JPH0150519B2 - - Google Patents

Info

Publication number
JPH0150519B2
JPH0150519B2 JP57093747A JP9374782A JPH0150519B2 JP H0150519 B2 JPH0150519 B2 JP H0150519B2 JP 57093747 A JP57093747 A JP 57093747A JP 9374782 A JP9374782 A JP 9374782A JP H0150519 B2 JPH0150519 B2 JP H0150519B2
Authority
JP
Japan
Prior art keywords
atomized
welding
spatter
low
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57093747A
Other languages
Japanese (ja)
Other versions
JPS58209499A (en
Inventor
Tomoyuki Abe
Shozo Naruse
Naoki Yamanochi
Seijiro Miura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9374782A priority Critical patent/JPS58209499A/en
Publication of JPS58209499A publication Critical patent/JPS58209499A/en
Publication of JPH0150519B2 publication Critical patent/JPH0150519B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/365Selection of non-metallic compositions of coating materials either alone or conjoint with selection of soldering or welding materials

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、溶接䜜業特性の改善された䜎氎玠系
被芆アヌク溶接棒に関し、特に溶接アヌクのスプ
レヌ移行及びスパツタ等の特性を発揮する䜎氎玠
系被芆アヌク溶接棒に関するものである。 䜎氎玠系被芆アヌク溶接棒以䞋単に䜎氎玠系
溶接棒ずいうは、機械的性質や耐割れ性胜の良
い溶接金属を䞎えるものであるから、厚板や拘束
力の倧きい箇所における溶接材料ずしお汎甚され
おいる。しかしむルミナむト系やラむムチタニア
系等の䞀般溶接棒に比べお非胜率的であるずいう
こずが指摘されおいる。その原因ずしおは、被芆
剀組成の違いもさるこずながら、被芆剀に由来し
お発生するシヌルドガスの違いによるずころが倧
きいずされおいる。即ち䞀般溶接棒においお発生
するシヌルドガスの組成は、H2、H2O、CO等が
䞻流を占めおいるのでアヌクの安定性が良奜であ
るのに察しお、䜎氎玠系溶接棒ではCOやCO2が
䞻流を占めるのでアヌクに安定性が悪くなるずい
う傟向がある。又䜎氎玠系の溶接棒では溶滎が倧
きくな぀おグロビナラ移行や短絡移行の様盞を呈
し易くなり、䜿甚棒長圓りのスパツタ発生量が倚
くな぀お溶接䜜業性を著しく阻害するずいう欠点
があ぀た。 本発明はこの様な状況を憂慮しおなされたもの
であ぀お、溶滎移行のスプレヌ化及びスパツタの
枛少を実珟するこずができる様な䜎氎玠系溶接棒
の提䟛を目的ずするものである。 䞊蚘目的を達成し埗た本発明の䜎氎玠系溶接棒
ずは、スラグ圢成剀、ガス発生剀等からなるフラ
ツクス成分を固着剀ず共に鋌心線に塗着せしめた
ものにおいお、該フラツクスずしお SiO2〜25重量、以䞋同じ TiO20.5〜20 炭酞塩12〜60 金属北化物〜25を含有し、曎に アトマむズFe―Mn〜13 アトマむズFe―Si〜23 の皮又は皮以䞊を含有し、䞔぀党アトマむズ
粉粒䜓の55以䞊が60メツシナ通過の现粒より構
成されるものを甚いる点に芁旚が存圚する。 SiO2、TiO2、CaCO3、CaF2、MgCO3、
BaCO3等を䞊蚘範囲ず䞀郚重耇する範囲で含有
する䜎氎玠系溶接棒甚被芆剀組成物は、䟋えば特
公昭55−42673号によ぀お知られおいる。又アト
マむズ合金鋌粉䟋えばFe―Mn、Fe―Si、Fe
―Ni等を含有する被芆剀を合金鋌心線の呚囲
に被芆しお䞀般の被芆アヌク溶接棒ずするこずは
䟋えば特公昭54−8341号特願昭48−80903号
によ぀お知られおいる。しかし前者の公報によ぀
お開瀺された䜎氎玠系溶接棒は、CaF2の存圚に
よ぀お溶融スラグの融点が䜎䞋しおヒナヌム発生
量が増倧するずいう知芋に基づき、スラグ融点向
䞊効果のあるTiO2をCaF2に察しお倍重量
比以䞊にするずいうこずを芁点ずするものであ
る。しかしその結果高融点スラグによる溶接䜜業
性の䜎䞋ずいう問題が発生し、SiO2、BaCO3、
MgCO3の各成分配合量を調敎しお折合点を求め
るずいうものであるから、フラツクス原料遞択の
自由床が枛少するずいう欠点があり、又本発明の
課題ずするアヌクの安定やスパツタの軜枛に぀い
おは、芋るべき成果がなく、特に報告されおいな
い。他方埌者の公報に蚘茉された発明は、アトマ
むズ合金鋌粉が球状を呈しおいるこずを利甚し、
溶接棒の塗装䜜業における被芆剀のすべり性を良
奜にしお被芆剀の固着性を向䞊させたものであ
り、アヌクの安定性ずの関係に぀いおは、被芆剀
の埮小割れは脱萜によるアヌク切れ等を防止する
ずいう皋床に過ぎなか぀た。 これに察し本発明は、TiO2ずCaF2の配合比、
あるいは炭酞塩の皮類等に぀いお原料遞択の自由
床が制玄されずに溶接䜜業性の向䞊を図ろうずす
るものであり、特にアトマむズFe―Mnやアトマ
むズFe―Siによ぀お溶滎移行状態を改善し、そ
の効果ずしおアヌクの安定やスパツタの軜枛を達
成させようずするものである。そしおその為には
党アトマむズ粉粒䜓の粒床構成も重芁な圹割りを
果しおいるずいうこずを芋知し、これら総合的考
察の䞊に立぀お本発明を完成するに至぀たもので
ある。埓぀お本明现曞においおは、アトマむズ粉
粒䜓に関する点から説明をはじめる。 Fe―MnやFe―Siは䜎氎玠系溶接棒甚被芆剀に
おいお汎甚の脱酞剀である。しかし本発明者等
は、その性状、皮類、量等に぀いお皮々の角床か
ら再怜蚎したずころ、アトマむズ法氎アトマむ
ズ及びガスアトマむズの劂䜕は問わないによ぀
お補造される粉粒䜓のFe―Mn及びFe―Siを、前
者〜13、埌者〜23の範囲で、䞔぀党ア
トマむズ粉粒䜓の55以䞊が60メツシナ通過の现
粒より構成されたものを甚いるこずが、アヌク溶
接時の溶滎移行状態をスプレヌ移行ずし、䞔぀ス
パツタの発生を抑制する䞊で極めお重芁であるず
いうこずが分か぀た。即ち第、第衚に瀺す組
成のフラツクス成分に固着剀を加えお混緎し、こ
れを軟鋌心線の倖呚に塗垃しお詊䜜溶接棒4.0
mmφ×400mmを補造した。第図に瀺す劂く、
円圢銅板1800mm〓䞊に詊隓板400mm×60
mmw×19tを乗せ、80゜の前傟姿勢を保ちなが
ら、長さ方向にビヌドオンプレヌト溶接を行な぀
たAC、180A。銅板䞊の飛散スパツタ量を
枬定し、Fe―MnやFe―Siの皮類及び含有量ずの
関係を求めたずころ、第図に瀺す様な結果
が埗られた。尚飛散スパツタ量は、溶接棒の単䜍
消量長さcmに察する捕集総重量で珟わした
以䞋同じ。
The present invention relates to a low-hydrogen coated arc welding rod with improved welding properties, and more particularly to a low-hydrogen coated arc welding rod that exhibits properties such as welding arc spray transfer and spatter. Low-hydrogen coated arc welding rods (hereinafter simply referred to as low-hydrogen welding rods) provide weld metal with good mechanical properties and crack resistance, so they are widely used as welding materials for thick plates and areas with large binding forces. has been done. However, it has been pointed out that it is less efficient than general welding rods such as illuminite and lime titania. The reason for this is said to be not only the difference in coating composition, but also the difference in the shielding gas generated from the coating. In other words, the composition of the shielding gas generated in general welding rods is mainly composed of H 2 , H 2 O, CO, etc., resulting in good arc stability, whereas low-hydrogen welding rods contain CO, CO, etc. Since CO 2 occupies the mainstream, there is a tendency for the arc to become unstable. In addition, low-hydrogen welding rods have the disadvantage that the droplets become larger and tend to exhibit globulular migration and short-circuit migration, and the amount of spatter generated per rod length increases, which significantly impedes welding workability. . The present invention was made in consideration of this situation, and aims to provide a low-hydrogen welding rod that can realize spraying of droplet transfer and reduction of spatter. . The low-hydrogen welding rod of the present invention that has achieved the above object is one in which a flux component consisting of a slag forming agent, a gas generating agent, etc. is applied to a steel core wire together with a bonding agent, and the flux is SiO 2 Contains: 1 to 25% (weight%, same below) TiO 2 : 0.5 to 20% Carbonate: 12 to 60% Metal fluoride: 1 to 25%, and further atomized Fe-Mn: 1 to 13% Atomized Fe -Si: The key point is to use one or more of 3 to 23% of the atomized powder, and at least 55% of the total atomized powder is composed of fine particles that have passed through 60 meshes. SiO2 , TiO2 , CaCO3 , CaF2 , MgCO3 ,
A low-hydrogen welding rod coating composition containing BaCO 3 and the like in a range partially overlapping with the above range is known, for example, from Japanese Patent Publication No. 42673/1983. Also, atomized alloy steel powder (e.g. Fe-Mn, Fe-Si, Fe
For example, Japanese Patent Publication No. 54-8341 (Japanese Patent Application No. 48-80903) discloses that a general coated arc welding rod can be made by coating the periphery of an alloy steel core wire with a coating material containing Ni, etc.).
known by. However, the low-hydrogen welding rod disclosed in the former publication is based on the knowledge that the presence of CaF 2 lowers the melting point of molten slag and increases the amount of fume generation. The key point is to make CaF2 more than twice (weight ratio) as CaF2 . However, as a result, the problem of reduced welding workability due to high melting point slag occurred, and SiO 2 , BaCO 3 ,
Since the blending amount of each component of MgCO 3 is adjusted to find a compromise point, there is a drawback that the degree of freedom in selecting flux raw materials is reduced, and the problem of stabilizing the arc and reducing spatter, which is the problem of the present invention, is There are no notable results and no reports have been made. On the other hand, the invention described in the latter publication takes advantage of the fact that atomized alloy steel powder has a spherical shape,
It improves the adhesion of the coating material by improving the slipperiness of the coating material during painting work on welding rods.As for the relationship with arc stability, microcracks in the coating material may cause arc breakage due to falling off, etc. It was merely a matter of prevention. On the other hand, the present invention has a composition ratio of TiO 2 and CaF 2 ,
Alternatively, it is an attempt to improve welding workability without restricting the freedom of raw material selection regarding the type of carbonate, etc., and in particular, improves the droplet transfer state by using atomized Fe-Mn or atomized Fe-Si. The effect is to stabilize the arc and reduce spatter. To this end, we have found that the particle size structure of all atomized powder plays an important role, and based on these comprehensive considerations, we have completed the present invention. Therefore, in this specification, the explanation will start from the points related to atomized powder and granules. Fe-Mn and Fe-Si are general-purpose deoxidizers in low-hydrogen coatings for welding rods. However, the present inventors reexamined its properties, types, amounts, etc. from various angles, and found that Fe-Mn powder produced by the atomization method (regardless of water atomization or gas atomization). and Fe-Si in the range of 1 to 13% for the former and 3 to 23% for the latter, and that at least 55% of the total atomized powder is composed of fine particles that have passed through 60 meshes. It was found that this is extremely important in making the droplet transfer state during welding into spray transfer and in suppressing the occurrence of spatter. That is, a flux component having the composition shown in Tables 1 and 2 is mixed with a fixing agent, and this is applied to the outer periphery of a mild steel core wire to form a prototype welding rod (4.0
mmφ×400mm) was manufactured. As shown in Figure 3,
A test plate (400 mm x 60
mm w × 19 t ) 2 was placed on the specimen, and bead-on-plate welding was performed in the length direction while maintaining an 80° forward tilted position (AC, 180A). When the amount of spatter scattered on the copper plate 1 was measured and the relationship with the type and content of Fe--Mn and Fe--Si was determined, the results shown in FIGS. 4 and 5 were obtained. The amount of scattered spatter was expressed as the total weight of the welding rod per unit consumption length (cm) (the same applies hereinafter).

【衚】【table】

【衚】 これらの結果を芋れば明癜である様に、アトマ
むズFe―Mn又はアトマむズFe―Siを配合したも
の●印では、通垞粉砕品〇印に比べおス
パツタ捕集量が顕著に少なくな぀おいる。しかし
アトマむズFe―Mnの含有量が未満、アトマ
むズFe―Siの含有量が未満のものではスパ
ツタ発生量の軜枛効果が䞍十分であるだけでな
く、前者では溶接金属の靭性䞍良、埌者では脱酞
䞍足によるブロヌホヌル発生等ずいう䞍具合が付
加されるので、前者は以䞊、埌者は以䞊
ず、倫々の䞋限を定めた。他方前者が13を越え
るず溶接金属が硬くな぀お耐割れ性が䜎䞋し、又
埌者が23を越えるず溶接金属の靭性が䜎䞋する
ず共に生成スラグの粘床が増倧しおビヌド衚面に
激しい凹凞が残る。その為前者は13以䞋、埌者
は23以䞋ず、倫々䞊限を定めた。尚第衚は
Fe―MnやFe―Siの配合量ず溶接䜜業性の関係を
瀺すグラフであり、被芆剀基本成分は、 CaCO3及びMgCO350、SiO2 TiO2、CaF215、その他〜29 ずした。又第図は同衚の―〜―
を甚いたずきの溶接金属の物性、第図は
―〜―を甚いたずきの吞収゚ネ
ルギヌvEoKg―を瀺すものである。即
ち―はアトマむズFe―Mnが少ない為ス
パツタ量が倚く、―はアトマむズFe―
Mnが倚いため匷床および硬さが過倧であ぀た。
―はアトマむズFe―Siが少ない為スパツ
タ量が倚く、―はアトマむズFe―Siが倚
い為靭性が䜎い。尚―〜―、
―〜―、―〜―、
―〜―は本発明を満足する䟋であ
る。
[Table] As is clear from these results, the amount of spatter collected is remarkable in the products containing atomized Fe-Mn or atomized Fe-Si (marked with ●) compared to the normally pulverized product (marked with ○). is decreasing. However, when the content of atomized Fe-Mn is less than 1% and the content of atomized Fe-Si is less than 3%, not only is the effect of reducing the amount of spatter generated insufficient, but the former also causes poor toughness of the weld metal. Since the latter causes additional problems such as the generation of blowholes due to insufficient deoxidation, the lower limits were set at 1% or more for the former and 3% or more for the latter. On the other hand, when the former exceeds 13%, the weld metal becomes hard and its cracking resistance decreases, and when the latter exceeds 23%, the toughness of the weld metal decreases and the viscosity of the generated slag increases, causing severe irregularities on the bead surface. remains. Therefore, upper limits were set for the former at 13% or less and for the latter at 23% or less. Furthermore, Table 3 is
This is a graph showing the relationship between the blending amount of Fe--Mn and Fe--Si and welding workability, and the basic components of the coating material are: CaCO 3 and MgCO 3 : 50%, SiO 2 : 2%, TiO 2 : 2%, CaF 2 : 15%, others: 2-29%. Also, Figure 1 shows (A-1) to (A-) in the same table.
Figure 2 shows the absorbed energy (vEo: Kg-m) when using (B-1) to (B-6). In other words, (A-1) has a large amount of spatter due to a small amount of atomized Fe-Mn, and (A-6) has a large amount of spatter due to a small amount of atomized Fe-Mn.
The strength and hardness were excessive due to the large amount of Mn.
(B-1) has a large amount of spatter due to a small amount of atomized Fe-Si, and (B-6) has a low toughness due to a large amount of atomized Fe-Si. Furthermore, (A-2) to (A-5), (B
-2) ~ (B-5), (C-1) ~ (C-4), (D
-1) to (D-4) are examples that satisfy the present invention.

【衚】 尚Fe―NiやFe―Mo等のFe合金は、元々配合
量が制限されお䟋えば以䞋いる為、アヌ
クのスプレヌ化やスパツタの䜎枛に寄䞎する効果
は少ない。 しかし本発明者等はこれに満足せず、溶滎の移
行状態及びスパツタの発生量に぀いお曎に怜蚎を
重ねた結果、次の様なこずが分か぀た。即ちアト
マむズFe―MnがアトマむズFe―Si等の粒子圢状
は、通垞粉砕品ず異な぀お球状を呈するから、粒
子間の空隙が比范的少なく䞔぀䞀定である。その
為被芆がアヌク熱で溶融する過皋及び溶融しお母
材偎ぞ移行する過皋が極めお滑らかになり、䞊述
のスプレヌ移行圢態が埗られるのであるが、アト
マむズの粒床分垃が倧きくばら぀くず、それらの
効果が䞍安定になるだけでなく、被芆剀塗装䞊の
問題も発生する。第衚は、党アトマむズ粉粒䜓
の粒床分垃を倉曎させたずきの溶接詊隓結果を瀺
すものであるが、党アトマむズ粉粒䜓の55以䞊
が60メツシナ通過の现粒より構成されるもの
・〜では、溶滎の移行がスプレヌ状で
あるず共にスパツタ発生量が顕著に少なく、本発
明の目的がほが完党に達成されおいた。䞀方これ
らの条件を満足しないもの・〜は溶滎
の移行が䞍連続であり、瞬間的には爆発移行を芋
せるこずがあり、スパツタの倚発に぀ながるず共
に、アヌクの集䞭性が悪くなるずいう欠陥があ぀
た。この他、・〜では若干ながら被芆の脱
萜がみられ、この様な問題も回避しようずすれ
ば、60メツシナ通過、200メツシナ非通過のもの
が党アトマむズ粉粒䜓の40以䞊を占めるもの
・〜が最適圓であるずの結論を埗た。
換蚀するず、アトマむズ粉粒䜓に぀いお现目のも
のが倚くなるに぀れおスパツタが枛少し、溶滎の
移行が安定するが、被芆の密床が過倧にな぀お塗
装被芆剀の脱萜が起り易くなる。他方粗目のもの
が倚くなるず、被芆剀䞭の空隙率が過倧にな぀お
アヌクの集䞭性が悪くなるず共にスパツタも倚発
しおくる。尚第衚における溶接䜜業詊隓の条件
は次の通りであり、又スパツタの発生量は第図
の方法に準じお枬定した。 〈溶接条件〉 詊隓板SM5012mmt×75mmw×450mm 䟛詊棒4.0mm〓×400mm 溶接電流150〜170A 溶接姿勢䞋向きビヌドオンプレヌト溶接 氎平すみ肉及び立向䞊進すみ肉
[Table] Since the amount of Fe alloys such as Fe-Ni and Fe-Mo is originally limited (for example, 2% or less), they have little effect on reducing arc spray and spatter. However, the inventors of the present invention were not satisfied with this, and as a result of further studies on the transfer state of droplets and the amount of spatter generated, the following findings were found. That is, since the particle shape of atomized Fe--Mn, atomized Fe--Si, etc. is spherical unlike a normal pulverized product, the voids between the particles are relatively small and constant. Therefore, the process in which the coating melts due to arc heat and the process in which it melts and transfers to the base metal side becomes extremely smooth, resulting in the above-mentioned spray transfer form. However, if the particle size distribution of the atomize varies greatly, Not only will the effect be unstable, but problems will also arise when applying the coating. Table 4 shows the welding test results when changing the particle size distribution of all atomized powder and granules, where 55% or more of all atomized powder and granules are composed of fine particles that have passed through 60 meshes. In (C.1 to 5), the transfer of the droplets was spray-like and the amount of spatter generated was significantly small, and the object of the present invention was almost completely achieved. On the other hand, for those that do not satisfy these conditions (C 6 to 8), the transfer of the droplets is discontinuous, and may cause instantaneous explosive transfer, leading to frequent spatter and poor arc concentration. There was a flaw in it that made it worse. In addition, some coating loss was observed in C-4 to C-5, and if we were to try to avoid this problem, the particles that passed 60 meshes but did not pass 200 meshes would account for more than 40% of the total atomized powder. It was concluded that those occupying (C.1 to 3) are the most suitable.
In other words, as the fineness of the atomized powder increases, spatter decreases and transfer of droplets becomes more stable, but the density of the coating becomes excessive and the paint coating becomes more likely to fall off. On the other hand, if the number of coarse grains increases, the porosity in the coating material becomes excessive, resulting in poor arc concentration and frequent occurrence of spatter. The conditions for the welding test in Table 4 are as follows, and the amount of spatter generated was measured according to the method shown in FIG. <Welding conditions> Test plate: SM50 (12mm t × 75mm w × 450mm Test rod: 4.0mm〓 × 400mm Welding current: 150 to 170A Welding position: Downward bead-on-plate welding (horizontal fillet and vertical fillet)

【衚】 次にアトマむズFe―MnFe―Si以倖の成分
に぀いお説明する。 SiO2〜25 スラグ圢成剀ずしお倧きな圹割りを果すが、
未満ではスラグの被包性が過倧ずな぀おビヌド
の波圢が乱れ、他方25を越えるずスラグの被包
性が過倧にな぀おスラグがビヌドに食い蟌み易く
なる。 TiO20.5〜20 ビヌド倖芳に矎しい光沢を䞎えるが、0.5に
満たないずその効果が発揮されず、逆に20を越
えるずスラグが埮密になり通ぎお剥離性が悪くな
る。 炭酞塩12〜60 ガス発生剀であり、Ca、Mg、Ba、Sr等の炭
酞塩ずしお配合されるが、12未満ではガス発生
量が少なくな぀おシヌルド䞍足に基づくブロヌホ
ヌルの発生が芋られ、他方60を越えるずスラグ
が高塩基性ずなり、アヌク吹きが匱くな぀お溶融
速床の䜎䞋も招く。 金属北化物〜25 スラグ融点の調節によ぀お流動性を調敎する成
分であり、通垞CaF2、AlF3、NaF等ずしお添加
されるが、未満ではこの効果が発揮されない
為にスラグの粘性が倧きくなり、凞圢ビヌドにな
り易い。他方25を越えるず、スラグの流動性が
過倧ずなり、良奜なビヌド圢状ずはならない。 䞊蚘各成分の他にも、被芆剀における垞甚成分
䟋えば合金剀Cu、Ni、Cr、Mo、Fe―Ti、Fe
―Al、Mg等、スラグ圢成剀Al2O3、MgO、
CaO、ZrO2、MnO等、酞化剀FeO、Fe2O3
等等を配合するこずができるが、特に鉄粉は溶
着効率を高める機胜があり、掚奚成分の぀ずし
お挙げられる。しかし45を越える量の鉄粉を加
えるず、特に立向姿勢溶接においお溶接金属が垂
れ萜ち易くなるので、䞊限は45ずする。 本発明の被芆剀成分は、䞊蚘々述に埓぀お遞択
の䞊配合された組成物に、固着剀、奜たしくは無
機固着剀䟋えばSiO2―K2O―H2O、SiO2―
Na2O―H2O、SiO2―K2O―Na2O―H2O等の
氎溶液を加えお混緎される。そしおこれを鋌心線
の倖呚に塗垃した埌、高枩焌成によ぀お氎分を可
及的に完党に攟出する。 本発明の䜎氎玠系被芆棒は䞊蚘の劂く構成され
おいるので、溶滎の移行をスプレヌ状態に保持す
るず共に、スパツタの発生量を倧幅に枛少せしめ
るこずができた。 次に本発明の実斜䟋を説明した。 第衚に瀺す組成のフラツクス成分に固着剀を
加えお混緎し、これを鋌心線に塗装しお4.0mm〓×
400mmの溶接棒を詊䜜し、第衚に瀺す条件で
溶接を行な぀お、溶接䜜業特性及びスパツタ発生
量を枬定した。結果は第衚に瀺す。
[Table] Next, components other than atomized Fe-Mn (Fe-Si) will be explained. SiO 2 :1~25% It plays a major role as a slag forming agent, but 1
If it is less than 25%, the slag will be too encapsulated and the waveform of the bead will be distorted, while if it exceeds 25%, the slag will be too encapsulated and the slag will easily bite into the bead. TiO 2 : 0.5-20% Gives a beautiful luster to the bead appearance, but if it is less than 0.5%, the effect will not be achieved, and if it exceeds 20%, the slag will become very dense and pass through, resulting in poor peelability. . Carbonate: 12-60% It is a gas generating agent and is mixed as carbonate of Ca, Mg, Ba, Sr, etc. If it is less than 12%, the amount of gas generated will be small and blowholes may occur due to insufficient shielding. On the other hand, if it exceeds 60%, the slag becomes highly basic, weakening the arc blowing and causing a decrease in the melting rate. Metal fluoride: 1 to 25% A component that adjusts fluidity by adjusting the slag melting point, and is usually added as CaF 2 , AlF 3 , NaF, etc., but if it is less than 1%, this effect is not achieved. The slag becomes more viscous and tends to form convex beads. On the other hand, if it exceeds 25%, the fluidity of the slag will be too high and a good bead shape will not be obtained. In addition to the above-mentioned components, commonly used components in coating materials such as alloying agents (Cu, Ni, Cr, Mo, Fe-Ti, Fe
-Al, Mg, etc.), slag forming agents (Al 2 O 3 , MgO,
CaO, ZrO 2 , MnO, etc.), oxidizing agents (FeO, Fe 2 O 3
etc.), but iron powder in particular has the function of increasing welding efficiency and is listed as one of the recommended components. However, if more than 45% of iron powder is added, the weld metal tends to drip, especially in vertical position welding, so the upper limit is set at 45%. The coating component of the present invention is a composition that is selectively blended according to the above description, and a fixing agent, preferably an inorganic fixing agent (e.g., SiO 2 -K 2 O-H 2 O, SiO 2 -
An aqueous solution of Na 2 O―H 2 O, SiO 2 ―K 2 O―Na 2 O―H 2 O, etc.) is added and kneaded. After this is applied to the outer periphery of the steel core wire, moisture is released as completely as possible by high-temperature firing. Since the low hydrogen-based coated rod of the present invention is constructed as described above, it is possible to maintain the transfer of droplets in a spray state and to significantly reduce the amount of spatter generated. Next, embodiments of the present invention were described. A fixing agent was added to the flux components shown in Table 5 and kneaded, and this was coated on a steel core wire to a diameter of 4.0mm〓×
A 400 mm welding rod was prototyped, welding was performed under the conditions shown in Table 6, and the welding work characteristics and amount of spatter were measured. The results are shown in Table 7.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 第衚に瀺される様に、・〜の本発明䟋
では、本発明における党条件が満足されおいるか
ら、第衚に芋られる劂く党項目においお良奜な
結果が埗られおいる。これに察し・〜12の各
比范䟋は、本発明における条件のいずれかを満足
しおないので、䞍郜合な結果しか埗られおいな
い。たず・、はSiO2の配合割合が䞍適圓
である為、スラグの被包性が䞍安定にな぀おビヌ
ド圢状が悪い。・はTiO2が過倚である為ス
ラグが緻密にな぀お剥離性が䜎䞋する。・、
は炭酞塩の含有量䞍適正である為、・では
溶接金属䞭にブロヌホヌルが発生し、・では
アヌクの集䞭性が悪くな぀おいる。又・、
の金属北化物の含有量が䞍適圓である為、・
では凞ビヌドが圢成され、・ではスラグの巻
蟌みが発生した。・のFe―Mn及びFe―Si
は、通垞粉砕品前者はJIS―G2301盞圓、埌者
JIS―G2302盞圓である為、溶滎の移行がグロ
ビナラヌ状ずなり、スパツタの発生量も少なくな
らなか぀た。・はアトマむズFe―Mnの含有
量が少ない為、溶滎のスプレヌ移行が䞍安定であ
り、䞔぀スパツタ枛少率も䜎か぀た。・10はア
トマむズFe―Mn、アトマむズFe―Siがいずれも
少ない䟋で、スパツタが枛少しないだけでなく、
溶接金属䞭にブロヌホヌルが発生した。・11、
12はアトマむズFe―Siの配合量が䞍適切である
為・11ではブロヌホヌルが発生し、・12では
ビヌド衚面に凹凞が圢成された。・13はアトマ
むズ粉粒䜓の粒床構成が䞍適圓であ぀た為、溶滎
の移行状態が䞍連続ずなり、瞬間的に爆発移行を
起こすこずがあり、スパツタ発生量の軜枛に寄䞎
するずころも少なか぀た。
[Table] As shown in Table 5, in the invention examples P.1 to 8, all the conditions of the invention are satisfied, so as shown in Table 7, good results were obtained in all items. It is being On the other hand, each of Comparative Examples S.1 to S.12 did not satisfy any of the conditions of the present invention, and therefore only inconvenient results were obtained. First, in S-1 and S-2, the blending ratio of SiO 2 is inappropriate, so the encapsulation of the slag becomes unstable and the bead shape is poor. Since S.3 contains too much TiO 2 , the slag becomes dense and the releasability decreases. S.4,
Since No. 5 has an inappropriate carbonate content, blowholes occur in the weld metal in S.4, and arc concentration becomes poor in S.5. Also S・6, 7
Because the content of metal fluoride is inappropriate, S.6
In S.7, a convex bead was formed, and in S.7, slag entrainment occurred. S・8 Fe-Mn and Fe-Si
is a normally crushed product (the former is equivalent to JIS-G2301, the latter is equivalent to JIS-G2301)
(equivalent to JIS-G2302), the transfer of droplets was globular, and the amount of spatter was not reduced. Since S-9 had a low content of atomized Fe--Mn, the spray transfer of droplets was unstable and the spatter reduction rate was low. S・10 is an example in which both atomized Fe-Mn and atomized Fe-Si are low, and not only does spatter not decrease, but
A blowhole occurred in the weld metal. S.11,
In No. 12, the amount of atomized Fe-Si was inappropriate, so blowholes occurred in S.11, and unevenness was formed on the bead surface in S.12. In S-13, the particle size structure of the atomized powder was inappropriate, so the transfer state of droplets became discontinuous, which could cause instantaneous explosive transfer, which also contributed to reducing the amount of spatter. There weren't many.

【図面の簡単な説明】[Brief explanation of drawings]

第図はアトマむズFe―Mn、同Fe―Siの
効果を瀺すグラフ、第図は詊隓溶接の実斜状況
を瀺す断面図、第図はFe―MnずFe―Siの
皮類ず配合量によるスパツタ発生量の倉化を瀺す
グラフである。
Figures 1 and 2 are graphs showing the effects of atomized Fe-Mn and Fe-Si, Figure 3 is a cross-sectional view showing the implementation status of test welding, and Figures 4 and 5 are types of Fe-Mn and Fe-Si. It is a graph showing the change in the amount of spatter generated depending on the blending amount.

Claims (1)

【特蚱請求の範囲】  スラグ圢成剀、ガス発生剀等からなるフラツ
クス成分を固着剀ず共に軟鋌心線に塗着せしめた
䜎氎玠系被芆アヌク溶接棒においお、前蚘フラツ
クスはSiO2〜25重量、以䞋同じ、
TiO20.5〜20、炭酞塩12〜60、金属北化
物〜25を必須成分ずしお含有し、さらにア
トマむズFe―Mn〜13、アトマむズFe―
Si〜23の皮たたは皮を含有し、䞔぀党
アトマむズ粉粒䜓の55以䞊が60メツシナ通過の
现粒より構成されたものであるこずを特城ずする
䜎氎玠系被芆アヌク溶接棒。  特蚱請求の範囲第項においお、党アトマむ
ズ粉粒䜓の40以䞊が60メツシナ通過、200メツ
シナ非通過の现粒より構成されたものである䜎氎
玠系被芆アヌク溶接棒。  特蚱請求の範囲第又は項においお、フラ
ツクスは45以䞋の鉄粉を含有するものである䜎
氎玠系被芆アヌク溶接棒。
[Claims] 1. A low hydrogen-based coated arc welding rod in which a flux component consisting of a slag forming agent, a gas generating agent, etc. is applied to a mild steel core wire together with a fixing agent, wherein the flux is SiO 2 :1 to 25%. (weight%, same below),
Contains TiO2 : 0.5-20%, carbonate: 12-60%, metal fluoride: 1-25% as essential components, and further contains atomized Fe-Mn: 1-13%, atomized Fe-
A low hydrogen-based coated arc containing one or two types of Si: 3 to 23%, and in which 55% or more of the total atomized powder is composed of fine particles that have passed through 60 meshes. Welding rods. 2. A low-hydrogen coated arc welding rod according to claim 1, wherein 40% or more of the total atomized powder is composed of fine particles that pass through 60 meshes but do not pass through 200 meshes. 3. The low hydrogen-based coated arc welding rod according to claim 1 or 2, wherein the flux contains 45% or less of iron powder.
JP9374782A 1982-05-31 1982-05-31 Low hydrogen covered arc welding rod Granted JPS58209499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9374782A JPS58209499A (en) 1982-05-31 1982-05-31 Low hydrogen covered arc welding rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9374782A JPS58209499A (en) 1982-05-31 1982-05-31 Low hydrogen covered arc welding rod

Publications (2)

Publication Number Publication Date
JPS58209499A JPS58209499A (en) 1983-12-06
JPH0150519B2 true JPH0150519B2 (en) 1989-10-30

Family

ID=14091010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9374782A Granted JPS58209499A (en) 1982-05-31 1982-05-31 Low hydrogen covered arc welding rod

Country Status (1)

Country Link
JP (1) JPS58209499A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2878593B2 (en) * 1994-03-31 1999-04-05 株匏䌚瀟神戞補鋌所 Low hydrogen coated arc welding rod

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548340A (en) * 1977-06-20 1979-01-22 Tatsuo Okazaki Transmission device of bicycle
JPS5775300A (en) * 1980-10-28 1982-05-11 Kobe Steel Ltd Low hydrogen type coated electrode
JPS5781997A (en) * 1980-11-07 1982-05-22 Kobe Steel Ltd Coated electrode containing low hydrogen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548340A (en) * 1977-06-20 1979-01-22 Tatsuo Okazaki Transmission device of bicycle
JPS5775300A (en) * 1980-10-28 1982-05-11 Kobe Steel Ltd Low hydrogen type coated electrode
JPS5781997A (en) * 1980-11-07 1982-05-22 Kobe Steel Ltd Coated electrode containing low hydrogen

Also Published As

Publication number Publication date
JPS58209499A (en) 1983-12-06

Similar Documents

Publication Publication Date Title
AU2004222774B2 (en) Colloidal silica binder system
CA2366261C (en) Welding electrode and method for reducing manganese in fume
AU2004201092B2 (en) Flux Binder System
US2927990A (en) Submerged arc welding
JPH0150519B2 (en)
JP3579573B2 (en) Single side welding method by carbon dioxide arc welding
JPH0521677B2 (en)
JP2631750B2 (en) Covered arc welding rod for stainless steel
JP3577995B2 (en) Manufacturing method of fired flux for submerged arc welding
JPH0122079B2 (en)
JPS58209498A (en) Covered electrode
JP3505429B2 (en) Flux-cored wire for gas shielded arc welding
JP2614966B2 (en) Gas shielded arc welding flux cored wire for multiple electrodes
JPH04313492A (en) Low hydrogen type coated electrode
JP2002346791A (en) Coated arc welding electrode
JPS5847955B2 (en) coated arc welding rod
JPH082513B2 (en) High heat input submerged arc welding firing type flux
JPH115193A (en) Flux cored wire for gas shielded arc welding
JPS646875B2 (en)
JPS61216891A (en) Coated electrode
JPS5847949B2 (en) coated arc welding rod
JPS5913954B2 (en) Covered arc welding rod
JPS5847950B2 (en) Illuminite coated arc welding rod
JPH11192585A (en) Coated electrode for austenitic stainless steel
JPH0242595B2 (en)