JPH0151296B2 - - Google Patents

Info

Publication number
JPH0151296B2
JPH0151296B2 JP57082394A JP8239482A JPH0151296B2 JP H0151296 B2 JPH0151296 B2 JP H0151296B2 JP 57082394 A JP57082394 A JP 57082394A JP 8239482 A JP8239482 A JP 8239482A JP H0151296 B2 JPH0151296 B2 JP H0151296B2
Authority
JP
Japan
Prior art keywords
sintered body
hole
hardness
sintered
throw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57082394A
Other languages
Japanese (ja)
Other versions
JPS58199841A (en
Inventor
Masato Araki
Tamotsu Akashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP57082394A priority Critical patent/JPS58199841A/en
Publication of JPS58199841A publication Critical patent/JPS58199841A/en
Publication of JPH0151296B2 publication Critical patent/JPH0151296B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は高圧相窒化ホウ素とダイヤモンドのす
くなくとも1種を主成分として含む高硬度焼結体
(以后高硬度結焼体と称する)を切り刃部に有し、
ホルダーに固定するための貫通孔を有するスロー
アウエイチツプである切削工具用の高硬度焼結体
スローアウエイチツプの製造方法に関する。
Detailed Description of the Invention The present invention has a high-hardness sintered body (hereinafter referred to as a high-hardness sintered body) containing at least one of high-pressure phase boron nitride and diamond as a main component in the cutting edge,
The present invention relates to a method of manufacturing a high-hardness sintered throwaway chip for a cutting tool, which is a throwaway chip having a through hole for fixing to a holder.

従来硬度の大である物質の切削工具用スローア
ウエイチツプ、たとえば超硬合金製、セラミツク
あるいはサーメツト製のスローアウエイチツプに
はピン式、レバー式、又はビス式と呼ばれる中央
に貫通孔を有するものと、クランプ式と呼ばれる
貫通孔のないものとがある。
Conventionally, throwaway tips for cutting tools made of materials with high hardness, such as those made of cemented carbide, ceramic, or cermet, have a through hole in the center, which is called a pin type, lever type, or screw type. There is also a type without a through hole called a clamp type.

クランプ式はスローアウエイチツプの上面を押
え金具で押えることによりホルダーに固定するも
のであり、ピン式又はレバー式はスローアウエイ
チツプの孔に差し込まれたピンをピンの偏心回転
やレバー動作で移動させてスローアウエイチツプ
をホルダーに固定するものであり、更にビス式は
スローアウエイチツプにもうけられた貫通孔にビ
スを差込み、ホルダーに設けられたねじ孔にビス
を締付けて固定するのが通常である。
The clamp type is fixed to the holder by pressing the top surface of the throwaway chip with a presser metal fitting, and the pin type or lever type is a type in which a pin inserted into the hole in the throwaway chip is moved by eccentric rotation of the pin or lever action. The throw-away chip is fixed to the holder using a screw type, and the screw type is usually secured by inserting a screw into a through hole in the throw-away chip and tightening the screw into a screw hole in the holder. .

本発明は特に貫通孔を有するスローアウエイチ
ツプの製造方法に関する。貫通孔を有するスロー
アウエイチツプに於ては、孔(以后すべて孔と記
載された場合貫通孔を意味する。)の大きさは差
し込まれるビスやピンに正しく相応することが必
要である。スローアウエイチツプは原料を焼結し
て製造されるが、超硬合金製やセラミツク又はサ
ーメツト製の場合は、焼結による寸法変化をある
程度予測ができるので、所要の寸法の孔を有する
焼結体をうることは比較的容易である。そして焼
結の終つた状態で正確に所要の寸法とすることが
困難の場合は、通常所要の大きさよりやや小さめ
の孔を有する焼結体を得ダイヤモンド砥石でホー
ニング加工して最終寸法としている。
The present invention particularly relates to a method of manufacturing a throw-away chip having through holes. In a throw-away chip having a through hole, the size of the hole (hereinafter all references to a hole means a through hole) must correspond correctly to the screw or pin to be inserted. Throwaway chips are manufactured by sintering raw materials, but if they are made of cemented carbide, ceramic, or cermet, the dimensional change due to sintering can be predicted to a certain extent, so it is possible to produce a sintered body with holes of the required size. It is relatively easy to obtain. If it is difficult to obtain the required dimensions accurately after sintering, a sintered body having holes slightly smaller than the required size is usually obtained and honed with a diamond grindstone to obtain the final dimensions.

しかし高硬度焼結体では高温高圧で焼結するた
め、焼結前后における孔の寸法変化を予測するこ
とは難しく、焼結のみで所要の寸法の孔を有する
焼結体をうることは極めて困難である。又前述の
超硬合金製等の場合のように焼結体の孔を所要の
寸法になるように加工することが考えられるが、
たとえばダイヤモンドの軸付砥石によつて加工し
ても、長い加工時間と、工具の極端な損耗をきた
すため、非常な労力とコストを要し、更に原料が
高価である高硬度焼結体の切削による損失も生じ
ることになり、前述の方法で孔を有する高硬度焼
結体切削工具であるスローアウエイチツプをうる
ことは技術的な面でも、又経済的な面でも実質的
に不可能であつた。
However, since high-hardness sintered bodies are sintered at high temperature and high pressure, it is difficult to predict the change in pore size before and after sintering, and it is extremely difficult to obtain a sintered body with pores of the required size by sintering alone. It is. It is also conceivable to process the holes in the sintered body to the required dimensions, as in the case of cemented carbide as mentioned above.
For example, cutting high-hardness sintered compacts using a diamond-based grindstone requires a lot of labor and cost because it takes a long time and causes extreme tool wear, and the raw materials are expensive. Therefore, it is practically impossible to obtain a throw-away tip, which is a high-hardness sintered cutting tool with holes, by the method described above, both technically and economically. Ta.

本発明者らは、前記切削工具用高硬度焼結体ス
ローアウエイチツプの問題点を解決すべく研究の
結果、スローアウエイチツプの貫通孔をもうける
部分を、切り刃部とは一体ではあるが貫通孔をも
うける際に、切り刃部に全く影響をうけない構成
とすることにより前記問題点が解消されるとの結
論を得、そのような構成を有するスローアウエイ
チツプを容易に、かつ高価な高硬度焼結体の損失
を少なく製造する方法について種々研究の結果本
発明を完成した。
As a result of research to solve the problems of the high-hardness sintered throw-away tip for cutting tools, the present inventors discovered that the part of the throw-away tip where the through-hole is formed is integrated with the cutting edge, but does not penetrate through the tip. It was concluded that the above-mentioned problem could be solved by creating a structure in which the cutting edge part is not affected at all when making a hole, and the throw-away tip with such a structure can be easily manufactured without being expensive. The present invention was completed as a result of various research into methods for producing hardness sintered bodies with less loss.

即ち、本発明は、中心部が黒鉛、六方晶系窒化
ホウ素又は融点が1000℃以上、ビツカース硬度が
700Kg/mm2以下、そして結晶水や実質的に1700℃
以下で遊離する分子を含まない物質のいずれかで
あり、周囲部がサーメツトである柱状体又は融点
が1000℃以上の金属の柱状体、のいずれかの柱状
体であり、該柱状体の周囲に、焼結により高圧相
窒化ホウ素とダイヤモンドのすくなくとも1種を
主成分とする高硬度焼結体となりうる原料を配置
し、すくなくとも2GPaの圧力と、最低1000℃の
温度で焼結し、焼結完了体の中心軸上に、少なく
とも中心部を除去して高硬度焼結体が接しない貫
通孔を設けることよりなる切削工具用の高硬度焼
結体スローアウエイチツプの製造方法である。
That is, the present invention has graphite in the center, hexagonal boron nitride, or has a melting point of 1000°C or more and a Vickers hardness.
700Kg/ mm2 or less, and crystal water or substantially 1700℃
It is any of the following substances that do not contain molecules that are liberated, and the surrounding part is a columnar body made of cermet or a columnar body made of a metal with a melting point of 1000°C or higher, and the surrounding part of the columnar body is one of the following: , place raw materials that can be sintered to become a high-hardness sintered body mainly composed of at least one of high-pressure phase boron nitride and diamond, and sinter at a pressure of at least 2 GPa and a temperature of at least 1000°C to complete sintering. This is a method for manufacturing a high-hardness sintered throw-away tip for a cutting tool, which comprises providing a through hole on the central axis of the body, at least in the center thereof, so that the high-hardness sintered body does not come into contact with it.

本発明において融点が1000℃以上、ビツカース
硬度が700Kg/mm2以下で結晶水や実質的に1700℃
以下で遊離する分子を含まない物質としては、た
とえばパイロフイライト、タルク、ろう石や酸化
ケイ素等があり、又融点が1000℃以上の金属とし
ては、たとえば鋼、チタン、モリブデン、ニツケ
ル等の金属がある。
In the present invention, the melting point is 1000℃ or more, the Vickers hardness is 700Kg/mm 2 or less, and crystallization water or substantially 1700℃
Examples of substances that do not contain molecules that are liberated below include pyrofluorite, talc, waxite, and silicon oxide, and examples of metals with a melting point of 1000°C or higher include steel, titanium, molybdenum, and nickel. There is.

つぎに図面にもとづいて本発明を説明する。第
1図〜第6図は従来の高硬度焼結体スローアウエ
イチツプである。第1図は四角形のスローアウエ
イチツプの正面図、第2図は第1図のA−A線に
おける断面図である。サーメツト層2aの両側面
に高硬度焼結体層1aがもうけられており、チツ
プの中央には貫通孔3aがある。この図では高硬
度焼結体層は貫通孔3aに接している。第3図は
三角形のスローアウエイチツプの正面図、第4図
は第3図のB−B線における断面図である。チツ
プはすべて高硬度焼結体で構成され、中央に貫通
孔3bがある。第5図は円形のスローアウエイチ
ツプの正面図、第6図は第5図のC−C線におけ
る断面図であり、サーメツト層2cの片側のみに
焼結体層1cがもうけられている。いずれの場合
も貫通孔3b,3cがもうけられており、第1
図、第2図の場合と同様に焼結体が貫通孔に接し
ている。したがつて前記の従来の高硬度焼結体ス
ローアウエイチツプを製造する場合、所定の大き
さの貫通孔をもうけることは、孔のない焼結体に
孔を開ける場合は勿論、あらかじめ適当な貫通孔
を焼結体に設けた場合でも研削には工具の損耗と
長い切削時間が必要であつた。
Next, the present invention will be explained based on the drawings. FIGS. 1 to 6 show conventional high-hardness sintered throw-away chips. FIG. 1 is a front view of a rectangular throw-away tip, and FIG. 2 is a sectional view taken along line A--A in FIG. 1. High-hardness sintered layers 1a are provided on both sides of the cermet layer 2a, and a through hole 3a is provided in the center of the chip. In this figure, the high hardness sintered body layer is in contact with the through hole 3a. FIG. 3 is a front view of the triangular throw-away tip, and FIG. 4 is a sectional view taken along line B--B in FIG. 3. All chips are made of high-hardness sintered material, and have a through hole 3b in the center. FIG. 5 is a front view of a circular throw-away chip, and FIG. 6 is a sectional view taken along the line C--C in FIG. 5, in which a sintered body layer 1c is formed only on one side of the cermet layer 2c. In either case, through holes 3b and 3c are provided, and the first
The sintered body is in contact with the through hole as in the case of FIGS. Therefore, when manufacturing the above-mentioned conventional high-hardness sintered throw-away chip, it is necessary to make a through hole of a predetermined size in advance, as well as when drilling a hole in a sintered body without holes. Even when holes were formed in the sintered body, grinding required wear and tear on tools and long cutting times.

第7図〜第12図はそれぞれ前述の従来のスロ
ーアウエイチツプに対応する本発明の製造方法で
製造された高硬度焼結体スローアウエイチツプに
関するものである。
7 to 12 each relate to a high-hardness sintered throwaway chip manufactured by the manufacturing method of the present invention, which corresponds to the conventional throwaway chip described above.

第7図、第8図は第1図、第2図に、第9図、
第10図は第3図、第4図に、第11図、第12
図は第5図、第6図にそれぞれ相当する。そして
第7図、第9図、第11図は正面図であり、第8
図、第10図、第12図はそれぞれのD−D線、
E−E線、F−F線の断面図である。図において
1d,1e,1fはそれぞれ高硬度焼結体、2
d,2e,2fはそれぞれサーメツト、3d,3
e,3fは貫通孔を示す。第7図〜第12図に於
いては貫通孔にはサーメツトのみが接しており、
高硬度焼結体は接していない。したがつて孔を貫
通させるための加工、或は孔を所要の大きさにす
るための切削はサーメツトの部分について行えば
よいので、容易に行うことができる。なお第7図
〜第12図においては2d,2e,2fはサーメ
ツトとしたが、サーメツトの代りに金属を用いた
場合、その加工は更に容易である。
Figures 7 and 8 are similar to Figures 1 and 2, Figure 9,
Figure 10 is similar to Figures 3 and 4, Figures 11 and 12.
The figures correspond to FIGS. 5 and 6, respectively. Figures 7, 9, and 11 are front views, and Figure 8 is a front view.
Figures 10 and 12 are the respective D-D lines,
FIG. 3 is a cross-sectional view taken along line E-E and line F-F. In the figure, 1d, 1e, 1f are high hardness sintered bodies, 2
d, 2e, 2f are cermet, 3d, 3
e and 3f indicate through holes. In Figures 7 to 12, only the cermet is in contact with the through hole.
High hardness sintered bodies are not in contact. Therefore, machining to penetrate the hole or cutting to make the hole to a desired size can be easily carried out on the cermet part. In FIGS. 7 to 12, 2d, 2e, and 2f are made of cermet, but if metal is used instead of cermet, the processing will be easier.

次に本発明である高硬度焼結体スローアウエイ
チツプの製造方法についてのべる。本発明の製造
方法で得られるスローアウエイチツプの構造は詳
述してあるが、孔に接する部分のない高硬度焼結
体と、その焼結体により包囲され、かつ焼結体と
一体として構成され、かつ貫通孔を取囲んでいる
サーメツト又は金属とにより構成されている。
Next, a method for manufacturing a high-hardness sintered throw-away chip according to the present invention will be described. The structure of the throw-away chip obtained by the manufacturing method of the present invention has been described in detail. and a cermet or metal surrounding the through hole.

まず高硬度焼結体の部分の製造についてのべ
る。即ち高硬度焼結体の原料である高圧相窒化ホ
ウ素及び/又はダイヤモンド粉末と、コバルト、
ニツケル、鉄、銅、チタン、ケイ素、マグネシウ
ム、ジルコニウム、ハフニウム、アルミニウム、
周期律表の第4a族、第5a族、第6a族元素のホウ
化物、窒化物、酸化物、炭化ケイ素、炭化ホウ素
等のすくなくとも1種の粉末を均一に混合し、次
いで中央に内孔を有する所定の管状にプレス成形
する。コバルト等の粉末を混合する目的は焼結体
の物性を改良するとともに、焼結体の製造を容易
にするためであり、又高硬度焼結体の原料粉末と
コバルト等の粉末の混合割合は上記目的に添つた
範囲で任意に選択することができる。
First, we will talk about manufacturing the high hardness sintered body part. That is, high-pressure phase boron nitride and/or diamond powder, which is a raw material for a high-hardness sintered body, and cobalt,
Nickel, iron, copper, titanium, silicon, magnesium, zirconium, hafnium, aluminum,
At least one powder of borides, nitrides, oxides, silicon carbide, boron carbide, etc. of elements of Groups 4a, 5a, and 6a of the periodic table is mixed uniformly, and then an inner hole is formed in the center. It is press-molded into a predetermined tubular shape. The purpose of mixing powder such as cobalt is to improve the physical properties of the sintered body and to facilitate the production of the sintered body, and the mixing ratio of the raw material powder of the high hardness sintered body and the powder such as cobalt is It can be arbitrarily selected within the range that meets the above purpose.

次に孔周囲部の製造についてのべる。即ち(イ)黒
鉛、(ロ)六方晶系窒化ホウ素、(ハ)融点が1000℃以上
でビツカース硬度が700Kg/mm2以下で結晶水や実
質的に1700℃以下で遊離する分子を含有しない物
質、例えば脱水処理を施したパイロフイライト、
タルク、ろう石や酸化ケイ素等のいずれかが中心
部であり、周囲部がサーメツト原料である柱状体
か、又は融点が1000℃以上の金属のみによる柱状
体のいずれかの柱状体で且つ前記の高硬度焼結体
原料を主成分とする管状体の中央内孔に入るよう
な大きさのものを準備する。なお前記(イ)、(ロ)、(ハ)
で示される物質やサーメツト原料、金属は粉末を
プレス成形したものが通常用いられるが黒鉛につ
いては棒状体でもよい。
Next, we will talk about manufacturing the area around the hole. Namely, (a) graphite, (b) hexagonal boron nitride, and (c) a substance with a melting point of 1000°C or higher, a Vickers hardness of 700 kg/mm 2 or less, and that does not contain crystal water or molecules that are substantially liberated at 1700°C or lower. , for example, pyrofluorite that has undergone dehydration treatment,
A columnar body whose central part is made of talc, waxite, silicon oxide, etc., and whose peripheral part is a cermet raw material, or a columnar body made only of a metal with a melting point of 1000°C or higher, and the above-mentioned A tube-shaped body whose main component is a high-hardness sintered body material is prepared with a size that can fit into the central inner hole. Note that (a), (b), and (c) above
For the substances represented by , cermet raw materials, and metals, press-molded powders are usually used, but graphite may be used in the form of rods.

次に柱状体を前述の管状プレス成形体の中央内
孔にそう入し、適当なカプセルに更に入れ、ベル
ト型等公知の高圧装置によつてすくなくとも
2GPaの圧力と、最低1000℃の高圧高温で所定時
間焼結する。
Next, the columnar body is inserted into the central inner hole of the above-mentioned tubular press-formed body, further placed in a suitable capsule, and at least
Sintering is performed at a pressure of 2 GPa and at a high pressure and high temperature of at least 1000°C for a specified period of time.

焼結后、焼結体の中心軸上に配された材料に放
電加工、ドリル加工、ダイヤモンド軸付砥石によ
る加工等により、所要の大きさの孔を設ける。こ
の場合中心部が前記(イ)、(ロ)、(ハ)で示される物質で
あり、周囲部がサーメツトである柱状体を用いた
焼結体に孔を設ける際は、孔の周囲がサーメツト
であるように中心部の物質を完全に除去すること
が必要である。中心軸上には高硬度焼結体は存在
しないので前記の加工は容易であり、且つ切削工
具用のスローアウエイチツプとしての性能はいさ
さかの影響もうけていない。そして高硬度焼結体
原料の使用量も減少するので、実用上も又経済上
も本発明は従来の高硬度焼結体スローアウエイチ
ツプの製造法に比してすぐれている。
After sintering, a hole of a desired size is formed in the material arranged on the central axis of the sintered body by electrical discharge machining, drilling, machining with a diamond-shafted grindstone, or the like. In this case, when a hole is provided in a sintered body using a columnar body whose central part is made of the substance shown in (a), (b), or (c) above and whose surrounding part is cermet, the periphery of the hole is made of cermet. It is necessary to completely remove the material in the center. Since there is no high-hardness sintered body on the central axis, the above-mentioned processing is easy, and the performance as a throw-away chip for a cutting tool is not affected in the slightest. Since the amount of high-hardness sintered raw material used is also reduced, the present invention is superior to conventional methods of manufacturing high-hardness sintered indexable chips both in practical and economical terms.

次に実施例、比較例により本発明を説明する。 Next, the present invention will be explained with reference to Examples and Comparative Examples.

実施例 1 高硬度焼結体原料である平均粒径3μmの立方
晶系窒化ホウ素(高圧相窒化ホウ素)60体積%、
平均粒径1.3μmの窒化チタン30体積%及び平均7μ
mのアルミニウム粉末10体積%を均一に混合し、
プレス成形により外径16mm、内径5mm、高さ5mm
の管状体を得た。別にSKH9種鋼(融点1500℃)
の粒度325メツシユ以下の粉末をプレス成形して
直径5mm、高さ5mmの円柱状体を得、この円柱状
体を前記管状体の中央空部にいれた。次にこのも
のを外径17mm、内厚0.5mm、高さ6mmのチタン製
カプセルに収め、直径16mm、厚さ0.5mmのチタン
板で蓋をしてからベルト型超高圧装置によつて圧
力5GPa、温度1350℃、圧力及び温度の保持時間
15分間の条件で焼結した。超高圧装置から取り出
された焼結体は立方晶窒化ホウ素を含む部分(高
硬度焼結体)とSKH9種鋼の部分が一体となつて
強固に焼結され、立方晶窒化ホウ素を含む部分の
ビツカース硬度は3100Kg/mm2(W=1Kg)であつ
た。尚この焼結体を製造するのに要した立方晶窒
化ホウ素の量は0.9gであつた。
Example 1 60% by volume of cubic boron nitride (high-pressure phase boron nitride) with an average particle size of 3 μm, which is a raw material for a high-hardness sintered body,
30% by volume of titanium nitride with an average particle size of 1.3 μm and an average of 7 μm
Mix 10% by volume of aluminum powder of m uniformly,
Outer diameter 16mm, inner diameter 5mm, height 5mm by press molding
A tubular body was obtained. Separately, SKH9 grade steel (melting point 1500℃)
A cylindrical body having a diameter of 5 mm and a height of 5 mm was obtained by press-molding the powder having a particle size of 325 mesh or less, and this cylindrical body was placed in the central cavity of the tubular body. Next, this product is placed in a titanium capsule with an outer diameter of 17 mm, an inner thickness of 0.5 mm, and a height of 6 mm, and the lid is covered with a titanium plate with a diameter of 16 mm and a thickness of 0.5 mm, and then the pressure is 5 GPa using a belt-type ultra-high pressure device. , temperature 1350℃, pressure and temperature holding time
Sintering was performed for 15 minutes. The sintered body taken out from the ultra-high pressure equipment is strongly sintered with the part containing cubic boron nitride (high hardness sintered body) and the SKH9 steel part, and the part containing cubic boron nitride is solidly sintered. The Vickers hardness was 3100 Kg/mm 2 (W=1 Kg). The amount of cubic boron nitride required to produce this sintered body was 0.9 g.

焼結体の中央部SKH9種鋼に孔を開けたスロー
アウエイチツプにするために、3.3mmの径の孔を
放電加工により開けたところ、容易に開けること
ができ、本発明の高硬度焼結体スローアウエイチ
ツプを得た。
In order to make a throw-away chip with a hole in the SKH grade 9 steel in the center of the sintered body, a hole with a diameter of 3.3 mm was opened by electric discharge machining. Got a body throwaway tip.

比較例 1 実施例1における高硬度焼結体原料のみで、
SKH9種の含まれないもの、即ち実施例1におけ
る管状体の中央の空所を管状体構成物質と同物質
でうめた形のものをプレス成形により得、これを
実施例1と同様のチタン製カプセルに収め、実施
例1と同様に処理して高硬度焼結体のみの焼結体
を得た。
Comparative Example 1 Using only the high hardness sintered body raw material in Example 1,
A material that does not contain the 9 types of SKH, that is, a material in which the central cavity of the tubular body in Example 1 is filled with the same substance as the material constituting the tubular body, is obtained by press molding, and this is made of titanium as in Example 1. It was placed in a capsule and treated in the same manner as in Example 1 to obtain a sintered body consisting only of a high hardness sintered body.

中央部に孔を開けるために、放電加工、ダイヤ
モンド軸付砥石による加工の両方法を試みたが、
前者の場合は全く効果がなく、後者の場合もダイ
ヤモンド砥石が目潰れを起すまで加工しても、表
面に深さ0.06mm程度の窪みができただけで、事実
上孔を開けることは出来なかつた。この焼結体の
製造には1gの立方晶窒化ホウ素を要した。
In order to make a hole in the center, I tried both electrical discharge machining and machining using a diamond-shafted grindstone, but
In the former case, there is no effect at all, and in the latter case, even if the diamond whetstone is processed until it becomes blind, only a 0.06 mm deep depression is created on the surface, and it is virtually impossible to drill a hole. Ta. The production of this sintered body required 1 g of cubic boron nitride.

実施例 2 平均粒径2μmのダイヤモンド粉80体積%、及
び325メツシユ以下のコバルト粉20体積%を均一
に混合后、プレス成形により外径16mm、内径6
mm、高さ5mmの管状体を得た。別に中心軸上に直
径3mm、長さ5mmの黒鉛棒を有し、その他の部分
がサーメツト原料である炭化タングステン−コバ
ルト9%(平均粒径20μm)の成形体である直径
6mm、高さ5mmの円柱状体を準備し、この円柱状
体を前記の管状体の中央空所に収めた。このもの
を直径17mm、高さ6mm、肉厚0.5mmのチタン製カ
プセル中に収め、直径16mm、厚さ0.5mmのチタン
板の蓋をしてからベルト型超高圧装置によつて圧
力5.8GPa、温度1450℃、圧力及び温度の保持時
間15分間の条件で焼結した。超高圧装置から取り
出された焼結体はダイヤモンドを含む部分と炭化
タングステン及びコバルトからなる部分とが一体
となつて強固に焼結され、ダイヤモンドを含む部
分のビツカース硬度は6200Kg/mm2(W=1Kg)で
あつた。
Example 2 After uniformly mixing 80% by volume of diamond powder with an average particle diameter of 2 μm and 20% by volume of cobalt powder with a mesh size of 325 or less, the mixture was press-molded into an outer diameter of 16 mm and an inner diameter of 6 mm.
A tubular body with a height of 5 mm and a height of 5 mm was obtained. Separately, there is a graphite rod with a diameter of 3 mm and a length of 5 mm on the central axis, and the other part is a molded body of 9% tungsten carbide-cobalt (average particle size 20 μm), which is a cermet raw material, with a diameter of 6 mm and a height of 5 mm. A cylindrical body was prepared, and this cylindrical body was placed in the central cavity of the tubular body. This product is placed in a titanium capsule with a diameter of 17 mm, a height of 6 mm, and a wall thickness of 0.5 mm, and the lid is covered with a titanium plate of 16 mm in diameter and 0.5 mm in thickness.Then, the pressure is 5.8 GPa using a belt-type ultra-high pressure device. Sintering was carried out at a temperature of 1450°C and a pressure and temperature holding time of 15 minutes. The sintered body taken out from the ultra-high pressure equipment is strongly sintered with the diamond-containing part and the tungsten carbide and cobalt part integrated, and the Vickers hardness of the diamond-containing part is 6200Kg/mm 2 (W= 1Kg).

焼結体の中央部に配された黒鉛の棒は、直径
2.5mmのドリルで約3秒で孔を開けることによつ
て除去できた。その後、孔の内面をダイヤモンド
軸付砥石によつて加工して3.3mmの孔を設けるこ
とが出来た。この焼結体を製造するのに必要なダ
イヤモンドの量は1.7gであつた。
The graphite rod placed in the center of the sintered body has a diameter of
It was removed by drilling a hole in about 3 seconds with a 2.5mm drill. Thereafter, the inner surface of the hole was processed using a diamond-shafted grindstone to create a 3.3 mm hole. The amount of diamond required to produce this sintered body was 1.7 g.

実施例 3 実施例2と同様な方法及び材料で焼結体を製造
した。ただし、実施例2で使用した黒鉛棒の代り
に平均粒径10μmの六方晶系窒化ホウ素を同形状
に成形したものを使用した。焼結後、実施例2と
同様にして孔の加工を行なつた結果、容易に孔を
開けることができた。
Example 3 A sintered body was manufactured using the same method and materials as in Example 2. However, instead of the graphite rod used in Example 2, a hexagonal boron nitride molded into the same shape with an average particle size of 10 μm was used. After sintering, holes were processed in the same manner as in Example 2, and as a result, holes could be easily made.

実施例 4 実施例2と同様な方法及び材料で焼結体を製造
した。ただし、実施例2で使用した黒鉛棒の代り
に平均粒径25μmの酸化珪素を同形状に成形した
ものを使用した。焼結後、実施例2と同様にして
孔の加工を行なつた結果、容易に孔を開けること
ができた。
Example 4 A sintered body was manufactured using the same method and materials as in Example 2. However, instead of the graphite rod used in Example 2, a silicon oxide rod having an average particle size of 25 μm molded into the same shape was used. After sintering, holes were processed in the same manner as in Example 2, and as a result, holes could be easily made.

比較例 2 実施例2に用いた高硬度焼結体原料であるダイ
ヤモンド粉およびコバルト粉のみを用い、比較例
1と同様に実施例2と同様の大きさの管状体の中
央の空所を埋めた形のものをプレス成形により
得、これを実施例2と全く同様に処理して焼結体
を製造した。
Comparative Example 2 Using only diamond powder and cobalt powder, which are raw materials for the high-hardness sintered body used in Example 2, the void in the center of a tubular body of the same size as in Example 2 was filled in the same manner as in Comparative Example 1. A sintered body was obtained by press molding, and treated in exactly the same manner as in Example 2 to produce a sintered body.

得られた焼結体は、全体が均質に焼結され、そ
の硬度はビツカース硬度で6300Kg/mm2であつた。
焼結体の中央に孔を開けるため、3.3mmのダイヤ
モンド砥石で加工を試みたが、全く加工できなか
つた。この焼結体を製造するのに要したダイヤモ
ンドの量は2.0gであつた。
The obtained sintered body was homogeneously sintered as a whole, and its hardness was 6300 Kg/mm 2 in terms of Vickers hardness.
I tried drilling a hole in the center of the sintered body using a 3.3mm diamond grindstone, but was unable to do so. The amount of diamond required to produce this sintered body was 2.0 g.

以上詳細に説明したように、本発明により高硬
度焼結体切削工具が容易に製造でき、又製造する
際高価な原料を節約できる産業上有効な発明であ
る。
As described above in detail, the present invention is an industrially effective invention that allows a high-hardness sintered cutting tool to be easily produced and saves expensive raw materials during production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図、第5図はいずれも従来の貫通
孔周囲に高硬度焼結体が接しているスローアウエ
イチツプの正面図であり、第2図、第4図、第6
図はそれぞれ前記各図のA−A線、B−B線、C
−C線の断面図である。第7図、第9図、第11
図はいずれも本発明の方法で製造された貫通孔に
高硬度焼結体が接していないスローアウエイチツ
プの正面図であり、第8図、第10図、第12図
はそれぞれ前記各図のD−D線、E−E線、F−
F線の断面図である。 1a,1b,1c,1d,1e,1f……高硬
度焼結体、2a,2c,2d,2e,2f……サ
ーメツト又は金属、3a,3b,3c,3d,3
e,3f……貫通孔。
1, 3, and 5 are all front views of a conventional throw-away chip in which a high-hardness sintered body is in contact with the periphery of a through hole, and FIGS.
The figures are lines A-A, line B-B, and C of each of the above figures, respectively.
- It is a sectional view taken on line C. Figure 7, Figure 9, Figure 11
Each figure is a front view of a throwaway chip manufactured by the method of the present invention in which a high-hardness sintered body is not in contact with a through hole, and FIGS. 8, 10, and 12 are respectively D-D line, E-E line, F-
It is a sectional view taken along the F line. 1a, 1b, 1c, 1d, 1e, 1f...high hardness sintered body, 2a, 2c, 2d, 2e, 2f...cermet or metal, 3a, 3b, 3c, 3d, 3
e, 3f...through hole.

Claims (1)

【特許請求の範囲】 1 中心部が、 黒鉛、六方晶系窒化ホウ素又は融点が1000℃以
上、ビツカース硬度が700Kg/mm2以下、そして結
晶水や実質的に1700℃以下で遊離する分子を含ま
ない物質のいずれかであり、 周囲部がサーメツトである柱状体又は融点が
1000℃以上の金属の柱状体、のいずれかの柱状体
であり、該柱状体の周囲に、焼結により高圧相窒
化ホウ素とダイヤモンドの少なくとも1種を主成
分とする高硬度焼結体となりうる原料を配置し、
少なくとも2GPaの圧力と、最低1000℃の温度で
焼結し、焼結完了体の中心軸上に、少なくとも中
心部を除去して高硬度焼結体が接しない貫通孔を
設けることよりなる切削工具用の高硬度焼結体ス
ローアウエイチツプの製造方法。
[Scope of Claims] 1. The center contains graphite, hexagonal boron nitride, or has a melting point of 1000°C or higher, a Vickers hardness of 700 Kg/mm 2 or lower, and contains crystal water or molecules that are substantially liberated at 1700°C or lower. It is either a columnar body with a cermet surrounding it or a substance with a melting point of
A columnar body made of metal at a temperature of 1000°C or higher, which can be sintered to form a high-hardness sintered body containing at least one of high-pressure phase boron nitride and diamond as a main component. Place the raw materials,
A cutting tool that is sintered at a pressure of at least 2 GPa and a temperature of at least 1000°C, and that a through hole is provided on the central axis of the sintered body by removing at least the center part so that the high-hardness sintered body does not come into contact with it. A method for manufacturing a high-hardness sintered throw-away chip for use.
JP57082394A 1982-05-18 1982-05-18 Throwaway tip of sintered body having high hardness for cutting tool and its preparation Granted JPS58199841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57082394A JPS58199841A (en) 1982-05-18 1982-05-18 Throwaway tip of sintered body having high hardness for cutting tool and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57082394A JPS58199841A (en) 1982-05-18 1982-05-18 Throwaway tip of sintered body having high hardness for cutting tool and its preparation

Publications (2)

Publication Number Publication Date
JPS58199841A JPS58199841A (en) 1983-11-21
JPH0151296B2 true JPH0151296B2 (en) 1989-11-02

Family

ID=13773366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57082394A Granted JPS58199841A (en) 1982-05-18 1982-05-18 Throwaway tip of sintered body having high hardness for cutting tool and its preparation

Country Status (1)

Country Link
JP (1) JPS58199841A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01109034A (en) * 1987-10-21 1989-04-26 Nippon Oil & Fats Co Ltd Manufacture of throw away tip
JP2003127007A (en) * 2001-08-10 2003-05-08 Sumitomo Electric Ind Ltd Throw-away tip
CN1538890A (en) * 2001-08-10 2004-10-20 住友电气工业株式社 Ultra high-pressure sintered cutter with recess or groove, its manufacturing method and holding mechanism
US20050271483A1 (en) * 2004-06-02 2005-12-08 Sandvik Ab Indexable cutting inserts and methods for producing the same
US7687156B2 (en) * 2005-08-18 2010-03-30 Tdy Industries, Inc. Composite cutting inserts and methods of making the same
JP5334486B2 (en) * 2008-07-29 2013-11-06 京セラ株式会社 Throwaway tip
WO2020218241A1 (en) * 2019-04-22 2020-10-29 京セラ株式会社 Insert and cutting tool equipped with same
JPWO2022085429A1 (en) * 2020-10-21 2022-04-28
WO2022085450A1 (en) * 2020-10-21 2022-04-28 京セラ株式会社 Coated tool, and cutting tool provided with same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4999920A (en) * 1973-01-31 1974-09-20
JPS54140284A (en) * 1978-04-24 1979-10-31 Sumitomo Electric Ind Ltd Cutting tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4999920A (en) * 1973-01-31 1974-09-20
JPS54140284A (en) * 1978-04-24 1979-10-31 Sumitomo Electric Ind Ltd Cutting tool

Also Published As

Publication number Publication date
JPS58199841A (en) 1983-11-21

Similar Documents

Publication Publication Date Title
US3767371A (en) Cubic boron nitride/sintered carbide abrasive bodies
US4016736A (en) Lubricant packed wire drawing dies
US4797241A (en) Method for producing multiple polycrystalline bodies
JP5885710B2 (en) Compound cutting edge insert and method for producing the same
USRE32380E (en) Diamond tools for machining
US4714385A (en) Polycrystalline diamond and CBN cutting tools
JP2672136B2 (en) Diamond compact
KR890000180B1 (en) Method for producing diamond compact
EP0449547B1 (en) Abrasive product
SE436643B (en) SINTRAD COMPOSITE PRESSURE BODY OF HIGH DENSITY BORN NITRIDES AND KERMET AND SET TO MAKE IT
US4802895A (en) Composite diamond abrasive compact
DK155659B (en) COMPOSITION BODIES FOR GRINDING OR FOR CUTTING TOOLS AND PROCEDURES FOR MANUFACTURING THE SAME
KR20050072753A (en) Method for producing a sintered, supported polycrystalline diamond compact
JP4235449B2 (en) Cutting tool manufacturing method
JPH0151296B2 (en)
JP3310013B2 (en) Insert for chip forming machining and manufacturing method thereof
GB2507393A (en) Polycrystalline diamond construction
CN107165582B (en) A kind of diamond helical positioning distribution superthin layer composite drill bit and its manufacture craft
EP0357379A2 (en) Manufacture of abrasive products
JPH0215321B2 (en)
EP0056596A1 (en) Improved silicon carbide composite and process for production
WO2005081640A2 (en) Method of molding metal powder
DK144415B (en) PROCEDURE FOR MANUFACTURING A MATERIAL CONTAINING CUBIC BORN NITRID
EP0043542B1 (en) Process for production of a silicon carbide composite
EP0880425A1 (en) Process for manufacturing inserts with holes for clamping