JPH0151776B2 - - Google Patents

Info

Publication number
JPH0151776B2
JPH0151776B2 JP55014685A JP1468580A JPH0151776B2 JP H0151776 B2 JPH0151776 B2 JP H0151776B2 JP 55014685 A JP55014685 A JP 55014685A JP 1468580 A JP1468580 A JP 1468580A JP H0151776 B2 JPH0151776 B2 JP H0151776B2
Authority
JP
Japan
Prior art keywords
gas
signal
gas analyzer
value
acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55014685A
Other languages
Japanese (ja)
Other versions
JPS55106354A (en
Inventor
Gi Do Sanchi Giunio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ESU ESU OO ESU SABU SHII OIRU SAABISESU SpA
Original Assignee
ESU ESU OO ESU SABU SHII OIRU SAABISESU SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ESU ESU OO ESU SABU SHII OIRU SAABISESU SpA filed Critical ESU ESU OO ESU SABU SHII OIRU SAABISESU SpA
Publication of JPS55106354A publication Critical patent/JPS55106354A/en
Publication of JPH0151776B2 publication Critical patent/JPH0151776B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/32Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise
    • G01N29/326Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise compensating for temperature variations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/024Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/222Constructional or flow details for analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/012Phase angle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/021Gases
    • G01N2291/0212Binary gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/021Gases
    • G01N2291/0215Mixtures of three or more gases, e.g. air

Description

【発明の詳細な説明】 本発明はガス分析装置に関し、更に詳細には二
酸化炭素、酸素および飽和蒸気から成る三成分ガ
ス混合物の諸成分ガスの濃度(%)(重量%以下
同じ)を瞬間的に検査するためのガス分析装置に
係るものであつて、該装置はなお詳しくは潜水作
業用のエンジンへの燃料供給に用いるものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas analyzer, and more particularly to a gas analyzer that instantaneously measures the concentration (%) (same below weight %) of various component gases of a ternary gas mixture consisting of carbon dioxide, oxygen, and saturated steam. The present invention relates to a gas analysis device for testing water, and more specifically, the device is used for supplying fuel to engines for diving operations.

蒸気で飽和された三成分ガス混合物中の必要な
二種の成分ガスの各濃度(%)を測定すること
は、圧力および温度が著しく広い範囲内で変動し
うる場合、なお詳しくはこれらの濃度(%)値が
それら濃度(%)に起る変化に較べてできるだけ
短い時間で測定されねばならぬ場合、特に必要で
ある。1つの特殊な用途としては、潜水作業で用
いられる排気再循環式の内燃機関の吸込み混合気
体中の二酸化炭素および酸素の各濃度(%)を検
査することが挙げられる。該内燃機関の循環路中
に送り込まれるべき酸素気流を、該混合気体中の
酸素の濃度(%)がその最適値をとるような仕方
で調節しうるためには、これら濃度(%)の認識
が必要不可欠である。
Determining the concentration (%) of each of the two required component gases in a ternary gas mixture saturated with steam is particularly important when pressure and temperature can vary within a significantly wide range. This is especially necessary if the (%) values have to be measured in as short a time as possible compared to the changes occurring in their concentration (%). One particular application is testing the concentration (%) of carbon dioxide and oxygen in the intake gas mixture of internal combustion engines with exhaust gas recirculation used in diving operations. In order to be able to adjust the oxygen flow to be fed into the circulation path of the internal combustion engine in such a way that the concentration (%) of oxygen in the gas mixture takes its optimum value, it is necessary to recognize these concentrations (%). is essential.

現今入手できる在来型のガス分析装置はこのよ
うなことは不可能で、その理由は次のようなもの
である。即ち 検査されるべき濃度(%)値は瞬間的には測定
し得ず、測定のために数十秒の時間が必要であ
り、この測定時間を更に短縮することができな
い。
This is not possible with the conventional gas analyzers currently available, and the reasons for this are as follows. That is, the concentration (%) value to be tested cannot be measured instantaneously, and several tens of seconds are required for measurement, and this measurement time cannot be further shortened.

該混合気体の1成分ガスの濃度(%)値につい
ての情報は瞬間的圧力の値に密接に関係してお
り、従つて後者の値が十分精確に知られねばなら
ず、さもないときは第2の情報即ち、第2ガスの
濃度(%)値が別途に求められねばならないが、
そうしたことは、この第2ガスの濃度(%)を測
定するために別個に1台のガス分析装置を必要と
し、合計2台のガス分析装置を使用せねばなら
ず、そのため明らかに装置は更に複雑になり、ま
た信頼度も減少することになる。
Information about the concentration (%) value of one of the constituent gases of the gas mixture is closely related to the value of the instantaneous pressure, and therefore the latter value must be known with sufficient precision, otherwise the 2, that is, the concentration (%) value of the second gas must be obtained separately,
This would require a separate gas analyzer to measure the concentration (%) of this second gas, making a total of two gas analyzers, which would obviously require additional equipment. This increases complexity and also reduces reliability.

在来式ガス分析装置を面倒なく操作することは
該混合気体の温度水準次第であるが、或る一定限
度を超える温度においては実際上得られる情報は
かなりの誤差を含んでいる。
The hassle-free operation of conventional gas analyzers depends on the temperature level of the gas mixture, but above a certain limit the information obtained in practice contains considerable errors.

そして十分に純粋なガスが存在せねばならな
い。以上の理由によるものである。
And a sufficiently pure gas must be present. This is due to the above reasons.

本発明の目的は上述の諸困難を、全く異なる原
理を基礎とする上記問題へのアプローチによつて
克服することである。
The aim of the invention is to overcome the above-mentioned difficulties by an approach to the above-mentioned problems based on completely different principles.

本発明は上記の目的を達成するためのガス分析
装置を提供するものである。
The present invention provides a gas analyzer for achieving the above object.

すなわち、本発明は酸素ガス、炭酸ガス及び飽
和水蒸気を成分として含む気体を流通させる燃料
供給管を備えた水面下運転のエンジンへの燃料供
給の制御に有用であつて、上記気体の1つの成分
ガスの濃度(%)を示す信号を直ちに提供するガ
ス分析装置において、 該気体の温度を示す信号Tを提供するセンサを
該供給管中に有する温度検査手段と、 該気体中での音響伝播速度を示す信号Vを提供
するセンサを該供給管中に有する音速検査手段
と、 上記両検査手段に接続されていて、それらから
上記の両信号T,Vを受け取つて、V2/Tの値
を計算する計算手段と、 一連の離散的温度値における一連の離散的酸素
ガス濃度(%)における気体の定圧比熱と定積比
熱との比γと気体定数Rの積γRの値並びに一連
の離散的温度値における一連の離散的炭酸ガス濃
度(%)における気体の定圧比熱と定積比熱との
比γと気体定数Rの積γRの値をそれぞれ予め記
憶している記憶装置と、 記憶装置に記憶されている各温度、各ガス濃度
(%)におけるγとRの積の値と測定した信号V,
Tに基づき計算したV2/Tの値とを比較し、
V2/T=γRなる関係に基づいて直ちにガス濃度
(%)を示す信号を生成する手段とを包含するこ
とを特徴とするガス分析装置を提供するものであ
る。
That is, the present invention is useful for controlling the fuel supply to an engine operating underwater that is equipped with a fuel supply pipe through which gas containing oxygen gas, carbon dioxide gas, and saturated water vapor as components flows, A gas analyzer that immediately provides a signal indicating the concentration (%) of a gas, comprising temperature testing means having a sensor in the supply pipe that provides a signal T indicating the temperature of the gas; and acoustic propagation velocity in the gas. sound velocity testing means having a sensor in the supply pipe that provides a signal V indicative of a calculation means for calculating the value of the product γR of the ratio γ of the constant pressure specific heat to the constant volume specific heat of the gas and the gas constant R at a series of discrete oxygen gas concentrations (%) at a series of discrete temperature values; A storage device that stores in advance the value of the product γR of the ratio γ between constant pressure specific heat and constant volume specific heat of gas and the gas constant R at a series of discrete carbon dioxide concentrations (%) at temperature values; The value of the product of γ and R at each temperature and each gas concentration (%) and the measured signal V,
Compare the value of V 2 /T calculated based on T,
The present invention provides a gas analyzer characterized in that it includes means for immediately generating a signal indicating gas concentration (%) based on the relationship V 2 /T=γR.

本発明によつて達成される技術課題の解決の基
礎をなしているのは、連続したガス状媒質中での
音響伝播速度は該ガスの気体定数、並びに温度の
次の公知関係に従う関数であるという原理であ
る。
Fundamental to the solution of the technical problem achieved by the invention is the fact that the velocity of sound propagation in a continuous gaseous medium is a function of the gas constant of the gas, as well as of the temperature, according to the following well-known relationship: This is the principle.

V=√ 式中 V=ガス混合物中での音響伝播速度[m・
sec-1] γ=ガス混合物中の定圧比熱対定積比熱の比
cP/cV R=ガス混合物の特性定数[m2・sec-2・〓-1] T=ガス混合物の絶対温度[〓] 混合気体の温度及び音響伝播速度から γR=V2/T なる量の値を導くことができるが、この量は該混
合気体のパラメータの、即ち公知の物理学的なら
びに熱力学的諸性質を発揮する各成分の濃度
(%)の関数である。従つて、これら濃度(%)
の値は直ちにしかも同時に定めることができる。
V=√ where V=acoustic propagation velocity in the gas mixture [m・
sec -1 ] γ = ratio of specific heat at constant pressure to specific heat at constant volume in the gas mixture
c P /c V R = Characteristic constant of the gas mixture [m 2 sec -2-1 ] T = Absolute temperature of the gas mixture [〓] From the temperature of the gas mixture and the acoustic propagation velocity, γR = V 2 /T. A quantity value can be derived, which quantity is a function of the parameters of the gas mixture, ie the concentration (in %) of each component exhibiting known physical and thermodynamic properties. Therefore, these concentrations (%)
The values of can be determined immediately and simultaneously.

二つの成分(二酸化炭素と酸素)を有する混合
気体の場合には γR=γ1R1p1+γ2R2p2 の関係が当てはまる。但し式中インデクス1およ
び2は夫々第1及び第2ガスの関係であり、また
p1およびp2は夫々第1及び第2ガスの重量パーセ
ントを表わすものとする。
In the case of a gas mixture having two components (carbon dioxide and oxygen), the relationship γR = γ 1 R 1 p 1 + γ 2 R 2 p 2 applies. However, indexes 1 and 2 in the formula are the relationships between the first and second gases, respectively, and
Let p 1 and p 2 represent the weight percent of the first and second gases, respectively.

飽和蒸気を重量パーセントP3で追加的に含ん
でいる三成分型ガス混合物の場合は γR=γ1R1p1+γ2R2p2+γ3R3p3 の関係が当てはまり、簡単な仕方で先の場合へ減
少できる。というのは、温度値が混合気体中にあ
る水分量の決定を許し、従つて他方では2つの他
の成分ガスの濃度(%)値が温度及び音響伝播速
度から定めることができるからである。
For ternary gas mixtures that additionally contain saturated steam in weight percent P 3 , the relationship γR = γ 1 R 1 p 1 + γ 2 R 2 p 2 + γ 3 R 3 p 3 holds true, and in a simple way can be reduced to the previous case. This is because the temperature value allows the determination of the amount of water present in the gas mixture, and thus on the other hand the concentration (%) values of the two other component gases can be determined from the temperature and the acoustic propagation velocity.

本発明によるガス分析装置で供給し得るデータ
の精度は測定された温度の精度及び測定された音
響伝播速度の精度と密接且つ排他的な関係にあ
る。これら二つの検査量は信頼し得る且つ明確な
仕方で、更に大事なことは目立つほど時間損失な
しに、技術の現況において利用し得る装置の助け
をかりて、測定することができる。
The accuracy of the data that can be provided by a gas analyzer according to the invention is closely and exclusively related to the accuracy of the measured temperature and the accuracy of the measured acoustic propagation velocity. These two test quantities can be measured in a reliable and unambiguous manner and, more importantly, without appreciable loss of time, with the aid of the equipment available in the state of the art.

本発明によるガス分析装置の最も重要な成果を
強調するために以下に記載するその利点について
特に述べることにする。即ち、 本発明によるガス分析装置は如何なる所望圧力
においても作動し、しかもまた検査結果は実際の
圧力には無関係であり、 温度の値そのものが既知であるならば、本装置
は如何なる所望温度においても作動し、 本装置は測定されるべき濃度(%)の極めて迅
速且つ精確な読出しを行ない、 酸素の濃度(%)についての情報があれば本装
置はまた第2の情報(二酸化炭素の濃度(%)に
ついての)をも同時に得ることができ、また 本装置は内燃機関の排気の場合にそうであるよ
うな不充分な純度のガスの場合でも面倒がなく作
動する。
In order to highlight the most important achievements of the gas analyzer according to the invention, special mention will be made of its advantages which will be described below. That is, the gas analyzer according to the invention operates at any desired pressure, and the test result is also independent of the actual pressure, and the device operates at any desired temperature, provided that the temperature value itself is known. In operation, the device gives a very fast and accurate readout of the concentration (%) to be measured, and if there is information about the concentration (%) of oxygen, the device also provides a second information (concentration (%) of carbon dioxide). %) can be obtained at the same time, and the device operates without any hassle even in the case of gases of insufficient purity, as is the case with the exhaust gas of internal combustion engines.

本発明によるガス分析装置においては、温度を
調べるための温度検査装置はデイジタル温度検知
器であることが望ましい。
In the gas analyzer according to the present invention, the temperature testing device for checking the temperature is preferably a digital temperature detector.

本発明の好適な実施態様においては、ガス混合
物中での音響伝播速度を調べるための音速検査装
置は超音波送信機及び超音波受信機からなる。こ
の超音波送信機が超音波周波数の交流電圧(電
流)を発生するような発電機と電気−音響変換器
とから構成されていること、超音波受信機が音響
−電気変換器から、さらに好ましくは後続増巾器
付きの音響−電気変換器から構成され、音響−電
気変換器と電気−音響変換器とは一定の間隔をお
いて設定されていること、又は位相比較器が発電
機によつて超音波周波数の交流電圧(電流)を発
生させるために発せられた信号の位相と音響−電
気変換器によつて受信された信号の位相とを比較
することが望ましい。
In a preferred embodiment of the invention, the sound speed testing device for determining the speed of sound propagation in a gas mixture consists of an ultrasound transmitter and an ultrasound receiver. More preferably, the ultrasonic transmitter is comprised of a generator that generates an alternating voltage (current) at an ultrasonic frequency and an electro-acoustic transducer, and the ultrasonic receiver is comprised of an acoustic-electric transducer. consists of an acoustic-to-electrical transducer with a trailing amplifier, and the acoustic-to-electrical and electro-acoustic transducers are spaced apart or the phase comparator is connected to the generator. It is desirable to compare the phase of the signal emitted to generate an alternating current voltage (current) at ultrasonic frequencies with the phase of the signal received by the acousto-electrical transducer.

比V2/T値又はこれに比例した値を計算する
計算手段をマイクロプロセツサで構成するのが有
利であり、このマイクロプロセツサには温度検査
手段の出力信号T及び位相比較器の出力信号が入
力される。
Advantageously, the calculation means for calculating the ratio V 2 /T value or a value proportional thereto are constituted by a microprocessor, which microprocessor is provided with the output signal T of the temperature checking means and the output signal of the phase comparator. is input.

次に、本発明の一実施例のブロツク回路ダイア
グラムである添付図に基づいて述べる。
Next, a description will be given based on the attached figure, which is a block circuit diagram of one embodiment of the present invention.

センサ1aを備えたデイジタル温度探査器1は
事実上水蒸気で飽和された二酸化炭素と酸素とか
ら成るガス混合物の温度Tを検査する役目を果た
す。斯るガス混合物は水面下作業専用の排気再循
環器付きのデイーゼルエンジンに供給管SCを通
じて燃料を供給するための主要ガスとして使用さ
れる。但しこのエンジンの詳細は図示していな
い。分析されるべき混合気体が供給管を通して流
れる方向は矢印で示してある。例えば40kHzでの
超高周波交流電圧を発生するような発電機2が一
方では電気−音響変換器3に、また他方では位相
比較器4の入力端子に接続されている。この電気
−音響変換器3によつて発せられる超音波は音響
−電気変換器5によつて受信され交流電圧に逆変
換される。この交流電圧は増巾器6の入力端子に
供給され、この増巾器の出力は位相比較器4の第
2入力端子に接続される。斯くて位相比較器4は
発電機2の発した信号の位相と音響−電気変換器
5が受けた信号の位相と比較する。変換器3と5
とは一定の間隔で離れているから、位相比較器4
の出力における信号は分析されるべき混合気体を
横断通過する超音波の速度Vに直接比例する。
A digital temperature probe 1 with a sensor 1a serves to check the temperature T of a gas mixture consisting of carbon dioxide and oxygen which is essentially saturated with water vapor. Such a gas mixture is used as the main gas for fueling a diesel engine with an exhaust gas recirculator dedicated to underwater operations through the supply line SC. However, details of this engine are not shown. The direction in which the gas mixture to be analyzed flows through the supply tube is indicated by an arrow. A generator 2, which generates a very high frequency alternating current voltage, for example at 40 kHz, is connected on the one hand to an electro-acoustic converter 3 and on the other hand to the input terminal of a phase comparator 4. The ultrasonic waves emitted by the electro-acoustic converter 3 are received by the acoustic-electric converter 5 and converted back into an alternating current voltage. This alternating voltage is supplied to the input terminal of an amplifier 6, the output of which is connected to the second input terminal of the phase comparator 4. The phase comparator 4 thus compares the phase of the signal emitted by the generator 2 with the phase of the signal received by the acousto-electrical converter 5. Transducers 3 and 5
Since it is separated from the phase comparator 4 by a certain distance,
The signal at the output of is directly proportional to the velocity V of the ultrasound waves passing across the gas mixture to be analyzed.

デイジタル温度探査器1の出力信号と位相比較
器4の出力信号とがマイクロプロセツサ7に対す
る主要な入力データを構成する。この典型的実施
態様においては、量γRの値は酸素の濃度(%)
の値及び温度の値の一連の離散値列に対して予め
計算されたものである。これらの前以つて計算さ
れた値γRsは記憶装置8の中に内蔵される。マイ
クロプロセツサ7が各比V2/Tを計算しその値
を記憶装置8中に含まれている各濃度のγRと比
較し、すでに述べたV2/T=γRなる関係に基づ
いて酸素の濃度(%)を直接に指示するような
(例えばγRc/γRs=%O2)デイジタル出力信号
を発する。マイクロプロセツサ7のデイジタル出
力信号が補足酸素調節装置(図示せず)に対する
入力情報を構成し、これが燃料供給管中での混合
気体に追加的に供給されるべき酸素ガスの量を定
める機能を有する。マイクロプロセツサ7の同じ
デイジタル出力信号は酸素濃度(%)の直接読取
りを許し、必要の場合にはデイジタル−アナログ
変換器10の助けにより対応するアナログ信号に
変換できる。
The output signal of the digital temperature probe 1 and the output signal of the phase comparator 4 constitute the main input data to the microprocessor 7. In this exemplary embodiment, the value of the quantity γR is the concentration of oxygen (%)
and temperature values. These pre-calculated values γRs are stored in the storage device 8. The microprocessor 7 calculates each ratio V 2 /T, compares the value with γR of each concentration contained in the storage device 8, and calculates the oxygen concentration based on the relationship V 2 /T=γR described above. A digital output signal is generated that directly indicates the concentration (%) (eg, γRc/γRs = %O 2 ). The digital output signal of the microprocessor 7 constitutes input information to a supplemental oxygen regulator (not shown), which functions to determine the amount of oxygen gas to be added to the gas mixture in the fuel supply line. have The same digital output signal of the microprocessor 7 allows a direct reading of the oxygen concentration (%) and can be converted into a corresponding analog signal with the aid of a digital-to-analog converter 10 if necessary.

較正装置9はマイクロプロセツサ7に追加的な
較正入力(信号)を入力せしめることが可能であ
るが、この追加信号は本発明のガス分析装置を2
個の変換器3と5との間の実際の一定の時間間隔
の関数として同調することを可能とするものであ
る。
The calibration device 9 is capable of inputting additional calibration inputs (signals) to the microprocessor 7, which additional signals make it possible for the gas analyzer of the invention to
It is possible to tune the transducers 3 and 5 as a function of the actual constant time interval between them.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明一実施例をブロツク回路ダイ
アグラムで略示したものである。図中数字記号で
示した対象物の内容は下記の通りである。 1……デイジタル温度探査器、1a……セン
サ、2……超音波発生機、3……電気−音響変換
器、4……位相比較器、5……音響−電気変換
器、6……増巾器、7……マイクロプロセツサ、
8……記憶装置、γRsを内蔵する、9……較正装
置、10……デイジタル−アナログ変換器、11
……エンジン、SC……供給管。
The accompanying drawings schematically depict, in block circuit diagram form, one embodiment of the invention. The contents of the objects indicated by numerical symbols in the figure are as follows. 1... Digital temperature probe, 1a... Sensor, 2... Ultrasonic generator, 3... Electric-acoustic transducer, 4... Phase comparator, 5... Acoustic-electrical converter, 6... Increase Widget, 7...Microprocessor,
8...Storage device, built-in γRs, 9...Calibration device, 10...Digital-to-analog converter, 11
...engine, SC...supply pipe.

【特許請求の範囲】[Claims]

1 内部に液体を通過せしめるときその流れを繰
り返し屈曲せしめる管を所定の軸線のまわりに回
転可能に支持し、下撓性の液体チユーブの一端を
前記回転軸線に沿つて前記管に結合し、その液体
チユーブの第1の途中部分は、前記管に触れない
ように該管の回転しうる領域を迂回させて第2の
途中部分へと延長せしめ、第1の途中部分を前記
回転軸線のまわりに回転数w1で回転させ、第2
の途中部分は前記結合された側とは反対の側にお
いて前記回転軸線に沿つて回転可能として第3の
途中部分へと延長せしめ、第3の途中部分は前記
第1の途中部分に触れないように第1の途中部分
の回転しうる領域を迂回させて他端へと延長せし
め、第3の途中部分を前記回転軸線のまわりに回
転数w2で回転させ、他端は前記回転軸線に沿つ
て前記結合された側と同じ側において静止系に結
合せしめ、前記管を回転数2(w1−w2)で回転せ
しめながら該管に沈降係数または浮上係数が異る
粒子を含む液体を連続的に導入し、該管内におい
て液体をその粒子の成分に関して該管の長手方向
に分離せしめることを特徴とする液体クロマトグ
ラフイー分離方法。 2 前記液体チユーブとして少くとも2つの液体
チユーブを用い、1つを静止系から前記管への液
体供給用とし、他の前記管から静止系への液体排
出用とする。特許請求の範囲第1項記載の方法。 3 粒子成分を含む液体が糖類、脂質、アミノ酸
1. A tube that repeatedly bends the flow of liquid when it passes through the interior is rotatably supported around a predetermined axis, one end of a downwardly flexible liquid tube is coupled to the tube along the axis of rotation, and the A first intermediate portion of the liquid tube is extended to a second intermediate portion by bypassing a rotatable region of the tube so as not to touch the tube, and the first intermediate portion is extended around the axis of rotation. Rotate at rotation speed w 1 , and
The intermediate portion is rotatable along the rotation axis on the side opposite to the coupled side and extends to a third intermediate portion, and the third intermediate portion is prevented from touching the first intermediate portion. The rotatable region of the first intermediate portion is detoured and extended to the other end, the third intermediate portion is rotated at a rotation speed w 2 around the rotation axis, and the other end is rotated along the rotation axis. The tube is connected to a stationary system on the same side as the connected side, and while the tube is rotated at a rotation speed of 2 (w 1 −w 2 ), a liquid containing particles having different sedimentation coefficients or levitation coefficients is continuously applied to the tube. A liquid chromatographic separation method characterized in that the liquid is separated in the longitudinal direction of the tube with respect to its particle components within the tube. 2. At least two liquid tubes are used as the liquid tubes, one for supplying liquid from the stationary system to the tube and the other for discharging liquid from the stationary system to the stationary system. A method according to claim 1. 3 The liquid containing particle components is sugars, lipids, and amino acids.

Claims (1)

(%)におけるγとRの積の値と測定した信号V,
Tに基づき計算したV2/Tの値とを比較し、
V2/T=γRなる関係に基づいて直ちにガス濃度
(%)を示す信号を生成する手段とを包含するこ
とを特徴とするガス分析装置。 2 前記気体が酸素ガスを主とするものであり、
また前記の記憶装置が一連の酸素ガス濃度(%)
の離散値列及びこれらの酸素ガス濃度(%)の離
散値についてのそれぞれのγRの値を予め記憶し
ている記憶装置を含み、前記の信号生成手段が、
記憶されているγRの値と前記の測定した信号T,
Vに基づき計算したV2/Tの値とを比較して、
V2/T=γRに基づいて直ちに前記のガス濃度
(%)を示す信号を生成する特許請求の範囲第1
項に記載のガス分析装置。 3 温度検査手段がデイジタル温度検知器である
特許請求の範囲第1項に記載のガス分析装置。 4 音速検査手段が超音波送信器からなる特許請
求の範囲第1項又は第2項に記載のガス分析装
置。 5 前記超音波送信器が超温波周波数の交流発生
用の発生機からなり、かつ前記センサが該発生機
に接続された電気−音響変換器及び前記信号Vを
生成する音響−電気変換器とからなり、これら変
換器は前記供給管中で一定の間隔を離して配置さ
れている特許請求の範囲第4項に記載のガス分析
装置。 6 前記音速検査手段が、前記発生機及び音響−
電気変換器に接続された位相比較器を含み、該位
相比較器は発生機の信号の位相と音響−電気変換
器によつて受信された信号の位相とを比較するこ
とによつて、前記信号Vを生成する特許請求の範
囲第5項に記載のガス分析装置。 7 前記両検査手段に接続されている計算手段が
マイクロプロセツサであり、較正装置を含み、こ
の較正装置によつて、前記変換器間の実際の一定
の時間間隔の関数として、該ガス分析装置の同調
を行うことができる付加的較正入力信号をマイク
ロプロセツサに入力せしめる特許請求の範囲第6
項に記載のガス分析装置。
The value of the product of γ and R in (%) and the measured signal V,
Compare the value of V 2 /T calculated based on T,
A gas analyzer comprising means for immediately generating a signal indicating gas concentration (%) based on the relationship V 2 /T=γR. 2. The gas is mainly oxygen gas,
The storage device also stores a series of oxygen gas concentrations (%).
The signal generating means includes a storage device that stores in advance a sequence of discrete values of and respective values of γR for these discrete values of oxygen gas concentration (%),
The stored value of γR and the measured signal T,
Comparing the value of V 2 /T calculated based on V,
Claim 1, wherein a signal indicating the gas concentration (%) is immediately generated based on V 2 /T=γR.
The gas analyzer described in Section. 3. The gas analyzer according to claim 1, wherein the temperature testing means is a digital temperature detector. 4. The gas analyzer according to claim 1 or 2, wherein the sound velocity testing means comprises an ultrasonic transmitter. 5. The ultrasonic transmitter comprises a generator for generating an alternating current at an ultrathermal frequency, and the sensor is connected to an electro-acoustic transducer and an acoustic-electric transducer for generating the signal V. 5. The gas analyzer according to claim 4, wherein the converters are arranged at regular intervals in the supply pipe. 6. The sound velocity testing means includes the generator and the acoustic
a phase comparator connected to the electrical transducer, the phase comparator detecting the signal by comparing the phase of the generator signal with the phase of the signal received by the acousto-electrical transducer; The gas analyzer according to claim 5, which generates V. 7. The calculation means connected to both said testing means are microprocessors and include a calibration device, by means of which said gas analysis device is adjusted as a function of the actual constant time interval between said transducers. Claim 6: The microprocessor is provided with an additional calibration input signal capable of performing the tuning of the microprocessor.
The gas analyzer described in Section.
JP1468580A 1979-02-09 1980-02-08 Gas analyzer Granted JPS55106354A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT20059/79A IT1110618B (en) 1979-02-09 1979-02-09 ANALYZER SUITABLE FOR INSTANTANEOUS MEASUREMENT OF THE PERCENTAGES OF THE COMPONENTS OF A TERNARY GASEOUS MIXTURE, COMPOSED OF CARBON DIOXIDE, OXYGEN AND SATURATED WATER VAPOR, ESPECIALLY FOR THE SUPPLY OF AN ENGINE FOR EXCLUSIVE SUBMARINE USE

Publications (2)

Publication Number Publication Date
JPS55106354A JPS55106354A (en) 1980-08-15
JPH0151776B2 true JPH0151776B2 (en) 1989-11-06

Family

ID=11163478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1468580A Granted JPS55106354A (en) 1979-02-09 1980-02-08 Gas analyzer

Country Status (3)

Country Link
JP (1) JPS55106354A (en)
FR (1) FR2448717B1 (en)
IT (1) IT1110618B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877656A (en) * 1981-11-04 1983-05-11 Fuji Kogyo Kk Ultrasonic measuring device for concentration
US4520654A (en) * 1983-03-14 1985-06-04 General Electric Company Method and apparatus for detecting hydrogen, oxygen and water vapor concentrations in a host gas
JP4120459B2 (en) * 2003-04-25 2008-07-16 日産自動車株式会社 Gas concentration measuring device
RU207887U1 (en) * 2021-08-11 2021-11-23 Федеральное государственное бюджетное учреждение «Институт физики высоких энергий имени А.А. Логунова Национального исследовательского центра «Курчатовский институт» (НИЦ «Курчатовский институт» - ИФВЭ) ACOUSTIC GAS ANALYZER

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554528A (en) * 1978-06-27 1980-01-14 Sumitomo Bakelite Co Ltd Method and apparatus for measuring gas concentration

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB798323A (en) * 1953-05-21 1958-07-16 Coal Industry Patents Ltd Improvements in or relating to methods of and means for detecting changes in the velocity of sound or of ultrasonic vibrations in gases
US2959959A (en) * 1958-06-09 1960-11-15 Gulton Ind Inc Humidity measuring system
US3286098A (en) * 1963-02-28 1966-11-15 Mobil Oil Corp Methods and apparatus for determining factors related to sonic velocity in a gas
FR1475845A (en) * 1966-02-22 1967-04-07 Commissariat Energie Atomique Method and device for measuring the gas rate of a two-phase flowing mixture
US3477277A (en) * 1967-11-30 1969-11-11 Sinclair Research Inc Apparatus for continuously determining the adiabatic bulk modulus of a liquid within a pipeline
DE2433764A1 (en) * 1974-07-13 1976-01-22 Monforts Fa A DEVICE FOR DETERMINING THE MIXING RATIO OF BINARY GASES

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554528A (en) * 1978-06-27 1980-01-14 Sumitomo Bakelite Co Ltd Method and apparatus for measuring gas concentration

Also Published As

Publication number Publication date
IT1110618B (en) 1985-12-23
FR2448717A1 (en) 1980-09-05
FR2448717B1 (en) 1985-06-14
IT7920059A0 (en) 1979-02-09
JPS55106354A (en) 1980-08-15

Similar Documents

Publication Publication Date Title
US4280183A (en) Gas analyzer
CA2403862C (en) Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
US7107851B2 (en) Processing data, for improved, accuracy, from device for measuring speed of sound in a gas
US4164865A (en) Acoustical wave flowmeter
US5060514A (en) Ultrasonic gas measuring device
KR101060541B1 (en) Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
US5129257A (en) System for measuring engine exhaust constituents
JPS6159457B2 (en)
US4555932A (en) Method and apparatus for assaying the purity of a gas
US5807749A (en) Method for determining the calorific value of a gas and/or the Wobbe index of a natural gas
Kortbeek et al. Apparatus for sound velocity measurements in gases up to 10 kbar: Experimental data for argon
JPH0151776B2 (en)
JPH04212052A (en) Apparatus and method for measuring on-line energy flow for natural gas
KR20010022012A (en) Measuring relative density of a gas
Kupnik et al. Adaptive pulse repetition frequency technique for an ultrasonic transit-time gas flowmeter for hot pulsating gases
US3349614A (en) Speed measuring devices
US4237904A (en) Medical apparatus for the measurement of respiratory flow independent of gaseous composition
KOJIMA et al. Development of an active attenuator for pressure pulsation in liquid piping systems: a real time-measuring method of progressive wave in a pipe
US3145564A (en) System for measuring characteristics of fluids
Weller Acoustic apparatus for determination of mixture ratio by analysis of engine exhaust gas
JPH0221257B2 (en)
GB1580524A (en) Flow meter
SU1013742A1 (en) Two-frequency thickness gauge
SU1408299A1 (en) Method of measuring steam density
SU1116383A1 (en) Device for concentration of metal salts in multicomponent solution