停止す
る。修復作業の手順は次の通りである。まず、核
燃料集合体を圧力管2から引抜き撤去する。そし
て、障害を起こしている圧力管に接続されている
入口管5の水ドラム10近傍および出口管6の蒸
気ドラム7近傍のそれぞれ適宜個所12aおよび
12bを切断し、切断個所12aの水ドラム10
側の入口管5端部および切断個所12bの蒸気ド
ラム7側の出口管6端部に各々溶接等により栓1
1を取付ける。上記切断個所12a,12bは、
放射線被爆量が少なく作業性の良い場所という観
点から、ATR(新型転換炉)の場合は、蒸気ドラ
ム7および水ドラム10の近傍の垂直管部とする
のが好ましい。次いでこの圧力管をそれに接続し
ている入口管5および出口管6からそれぞれ位置
13及び14で切離す。圧力管の切離位置は、同
じくATRの場合、上部は圧力管上部上昇管垂直
部14、下部は圧力管下部延長部13である。な
お、切離位置13および14における入口管5お
よび出口管6の端部には特に施栓する必要はな
い。
Now, let's assume that a problem occurs in the pressure pipe 2 that interferes with the operation of the nuclear reactor. If the reactor is in operation, immediately stop the reactor operation. The steps for the repair work are as follows. First, the nuclear fuel assembly is pulled out from the pressure pipe 2 and removed. Then, appropriate locations 12a and 12b of the inlet pipe 5 near the water drum 10 and the outlet pipe 6 near the steam drum 7 connected to the pressure pipe causing the trouble are cut, and the water drum 10 of the cut location 12a is cut off.
A plug 1 is attached by welding or the like to the end of the inlet pipe 5 on the side and the end of the outlet pipe 6 on the steam drum 7 side at the cut point 12b.
Install 1. The above-mentioned cutting points 12a and 12b are
In the case of an ATR (advanced converter reactor), it is preferable to use a vertical pipe near the steam drum 7 and water drum 10 from the viewpoint of a location with low radiation exposure and good workability. This pressure tube is then disconnected from the inlet tube 5 and outlet tube 6 connected to it at positions 13 and 14, respectively. Similarly, in the case of ATR, the pressure pipes are separated at the upper pressure pipe upper rising pipe vertical portion 14 and the lower pressure pipe lower extension portion 13. Note that there is no particular need to plug the ends of the inlet pipe 5 and the outlet pipe 6 at the separation positions 13 and 14.

このようにした後、障害を起している圧力管を
引抜いて撤去し、代りに放射線遮蔽用プラグ管1
5を挿入する。
After doing this, pull out and remove the faulty pressure pipe, and replace it with the radiation shielding plug pipe 1.
Insert 5.

放射線遮蔽用プラグ管15は、第2図に示され
ているように、二重管16又は2本の平行管を用
いて上端で連続するようにし、下端は外部と連通
するようにし冷却材の往復流路と、その両端部に
位置する遮蔽プラグ17とを有する構造である。
これら遮蔽プラグ17は、放射線遮蔽用プラグ管
15を挿入したとき、丁度、鉄水遮蔽体3に嵌入
する如き位置関係にあり、そのような状態で放射
線遮蔽用プラグ管15は支持フランジ18等によ
つて、圧力管を支持していた鉄水スリーブ19に
固定される。
As shown in FIG. 2, the radiation shielding plug pipe 15 is made to be continuous at the upper end using a double pipe 16 or two parallel pipes, and the lower end is communicated with the outside so that the coolant is not injected into the radiation shielding plug pipe 15. It has a structure including a reciprocating flow path and shielding plugs 17 located at both ends of the reciprocating flow path.
When the radiation shielding plug pipe 15 is inserted, these shielding plugs 17 are in a positional relationship such that they fit into the iron/water shield 3, and in such a state, the radiation shielding plug pipe 15 is inserted into the support flange 18, etc. Therefore, it is fixed to the iron-water sleeve 19 that supported the pressure pipe.

放射線遮蔽用プラグ管15には、必要に応じて
該プラグ管を冷却するための遮蔽冷却装置が接続
される。この冷却装置は、冷却材供給循環装置2
0、熱交換器21、バルブ22等によつて構成さ
れ、冷却材を前記放射線遮蔽用プラグ管15内の
往復流路に流通できるように構成したものであ
る。このような冷却が必要となる場合は、放射線
遮蔽用プラグ管15が炉心からの中性子、γ線に
よつて発熱し、高温になる場合であつて、温度上
昇が小さい場合(約300℃以下)は冷却の必要は
ない。
A shielding cooling device for cooling the plug pipe is connected to the radiation shielding plug pipe 15 as necessary. This cooling device includes a coolant supply circulation device 2
0, a heat exchanger 21, a valve 22, etc., and is configured so that the coolant can flow through the reciprocating flow path within the radiation shielding plug pipe 15. Such cooling is required when the radiation shielding plug tube 15 generates heat due to neutrons and gamma rays from the core and reaches a high temperature, and when the temperature rise is small (approximately 300 degrees Celsius or less). does not require cooling.

このようにして、障害を起した圧力管に代えて
放射線遮蔽用プラグ管15を挿入設置し、必要に
応じて遮蔽冷却装置を運転し、その状態で原子炉
を起動し、許容出力で原子炉の運転を再開するの
である。
In this way, the radiation shielding plug pipe 15 is inserted and installed in place of the faulty pressure pipe, the shielding cooling system is operated as necessary, the reactor is started in this state, and the reactor is operated at the allowable output. They will resume operation.

本発明は上記のように構成した圧力管型原子炉
の修復方法であるから、従来考えられていた圧力
管の交換のように高放射線下での溶接による配管
接続作業といつた困難度の高い作業を伴わず、出
入口管の施栓作業にしても配管切断作業にしても
比較的簡単な作業で短時間で実施できるため、作
業者の被曝量を低減化でき安全性を向上させるこ
とができるし、短期間内で原子炉の運転再開を実
現できる効果がある。また、本発明によれば、圧
力管を引抜くので、障害の発生原因を徹底的に追
及でき、今後、事故発生の予防に大いに役立てる
ことができる。更に、障害を起した圧力管が数本
ある場合には、原因究明のため代表的な圧力管を
引抜き、その部分については放射線遮蔽用プラグ
管を挿入するという本発明方法を使用し、他は圧
力管を引抜かずにそのままプラグして運転すると
いつた方法の採用が可能となり、本発明の効果は
一層顕著となる等、すぐれた効果を奏しうるもの
である。
Since the present invention is a method for repairing a pressure tube type nuclear reactor configured as described above, it is difficult to replace the pressure tubes, which was conventionally considered, and required pipe connection work by welding under high radiation. It does not involve any work, and can be done relatively easily and in a short time, whether it is plugging the inlet/outlet pipe or cutting the pipe, reducing the amount of radiation exposure for workers and improving safety. This has the effect of allowing the restart of nuclear reactor operation within a short period of time. Further, according to the present invention, since the pressure pipe is pulled out, the cause of the failure can be thoroughly investigated, which can be of great use in preventing future accidents. Furthermore, if there are several pressure pipes that have failed, the method of the present invention is used, in which the representative pressure pipe is pulled out in order to investigate the cause, and a radiation shielding plug pipe is inserted in that part. It is possible to employ a method such as plugging the pressure pipe without pulling it out and operating it, and the effects of the present invention are even more remarkable, and other excellent effects can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法によつて修復作業が完了し
た時の原子炉構造を示す説明図、第2図はそれに
用いる放射線遮蔽用プラグ管の挿入状況の説明図
である。 2……圧力管、5……入口管、6……出口管、
11……溶接栓、12……配管切断個所、13,
14……圧力管切離位置、15……放射線遮蔽用
プラグ管、16……二重管、17……遮蔽プラ
グ。
FIG. 1 is an explanatory diagram showing the nuclear reactor structure when the repair work is completed by the method of the present invention, and FIG. 2 is an explanatory diagram of the insertion state of the radiation shielding plug pipe used therein. 2...Pressure pipe, 5...Inlet pipe, 6...Outlet pipe,
11... Welding plug, 12... Piping cut point, 13,
14... Pressure pipe separation position, 15... Radiation shielding plug pipe, 16... Double pipe, 17... Shielding plug.

【特許請求の範囲】[Claims]

1 積層した核燃料ペレツトと、前記積層した核
燃料ペレツトの少なくとも大部分の、隣接する互
いに向かいあつた凹面をなす端面間に挿入された
セラミツクウエフアーを含む金属被覆管を備え、
且つ前記ウエフアーの各々が核燃料ペレツトと実
質上同じ直径をもち、且つ該ウエフアーの各々は
天然二酸化ウラン中に存在する量以下のウラン−
235を含む二酸化ウランと酸化ガドリニウムとの
混合物の焼結体からなる、核燃料棒。
1. A metal clad tube including stacked nuclear fuel pellets and a ceramic wafer inserted between adjacent mutually facing concave end faces of at least a majority of the stacked nuclear fuel pellets,
and each of the wafers has a diameter substantially the same as a nuclear fuel pellet, and each of the wafers contains less than the amount of uranium present in natural uranium dioxide.
A nuclear fuel rod consisting of a sintered body of a mixture of uranium dioxide and gadolinium oxide containing 235.

JP56169655A 1981-10-23 1981-10-23 Method of repairing pressure tube type reactor Granted JPS5871483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56169655A JPS5871483A (en) 1981-10-23 1981-10-23 Method of repairing pressure tube type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56169655A JPS5871483A (en) 1981-10-23 1981-10-23 Method of repairing pressure tube type reactor

Publications (2)

Publication Number Publication Date
JPS5871483A JPS5871483A (en) 1983-04-28
JPH0151793B2 true JPH0151793B2 (en) 1989-11-06

Family

ID=15890485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56169655A Granted JPS5871483A (en) 1981-10-23 1981-10-23 Method of repairing pressure tube type reactor

Country Status (1)

Country Link
JP (1) JPS5871483A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3310947A1 (en) * 1983-03-23 1986-03-06 Kraftwerk Union AG, 4330 Mülheim REPAIR DEVICE FOR A REACTOR PRESSURE TANK
EP1535492B1 (en) 2002-06-26 2013-08-07 Mitsui Engineering & Shipbuilding Co., Ltd. Induction heating method and unit

Also Published As

Publication number Publication date
JPS5871483A (en) 1983-04-28

Similar Documents

Publication Publication Date Title
US11756698B2 (en) Passive emergency feedwater system
US8170173B2 (en) Passive emergency feedwater system
Zheng et al. Water-ingress analysis for the 200áMWe pebble-bed modular high temperature gas-cooled reactor
KR20140037825A (en) Emergency core cooling systems for pressurized water reactor
Lee et al. The design features of the advanced power reactor 1400
JPH0151793B2 (en)
JP6381839B1 (en) Reactor shutdown device, reactor shutdown method, and core design method
US8559585B2 (en) Cold shutdown assembly for sodium cooled reactor
US5469480A (en) Mid-loop operating method for nuclear power plant, and facility therefor
Song et al. An analysis on the steam generator tube rupture events with core damage
Susyadi Thermal-hydraulic analysis of SMR with naturally circulating primary system during loss of feed water accident
Abaszadeh et al. Study and assessment of the newly proposed passive management of MSLB+ SBO accidents for the VVER 1000/V446 NPP using the secondary side Deaerator tank
Wang et al. SBLOCA initiated emergency condition analysis for a China three-loop PWR
Kochetkov Development of Fast Reactors in the USSR and the Russian Federation: Malfunctions and Incidents in the Course of their Operation and Solution of Problems
Alekseev et al. RBEC lead-bismuth cooled fast reactor: Review of conceptual decisions
Pease et al. Heavy-water-moderated pressure-tube reactor safety
Pla et al. Analysis of steam generator tube plugging in A PWR. influence in the emergency operating procedures
Nistor-Vlad et al. Comparison between RELAP/SCDAPSIM/MOD3. 4 and MOD3. 6+ in Simulating a CANDU6 SBO
Moffitt Unique differences in applying safety analyses for a graphite moderated, channel reactor
Kima et al. The Safety Analysis to Increase for the Water Temperature of the HPECC in WSNPP-1
Sandström Operating experience at the Ågesta nuclear power station
Beeley et al. Operating experience with the sodium reactor experiment and its application to the hallam nuclear power facility
Transients WESTINGHOUSE ASSESSMENTS OF REACTIVITY TRANSIENTS DUE TO RAPID BORON DILUTION
Jayanti et al. Preliminary analysis of a small, inherently safe boiling water reactor
Sidorenko et al. SAFETY ASSURANCE APPROACH TO SEVERE ACCIDENTS AND SEVERE ACCIDENT MANAGEMENT AT NUCLEAR POWER PLANTS WITH WWER