JPH0151201B2 - - Google Patents

Info

Publication number
JPH0151201B2
JPH0151201B2 JP7449583A JP7449583A JPH0151201B2 JP H0151201 B2 JPH0151201 B2 JP H0151201B2 JP 7449583 A JP7449583 A JP 7449583A JP 7449583 A JP7449583 A JP 7449583A JP H0151201 B2 JPH0151201 B2 JP H0151201B2
Authority
JP
Japan
Prior art keywords
diameter
phase
conductor
phase shifter
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7449583A
Other languages
Japanese (ja)
Other versions
JPS59200501A (en
Inventor
Akira Shiraishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7449583A priority Critical patent/JPS59200501A/en
Publication of JPS59200501A publication Critical patent/JPS59200501A/en
Publication of JPH0151201B2 publication Critical patent/JPH0151201B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/165Auxiliary devices for rotating the plane of polarisation
    • H01P1/17Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation
    • H01P1/173Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation using a conductive element

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Description

【発明の詳細な説明】 本発明は、例えば4GHz帯と6GHz帯、あるいは
20GHz帯と30GHz帯という2つの周波数帯を共用
して、導波管内を伝搬する互いに直交する2つの
方向に偏波した電磁波の間に、特定の位相差を与
える導波管移相器に関するものである。
[Detailed Description of the Invention] The present invention is applicable to, for example, the 4GHz band and 6GHz band, or
A waveguide phase shifter that shares two frequency bands, the 20GHz band and the 30GHz band, and provides a specific phase difference between electromagnetic waves polarized in two mutually orthogonal directions propagating in the waveguide. It is.

このような移相器の応用例としては、直線偏波
を円偏波に又は円偏波を直線偏波に変換する円偏
波発生器(90゜移相器)、あるいは偏波回転器
(180゜移相器)が良く知られており、マイクロ波
帯又はミリ波帯の通信用アンテナの給電回路に使
用されている。
Application examples of such a phase shifter include a circularly polarized wave generator (90° phase shifter) that converts linearly polarized waves to circularly polarized waves or circularly polarized waves to linearly polarized waves, or a polarization rotator (90° phase shifter). The 180° phase shifter is well known and is used in power supply circuits for communication antennas in the microwave or millimeter wave bands.

このような目的で、2周波数帯域内にわたつて
比較的平坦な周波数特性を有する移相器として、
第1図a及びbに示す構造の移相器が従来より用
いられている。
For this purpose, as a phase shifter having relatively flat frequency characteristics across two frequency bands,
A phase shifter having the structure shown in FIGS. 1a and 1b has conventionally been used.

第1図に於いて、1は円形導波管でありその管
軸はZであり、2は複数の導体棒で、これらは管
軸Zに平行し、かつ互いに対向する円形導波管1
の管内壁に、特定の間隔で一列に配列された複数
個の棒状の導体である。なお、円形導波管の両端
寄りの導体棒2群は、突出長さが徐々に小さくな
つている。
In FIG. 1, 1 is a circular waveguide whose tube axis is Z, and 2 is a plurality of conductor rods, which are parallel to the tube axis Z and are opposite to each other in the circular waveguide 1.
A plurality of rod-shaped conductors are arranged in a line at specific intervals on the inner wall of a pipe. Note that the protrusion length of the two groups of conductor rods near both ends of the circular waveguide gradually decreases.

ここで、対向する導体棒2群を結ぶ軸線をX軸
線、軸線Xと直交する軸線をY軸線、軸線Xと45
度の角度をなして入射する電磁波をE、電磁波E
のX成分をEX、Y成分をEY、導体棒2の直径を
D、導体棒2の挿入長をl、および導体棒2の装
荷されている円形導波管1の管軸長をLと定め
る。また同図cにおいて、2つの使用周波数帯域
の上限と下限の周波数をそれぞれfL1、fL2、fH1
fH2と定める。
Here, the axis connecting two groups of opposing conductor rods is the X axis, the axis perpendicular to the axis X is the Y axis, and the axis X is 45
The electromagnetic wave incident at an angle of degree is E, and the electromagnetic wave E
, the X component is E It is determined that In addition, in c of the same figure, the upper and lower limit frequencies of the two frequency bands used are f L1 , f L2 , f H1 , respectively.
Define f H2 .

まず、第1図の電磁波Eの電界成分EXに対す
る導体棒2の効果を説明する。導体棒2は電界成
分EXに対して容量性サセプタンスを呈すること
がよく知られている。このサセプタンスの大きさ
は、導体棒2の挿入長lによつて調整でき、lが
大きいほど大きな容量性サセプタンスとなるが、
このサセプタンスの周波数特性は、周波数が高く
なる程大きな容量性サセプタンスを呈し、挿入長
lが大きいほど周波数特性が著しくなる。
First, the effect of the conductor rod 2 on the electric field component EX of the electromagnetic wave E shown in FIG. 1 will be explained. It is well known that the conductor rod 2 exhibits capacitive susceptance to the electric field component EX . The magnitude of this susceptance can be adjusted by the insertion length l of the conductor rod 2, and the larger l is, the larger the capacitive susceptance is.
The frequency characteristic of this susceptance exhibits a larger capacitive susceptance as the frequency becomes higher, and the frequency characteristic becomes more remarkable as the insertion length l becomes larger.

従つて、このような導体棒2を特定の間隔dで
管軸線Zに平行して一列に、複数本配列した場合
の電界成分EXの位相は、配列された複数本の導
体棒2がないときの位相に比較して、周波数が高
くなるにつれて大きく遅れるようになり、この様
子は第1図cの曲線3のようになる。
Therefore, when a plurality of such conductor rods 2 are arranged in a line parallel to the tube axis Z at a specific interval d, the phase of the electric field component E As the frequency becomes higher, the phase becomes more delayed compared to the current phase, and this situation is shown by curve 3 in FIG. 1c.

次に、電界成分EYに対する導体棒2の効果を
説明する。導体棒2は電界成分Eに対して、誘導
性サセプタンスを呈することがよく知られてい
る。このサセプタンスの大きさは導体棒2の直径
Dによつて調整でき、径の太い導体棒2ほど大き
な誘導性サセプタンスとなるが、このサセプタン
スの周波数特性は周波数が低くなるほど大きな誘
導性サセプタンスを呈し、直径Dが大きいほど周
波数特性が著しくなる。
Next, the effect of the conductor rod 2 on the electric field component E Y will be explained. It is well known that the conductor rod 2 exhibits inductive susceptance to the electric field component E. The magnitude of this susceptance can be adjusted by the diameter D of the conductor rod 2, and the conductor rod 2 with a larger diameter has a larger inductive susceptance, but the frequency characteristic of this susceptance is such that the lower the frequency, the larger the inductive susceptance. The larger the diameter D, the more remarkable the frequency characteristics.

従つて、このような導体棒2を特定な間隔dで
管軸線Zに平行して一列に、複数本配列した場合
の電界成分EYの位相は、配列された複数本の導
体棒2がないときの位相に比較して、周波数が低
くなるにつれて大きく進むようになり、この様子
は第1図cの曲線4のようになる。
Therefore, when a plurality of such conductor rods 2 are arranged in a line parallel to the tube axis Z at a specific interval d, the phase of the electric field component E Compared to the phase at that time, the lower the frequency, the more the phase advances, as shown by curve 4 in FIG. 1c.

電界成分EXと電界成分EYとの間に生ずる偏波
間のZ軸線方向の相対位相φは、電界成分EX
EYに対するそれぞれの伝搬波長をλgX及びλgYとし
て(1)式で求められる。
The relative phase φ in the Z-axis direction between the polarized waves generated between the electric field component E X and the electric field component E Y is
It is determined by equation (1), where the respective propagation wavelengths for E Y are λ gX and λ gY .

φ(度)=360・L・(1/λgX−1/λgY) ……(1) (1)式で求められる偏波間の相対位相が、所要の
位相φ0からの偏差が少ない平坦な周波数特性を
持つことが望ましいが、先に述べた導体棒2のも
つ容量性サセプタンスと誘導性サセプタンスとの
周波数特性によつて、偏差の少ない平坦な位相特
性を2周波数帯域にわたつて得ることは難かし
い。しかしながら、所要の位相φ0からの偏差を
2周波数帯にわたつて概ね等しくすることができ
る。
φ (degrees) = 360・L・(1/λ gX −1/λ gY ) ...(1) The relative phase between the polarized waves obtained by equation (1) is flat with little deviation from the required phase φ 0 It is desirable to have a flat phase characteristic with little deviation over two frequency bands by the frequency characteristics of the capacitive susceptance and inductive susceptance of the conductor rod 2 mentioned above. is difficult. However, the deviation from the required phase φ 0 can be made approximately equal across the two frequency bands.

第2図a,bは導体棒2の挿入長lを変えた場
合の容量性サセプタンスと誘導性サセプタンスと
の変化の一例と、これによつて生ずる偏波間の相
対位φを示したものである。第2図に於いて、大
きい挿入長をl〓、小さい挿入長をl〓としている。
図から判るように挿入長l〓からl〓に変えることに
より、偏波間の相対位相φの大きさが変化する。
また、特に高い周波数帯域の上限周波数fH2近傍
での容量性サセプタンスの周波数特性が著しく変
化し、急しゆんな曲線5が得られる。従つて偏波
間相対位相φもfH2近傍の周波数で大きくなり、
立上りの急な曲線6となる。一方、第3図a,b
は導体棒2の直径Dを変えた場合の容量性サセプ
タンスと誘導性サセプタンスとの変化の一例と、
これによつて生ずる偏波間の相対位相φを示した
ものである。第3図に於いて、大きい直径D〓、
小さい直径をD〓としている。図から判るように
直径D〓から直径D〓に変えることにより、低い周
波数帯域の下限周波数fL1近傍で、誘導性サセプ
タンスが著しく変化し、急しゆんな曲線7が得ら
れる。従つて偏波間の相対位相φもfL1近傍の周
波数で大きくなり、立上りの急な曲線8となる。
このようにして、円形導波管1に装荷する導体棒
2の挿入長lと直径Dを選択することにより、2
周波数帯にわたつて所要の位相φ0からの偏差を
概ね等しくすることができる。さらに導体棒2の
全体の数を、所要の位相φ0からの許要偏差を考
慮して選ぶことにより、最終的に偏波間の相対位
相φの周波数特性を、概ね第4図に示す曲線9の
ようにでき、2周波数帯域において、φ0からの
偏差の比較的少ない平坦な周波数特性が得られ
る。
Figures 2a and b show an example of the change in capacitive susceptance and inductive susceptance when the insertion length l of the conductor rod 2 is changed, and the relative position φ between polarized waves caused by this. . In Fig. 2, the large insertion length is denoted by l〓, and the small insertion length is denoted by l〓.
As can be seen from the figure, by changing the insertion length from l〓 to l〓, the magnitude of the relative phase φ between the polarized waves changes.
In addition, the frequency characteristics of the capacitive susceptance especially near the upper limit frequency f H2 in the high frequency band change significantly, and a steep curve 5 is obtained. Therefore, the relative phase between polarizations φ also increases at frequencies near f H2 ,
The curve 6 has a steep rise. On the other hand, Fig. 3 a, b
is an example of the change in capacitive susceptance and inductive susceptance when the diameter D of the conductor rod 2 is changed,
This shows the relative phase φ between the polarized waves caused by this. In Figure 3, the large diameter D〓,
The smaller diameter is taken as D〓. As can be seen from the figure, by changing the diameter D〓 to the diameter D〓, the inductive susceptance changes significantly near the lower limit frequency f L1 of the low frequency band, and a steep curve 7 is obtained. Therefore, the relative phase φ between the polarized waves also becomes large at frequencies near f L1 , resulting in a curve 8 with a steep rise.
In this way, by selecting the insertion length l and diameter D of the conductor rod 2 loaded into the circular waveguide 1, it is possible to
The deviation from the required phase φ 0 can be made approximately equal over the frequency band. Furthermore, by selecting the total number of conductor bars 2 in consideration of the permissible deviation from the required phase φ 0 , the frequency characteristics of the relative phase φ between the polarized waves can be finally determined by the curve 9 shown in FIG. It is possible to obtain flat frequency characteristics with relatively little deviation from φ 0 in two frequency bands.

しかしながら、以上述べて来た第1図a,bに
示す従来の構造の移相器では曲線9以上の優れた
平坦な周波数特性を得ることは困難で、実現する
となると、導体棒2の数をさらに増してやれば得
られなくもないが、管軸長Lが大きくなり、移相
器の大形化となり望ましくない。従つて他の構造
にせざるを得ないが、その構造等が特許公報(特
許出願公告昭50−20825)に詳細に記載されてい
るものもあるが、該移相器の構造は、円形導波管
1の外側に、導体棒2が配列されている管壁に対
して、90゜の角量をなす管壁に複数個の幅導波管
を付加したもので、全体の構造が大きい。ゆえに
例えばマルチビームアンテナ等のクラスターフイ
ードの給電回路を構成する為に、ある限られた場
所に複数個の該移相器を配置することは、物理的
に困難となり、重畳も重くなる。このように従来
の移相器では小形軽量化を企るのが困難であると
いう欠点があつた。
However, with the phase shifter having the conventional structure shown in FIGS. Although it is possible to obtain a further increase, the tube axis length L increases and the phase shifter becomes larger, which is not desirable. Therefore, a different structure has to be used, and although some of the structures are described in detail in patent publications (Patent Application Publication 1982-20825), the structure of the phase shifter is a circular waveguide. A plurality of wide waveguides are added to the tube wall forming an angle of 90 degrees with respect to the tube wall on which the conductor rods 2 are arranged on the outside of the tube 1, and the overall structure is large. Therefore, it is physically difficult to arrange a plurality of phase shifters in a certain limited place in order to configure a feeding circuit for a cluster feed such as a multi-beam antenna, and the overlap becomes heavy. As described above, the conventional phase shifter has the disadvantage that it is difficult to reduce the size and weight of the phase shifter.

本発明は、これらの従来の移相器の欠点を除去
することを目的に、従来の移相器に改良を加え、
より周波数特性の優れた移相器を提供することで
ある。
The present invention improves the conventional phase shifter for the purpose of eliminating these drawbacks of the conventional phase shifter.
An object of the present invention is to provide a phase shifter with better frequency characteristics.

以下、図面について詳細に説明する。 The drawings will be described in detail below.

第5図a,bは本発明の一実施例を示すもの
で、図に於いて1〜2は第1図a,bと同じもの
である。10は導体棒2の径D1とは異なる径D2
の導体棒である。d1は導体棒2の配列間隔であ
り、d2は導体棒10の配列間隔である。すなわち
本発明の移相器は、間隔d1に配列された径D1
複数個の導体棒2と、間隔d2の配列された径D2
の複数個の導体棒10を合せ備えた構造のもので
ある。ここではD1>D2及びd1>d2の関係に選ぶ
ことにより、偏波間相対位相の周波数特性の改善
を企るとともに管軸長L2を従来のものより短か
しく小形化を企つた。
FIGS. 5a and 5b show an embodiment of the present invention, and numerals 1 and 2 in the figures are the same as those in FIGS. 1a and 1b. 10 is a diameter D 2 different from the diameter D 1 of the conductor rod 2
It is a conductor rod. d 1 is the arrangement interval of the conductor bars 2, and d 2 is the arrangement interval of the conductor bars 10. That is, the phase shifter of the present invention includes a plurality of conductor rods 2 having a diameter D 1 arranged at an interval d 1 and a plurality of conductor rods 2 having a diameter D 2 arranged at an interval d 2 .
It has a structure including a plurality of conductor rods 10. Here, by choosing the relationships D 1 > D 2 and d 1 > d 2 , we attempted to improve the frequency characteristics of the relative phase between polarized waves and to make the tube axis length L 2 shorter than the conventional one, thereby making it more compact. .

以上の結果が得られる様子を示したのが、第6
図a,bである。第6図a,bは導体棒の径及び
挿入長を一定に保ち、導体棒の配列間隔d1、d2
変化させた場合の容量性サセプタンス、誘導性サ
セプタンスの変化の一例を、またその変化によつ
て生ずる偏波間の相対位相φの変化をグラフ化し
たものである。第6図に於いて、fL1、fL2、fH1
fH2は第1図cと同じものである。d〓及びd〓はそ
れぞれ導体棒の配列間隔を示し、d〓>d〓の関係
にある。図から判るように、導体棒の配列間隔を
小さくすると、容量性サセプタンスが小さくな
り、その周波数特性は高い周波数ほど著しく、第
6図aの曲線11のようになる。一方、誘導性サ
セプタンスは、導体棒の配列間隔を変えてもほと
んど変化はみられず、第6図aの曲線12のよう
になる。従つて偏波間の相対位相φは、容量性サ
セプタンスの減少効果に伴ない第6図bの曲線1
3から曲線14へと変化する。このことは、低い
周波数帯域に於いてはほとんど変化させずに、高
い周波数帯域に於いてのみ偏波間の相対位相φを
制御できることを意味する。
The sixth example shows how the above results can be obtained.
Figures a and b. Figures 6a and b show an example of changes in capacitive susceptance and inductive susceptance when the diameter and insertion length of the conductor rods are kept constant and the arrangement spacing d 1 , d 2 of the conductor rods is varied. It is a graph showing changes in relative phase φ between polarized waves caused by changes. In Figure 6, f L1 , f L2 , f H1 ,
f H2 is the same as in Figure 1c. d〓 and d〓 respectively indicate the arrangement interval of the conductor rods, and have a relationship of d〓>d〓. As can be seen from the figure, the capacitive susceptance decreases as the spacing between the conductor rods becomes smaller, and its frequency characteristics become more pronounced as the frequency increases, as shown by curve 11 in FIG. 6a. On the other hand, the inductive susceptance hardly changes even if the arrangement spacing of the conductor rods is changed, and becomes as shown by curve 12 in FIG. 6a. Therefore, the relative phase φ between the polarizations is reduced by the curve 1 in Figure 6b due to the decreasing effect of capacitive susceptance.
3 to curve 14. This means that the relative phase φ between polarized waves can be controlled only in the high frequency band, while leaving almost no change in the low frequency band.

第5図a,bに示す本発明の一実施例は、以上
に述べた導体棒の持つ効果に加え、第3図に示し
た導体棒の径の変化に依る効果に着目し構成した
ものである。すなわち、 (1) 導体棒の挿入長及びその配列間隔を変えるこ
となく、導体棒の径D2を小さくすれば、fL1
らfL2の帯域で相対位相φの周波数特性が少な
くなる。
The embodiment of the present invention shown in FIGS. 5a and 5b is constructed by paying attention to the effect of changing the diameter of the conductor rod shown in FIG. 3, in addition to the effects of the conductor rod described above. be. That is, (1) If the diameter D 2 of the conductor rod is reduced without changing the insertion length of the conductor rod and the arrangement interval thereof, the frequency characteristics of the relative phase φ in the band from f L1 to f L2 will be reduced.

(2) 導体棒の径及び挿入長を変えることなく、導
体棒の配列間隔d2を小さくすれば、第6図の如
く、fH1からfH2の帯域まで相対位相φの周波数
特性が少なくなる。
(2) If the arrangement interval d 2 of the conductor rods is reduced without changing the diameter and insertion length of the conductor rods, the frequency characteristics of the relative phase φ will decrease in the band from f H1 to f H2 as shown in Figure 6. .

第7図を用いて具体的に説明する。第7図は、
本発明の一実施例を示す円偏波発生器(90゜移相
器)の実測例を示すものである。図に於いて縦軸
は偏波間の相対位相(度)を示し、横軸は周波数
を示す。fL1からfL2は17.7GHzから19.45GHz帯域
(以下、20GHz帯と称する)を、fH1からfH2
27.5GHzから29.25GHz帯域(以下、30GHz帯と称
す)を示す。曲線15は従来の20/30GHz帯共用
の円偏波発生器の実測例を示し、例えば直径約
0.08波長の導体棒を間隔約0.25波長で約20本配列
したものの特性である。また曲線16は本発明に
依る円偏波発生器の実測例を示し、その構成は、
直径約0.06波長の導体棒を間隔約0.2波長で円形
導波管の中央部に約10本配列し、その両端側に5
本づつ、直径約0.08波長の導体棒を間隔約0.25波
長で配列したものである。まず、半数の導体棒の
径を0.08波長から0.06波長に相対的に変えること
により、前述した導体棒の効果(1)によつて、20G
Hz帯に於いて誘導性サセプタンスの周波数特性が
減り、相対位相特性が平坦になる。しかしながら
同時に30GHz帯に於いては、わずかながら容量性
サセプタンスが大きくなり、位相が所要の相対位
相90゜から大きくずれると共にその周波数特性も
劣化し、第7図曲線17のようになる。そこで、
前記10本の径0.06波長からなる導体棒の配列間隔
を0.25波長から0.2波長に変える。すると前述し
た導体棒の効果(2)の理由により、30GHz帯に於い
て容量性サセプタンスが減ると共に、導体棒の径
の小さくしたことに起因する前記周波数特性の劣
化を、より補償する方向に働き、その結果、第7
図の曲線16が得られる。但しここで注意しなけ
ればならないのは、導体棒の径を相対的に小さく
したことによつて起る前記周波数特性の劣化を、
より補償する方向に働くよう、導体棒の配列間隔
を選ぶことの外、その導体棒の数を選ぶことであ
る。例えば、数が少ないと20GHz帯の位相特性が
余り改善されないだろうし、一方数が多過ぎると
30GHz帯の位相特性の補償ができないことにな
る。従つてここが、本発明の要点であると共に、
構成上制限される点であり、注意を要する。とも
あれ、こうすることにより、従来の特性(同図曲
線15)に比べて、位相特性の良好な値が得られ
る。また物理的にも、一部分の導体棒の配列間隔
が小さくなつたことにより円偏波生器の全長は、
従来のものに比較して約84%の長さにすることが
できる。
This will be explained in detail using FIG. 7. Figure 7 shows
This figure shows an actual measurement example of a circularly polarized wave generator (90° phase shifter) representing an embodiment of the present invention. In the figure, the vertical axis indicates the relative phase (degrees) between polarized waves, and the horizontal axis indicates frequency. f L1 to f L2 represent the 17.7GHz to 19.45GHz band (hereinafter referred to as the 20GHz band), and f H1 to f H2
Indicates the 27.5GHz to 29.25GHz band (hereinafter referred to as the 30GHz band). Curve 15 shows an actual measurement example of a conventional circularly polarized wave generator for both 20/30 GHz bands.
This is the characteristic of approximately 20 conductor rods of 0.08 wavelength arranged at intervals of approximately 0.25 wavelength. Further, curve 16 shows an actual measurement example of a circularly polarized wave generator according to the present invention, and its configuration is as follows:
Approximately 10 conductor rods with a diameter of approximately 0.06 wavelength are arranged at an interval of approximately 0.2 wavelength in the center of the circular waveguide, and 5 conductor rods are arranged at both ends.
Each conductor rod has a diameter of about 0.08 wavelength and is arranged at intervals of about 0.25 wavelength. First, by relatively changing the diameter of half of the conductor rods from 0.08 wavelength to 0.06 wavelength, 20G
In the Hz band, the frequency characteristics of the inductive susceptance decrease and the relative phase characteristics become flat. However, at the same time, in the 30 GHz band, the capacitive susceptance increases slightly, the phase deviates significantly from the required relative phase of 90°, and the frequency characteristics deteriorate, resulting in a curve 17 in FIG. Therefore,
The arrangement interval of the ten conductor rods having a diameter of 0.06 wavelength is changed from 0.25 wavelength to 0.2 wavelength. Then, due to the above-mentioned effect (2) of the conductor rod, the capacitive susceptance decreases in the 30 GHz band, and it works to further compensate for the deterioration in frequency characteristics caused by reducing the diameter of the conductor rod. , as a result, the seventh
A curve 16 in the figure is obtained. However, it must be noted here that the deterioration of the frequency characteristics caused by making the diameter of the conductor rod relatively small
In addition to selecting the arrangement spacing of the conductor rods, the number of conductor rods must be selected so as to work in the direction of more compensation. For example, if the number is small, the phase characteristics in the 20GHz band will not be improved much, while if the number is too large,
This means that it will not be possible to compensate for the phase characteristics in the 30 GHz band. Therefore, this is the main point of the present invention, and
This is a limitation due to the configuration and requires caution. In any case, by doing so, a better value of the phase characteristic can be obtained compared to the conventional characteristic (curve 15 in the figure). Physically, the overall length of the circularly polarized wave generator is
It can be approximately 84% longer than conventional ones.

以上は、実施例及び実測例ともに円形導波管を
使つたものとして説明したが、導波管形状は円形
に限られるものではなく、例えば、楕円導波管、
方形導波管でもよい。また導体棒の径及びその配
列間隔は2種類に限定されるものではなく、3種
類以上でも同様の効果が期待できる。また、以上
は2周波数帯に限定されるものではなく、帯域の
広い単一周波数帯、あるいは3つ以上の多周波数
帯の場合に於いても同様の効果が期待できる。
The above description has been made assuming that a circular waveguide is used in both the embodiment and the actual measurement example. However, the shape of the waveguide is not limited to a circle. For example, an elliptical waveguide, an elliptical waveguide,
A rectangular waveguide may also be used. Further, the diameter of the conductor rods and the arrangement interval thereof are not limited to two types, and the same effect can be expected with three or more types. Furthermore, the above is not limited to two frequency bands, and similar effects can be expected in the case of a single wide frequency band or multiple frequency bands of three or more.

以上のように、導波管の管軸線に平行しかつ互
いに対向する管内壁に特定の間隔で一列に配列し
た複数個の導体棒とその導体棒とは径が異なり、
前期配列とは異なる間隔で配列した導体棒を併用
する本発明の移相器によれば、偏波間の相対位相
の周波数特性を、2つの周波数帯域を共用しても
平坦にできるばかりか、簡単な構造で全長が短く
小形化できる大きな利点がある。特に、例えばマ
ルチビームアンテナ等のクラスターフイードの給
電回路等に使用する場合に、大きな効果がある。
As described above, the plurality of conductor rods arranged in a row at specific intervals on the inner wall of the waveguide parallel to the tube axis and facing each other have different diameters, and the conductor rods have different diameters.
According to the phase shifter of the present invention, which uses conductor bars arranged at different intervals from the previous arrangement, the frequency characteristics of the relative phase between polarized waves can not only be made flat even when two frequency bands are shared, but also easily This has the great advantage of having a short overall length and miniaturization. Particularly, it is highly effective when used in a power supply circuit for a cluster feed such as a multi-beam antenna.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の2周波帯共用移相器の構造及び
その動作原理を示すもので、aは正面図、bは縦
断面図、cは動作原理を示す図である。第2図は
前記移相器を構成する導体棒の持つ効果を示すも
のでaはサセプタンスの周波数特性を示す図、b
は相対位相を示す図である。第3図は前記移相器
に係わる導体棒の持つ効果を示すもので、aはサ
セプタンスの周波数特性を示す図、bは相対位相
を示す図である。第4図は前記移相器の位相特性
を示す図、第5図はこの発明の一実施例を示すも
ので、aは正面図、bは縦断面図である。第6図
はこの発明に係わる導体棒の持つ効果を示すもの
で、aはサセプタンスの周波数特性を示す図、b
は位相特性を示す図である。第7図はこの発明の
実測例を示す図である。 図中、1……円形導波管、2……導体棒、3,
4,5,6,7,8,9……特性曲線、10……
導体棒2とは異なる導体棒、11,12,13,
14,15,16,17……特性曲線。尚、図
中、同一あるいは相当部分には同一の符号を付し
てある。
FIG. 1 shows the structure and operating principle of a conventional dual-band phase shifter, in which a is a front view, b is a longitudinal sectional view, and c is a diagram showing the operating principle. Figure 2 shows the effect of the conductor rods constituting the phase shifter, where a shows the frequency characteristics of susceptance, and b
is a diagram showing relative phase. FIG. 3 shows the effect of the conductor rods related to the phase shifter, where a shows the frequency characteristics of susceptance, and b shows the relative phase. FIG. 4 is a diagram showing the phase characteristics of the phase shifter, and FIG. 5 is a diagram showing an embodiment of the present invention, in which a is a front view and b is a longitudinal sectional view. Figure 6 shows the effect of the conductor rod according to the present invention, where a shows the frequency characteristics of susceptance, and b
is a diagram showing phase characteristics. FIG. 7 is a diagram showing an actual measurement example of the present invention. In the figure, 1...Circular waveguide, 2...Conductor bar, 3,
4, 5, 6, 7, 8, 9... Characteristic curve, 10...
Conductor rods different from conductor rod 2, 11, 12, 13,
14, 15, 16, 17...Characteristic curve. In the drawings, the same or corresponding parts are denoted by the same reference numerals.

Claims (1)

【特許請求の範囲】 1 少なくとも2つの使用周波数帯域内で、互い
に直交する2つの方向に偏波された電磁波の間
に、特定の位相差を与える導波管移相器に於い
て、 該導波管の内壁に、該導波管の管軸方向に平行
に複数個の棒状の導体が配列されており、該複数
個の棒状の導体は、第1の直径を有する棒状の導
体が第1の間隔をもつて規則的に配列されてなる
第1の導体群と、第2の直径を有する棒状の導体
が第2の間隔をもつて規則的に配列されてなる第
2の導体群とを組合わせたものであることを特徴
とする周波数帯共用移相器。 2 前記第2の直径および第2の間隔はそれぞ
れ、前記第1の直径および第1の間隔より小さい
特許請求の範囲第1項記載の周波数帯共用移相
器。
[Claims] 1. In a waveguide phase shifter that provides a specific phase difference between electromagnetic waves polarized in two mutually orthogonal directions within at least two used frequency bands, the waveguide phase shifter provides: A plurality of rod-shaped conductors are arranged on the inner wall of the waveguide in parallel to the tube axis direction of the waveguide, and the plurality of rod-shaped conductors have a first diameter. a first conductor group in which rod-shaped conductors having a second diameter are regularly arranged with a second interval; A frequency band common phase shifter characterized in that it is a combination. 2. The frequency band common phase shifter according to claim 1, wherein the second diameter and the second interval are smaller than the first diameter and the first interval, respectively.
JP7449583A 1983-04-27 1983-04-27 Frequency band common-use phase shifter Granted JPS59200501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7449583A JPS59200501A (en) 1983-04-27 1983-04-27 Frequency band common-use phase shifter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7449583A JPS59200501A (en) 1983-04-27 1983-04-27 Frequency band common-use phase shifter

Publications (2)

Publication Number Publication Date
JPS59200501A JPS59200501A (en) 1984-11-13
JPH0151201B2 true JPH0151201B2 (en) 1989-11-02

Family

ID=13548936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7449583A Granted JPS59200501A (en) 1983-04-27 1983-04-27 Frequency band common-use phase shifter

Country Status (1)

Country Link
JP (1) JPS59200501A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333206U (en) * 1986-08-21 1988-03-03
KR100763579B1 (en) 2006-11-17 2007-10-04 한국전자통신연구원 Comb polarizer suitable for millimer-band applications
RU2764572C1 (en) * 2021-07-12 2022-01-18 Публичное акционерное общество "Радиофизика" Waveguide polarization converter for two operating frequency bands

Also Published As

Publication number Publication date
JPS59200501A (en) 1984-11-13

Similar Documents

Publication Publication Date Title
US6535169B2 (en) Source antennas for transmitting/receiving electromagnetic waves for satellite telecommunications systems
KR100574228B1 (en) Hexagonal Array Structure Of Dielectric Rod To Shape Flat-Topped Element Pattern
Pan et al. Wideband circularly polarized dielectric bird-nest antenna with conical radiation pattern
Thomas et al. Design of wide-band corrugated conical horns for Cassegrain antennas
US6304226B1 (en) Folded cavity-backed slot antenna
EP1814196A1 (en) Circularly polarized antenna and radar device using it
US3681772A (en) Modulated arm width spiral antenna
US11367935B2 (en) Microwave circular polarizer
KR20110023618A (en) Metamaterial omnidirectional circularly polarized antenna
KR101927708B1 (en) Microstrip Balun-fed four-arm Sinuous Antenna
EP0357085B1 (en) A coaxial-waveguide phase shifter
EP3935690B1 (en) Dual-band multimode antenna feed
US4864321A (en) Electromagnetic energy shield
JPS6230409A (en) Slot array antenna unit
Kabiri et al. Gain-bandwidth enhancement of 60GHz single-layer Fabry-Pérot cavity antennas using sparse-array
US3364489A (en) Traveling wave antenna having radiator elements with doubly periodic spacing
US4040061A (en) Broadband corrugated horn antenna
US4122447A (en) Endfire-type phased array antenna
US2895134A (en) Directional antenna systems
JPH0151201B2 (en)
EP0886888B1 (en) Antenna element, conically helical, for polarization purity within a broad frequency range
US3521289A (en) Helical dipole antenna element
KR101557765B1 (en) Compact MIMO Antennas with the Metamaterial Zeroth-Order-Resonance Electric-Field Distribution for Higher Antenna-Integration and Lower Interference, and Array Structures.
US4885556A (en) Circularly polarized evanescent mode radiator
US3013267A (en) Trough waveguide slow wave antennas and transmission lines