JPH0150382B2 - - Google Patents

Info

Publication number
JPH0150382B2
JPH0150382B2 JP57031978A JP3197882A JPH0150382B2 JP H0150382 B2 JPH0150382 B2 JP H0150382B2 JP 57031978 A JP57031978 A JP 57031978A JP 3197882 A JP3197882 A JP 3197882A JP H0150382 B2 JPH0150382 B2 JP H0150382B2
Authority
JP
Japan
Prior art keywords
protein
gel
transglutaminase
solution
gelatin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57031978A
Other languages
Japanese (ja)
Other versions
JPS58149645A (en
Inventor
Masao Motoki
Norimare Nio
Koichi Takinami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP57031978A priority Critical patent/JPS58149645A/en
Publication of JPS58149645A publication Critical patent/JPS58149645A/en
Publication of JPH0150382B2 publication Critical patent/JPH0150382B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規なゲル化物の製造法に関する。 既存蛋白資源の中には、生物価が低い、機能特
性が乏しい等の理由から利用が制限されているも
のが多い。これらの蛋白資源を意図的に組織化食
品に適するような機能性、栄養性を有する蛋白素
材の改質する技術が確立されるなら、その利用度
が増加するだけでなく、高品質の蛋白食品を作り
うる。改質技術の1つとして酵素修飾による改質
があるが、現状では加水分解酵素による改質が主
なものであり、他の酵素の利用例は少ない。 本発明者らはアシル転移酵素の一つであるトラ
ンスグルタミナーゼに着目し、食品蛋白中に含量
の多いグルタミン(Glnと略す)残基とリジン
(Lysと略す)残基間に架橋を形成させ、ゲル状
物質を製造できることを発見し、本発明を完成し
た。 即ち、本発明は蛋白質濃度2重量%以上の蛋白
含有溶液に、トランスグルタミナーゼを蛋白1g
に対して1ユニツト以上、添加してゲル化させる
ことを特徴とするゲル化物の製造法である。 本発明に用いられる蛋白質は、その起源に制約
されるものではなく植物性蛋白質、動物性蛋白質
などいかなるものでも使用できる。植物性蛋白質
としては油糧種子の脱脂物(脱脂大豆)及びそれ
らより分離した蛋白質を挙げることができる。ま
た、動物性蛋白質としては乳蛋白質、ゼラチン、
コラーゲン等を例示することができる。 これらの蛋白質の2重量%以上の蛋白含有溶液
を調製する。蛋白含有溶液の濃度は比較的高いこ
とが望ましく通常2重量%以上、好ましくは5重
量%ないし15重量%であればよい。この場合、澱
粉、多糖類、調味料、着色料、香辛料などの食品
添加物を配合することができる。これらの使用量
は、後のトランスグルタミナーゼによるゲル化を
阻害しない範囲で適宜選択して添加すればよい。
蛋白溶液の濃度が2重量%より少ない場合には、
溶液状態のまま、もしくは沈澱を生じゲル化しな
い。また、蛋白含有溶液のPHは6ないし9であれ
ば好ましい。 この蛋白含有溶液にトランスグルタミナーゼを
蛋白1gに対して1ユニツト以上添加してゲル化
させる。このトランスグルタミナーゼは
Connellanらの方法〔Journal of Biological
Chemistry、246(4)、1093(1971)〕に従つて、
モルモツトの肝臓により調製される。即ち、モル
モツトの肝臓をシヨ糖溶液に分散させたものを遠
心分離し、上清液を回収し、これジエチルアミノ
エチルセルロースカラムにて分画することによつ
て、粗製トランスグルコシダーゼを得る。これを
1%硫酸プロタミンで沈澱させ、沈澱物を回収す
る。さらにこの沈澱物を0.2M Tris−酢酸緩衝液
で洗浄後、0.05M硫安−5mM Tris−HCl緩衝
液(2mMエチレンジアミン4酢酸(以下
EDTAと略す)を含む)を用いて抽出し、得ら
れた抽出液をカルボキシメチルセルロースカラム
でプロタミンを除去し、口液に硫酸アンモニウム
溶液(1M EDTAを含む)を添加し遠心分離を
行ない、沈澱物を回収する。沈澱物を10mM
Tris−酢酸緩衝液(1mM EPTA、0.16M
KClを含む)で溶解し、遠心分離した上清液を10
%アガロース(Bio Gel A−0.5M)でゲル濾過
し、得られた高活性画分を限外濾過で濃縮し、精
製されたトランスグルタミナーゼを得る。 他のトランスグルタミナーゼの調製法として
は、Clarkeらの方法〔Archives of
Biochemistry and Biophysics、79、338(1959)〕
がある。即ち、モルモツト肝300gに、0.25Mシ
ヨ糖溶液600mlを加え、ホモゲナイズする。これ
を遠心分離し、上清を得る。 0.01Mとなるよう酢酸ナトリウムを加え、酢酸
にてPH5.0に調整し、遠心分離する。得られた沈
澱に0.05Mリン酸緩衝液(PH6.5)30ml添加した
ホモゲナイズする。この懸濁液を遠心分離し、そ
の上清を0.001Mリン酸緩衝液(PH7.5)に対して
透析し、これを粗トランスグルタミナーゼ溶液と
して用いる方法である。 これらの方法は、操作順序を変化させたり、添
加量、濃度、PH値分離装置などを若干変えても差
しつかえない。このようにして得たトランスグル
タミナーゼの蛋白濃度をロウリー法Journal of
Biological Chemistry、193、265(1951)〕で、
酵素活性をN−カルボベンゾキシ−L−グルタミ
ニルグリシンとヒドロキシアミンを用いたヒドロ
キシサム酸法〔Journal of Bilogical
Chemistry、241(23)、5518(1966)〕で測定すれ
ば、調製した酵素溶液の比活性は6.0ないし13.0
の範囲の値を示す。また、電気泳動によつて分子
量を測定すると8.0万ないし9.0万の範囲の値であ
る。このトランスグルタミナーゼ溶液は−30℃程
度の低温にて保存し、適時解凍して使用すること
ができる。 このようにして得られるトランスグルタミナー
ゼを蛋白1gに対して1ユニツト以上、添加して
ゲル化させる。添加量が1ユニツトより少ない場
合には、高粘性の溶液となる。また、2000ユニツ
トより多く添加しても効果はそれほど変わらな
い。 トランスグルタミナーゼで蛋白分子にGlu−
Lye架橋が生じることは知られている(J.E.Folk
and J.S.Finlayson “Advances in Protein
Chemistry”Vol.31 ed.by C.B.Anfinsen、J.T.
Edsall and F.M.Richards、Academic Press
Inc.、New York、N.Y.、1977、p.l.)が、高い
蛋白溶液にトランスグルタミナーゼを作用させた
時に生成されるゲルがGlu−Lye架橋によるもの
である事は、以下の実験データから推察された。 トランスグルタミナーゼの反応部位となる
Lys残基をアセチル化及びサクシニル化した
αslガゼインにトランスグルタミナーゼを作用
させてもゲル化しなかつた。 反応溶液中に、S−S環元剤であるジチオス
レイトールを共存させて反応を行なわせている
ので、S−S結合を主体とするゲルではない。 加熱・冷却して得られる通常のゼラチンゲル
とトランスグルタミナーゼでゲル化させたゼラ
チンゲルの各々の弾性率を測定したところ、通
常のゼラチンゲルは温度が高くなるにつれ、著
しく弾性率が低下した。これはゲルの網目構造
をつくる架橋が共有結合などのような強い結合
でなく、二次的結合であるため、温度上昇とと
もにこの弱い結合が切れるためであると考えら
れる。これに比してトランスグルタミナーゼに
よるゲルは温度が変化しても、その変化量は少
なく、共有結合性の強いゲルである事が示唆さ
れた。事実両方のゲルを40℃以上にさらすとト
ランスグルタミナーゼによるゲルは、そのまま
であるが通常のゼラチンゲルは溶融した。 以上より、Glu−Lys架橋によつてゲルが生成
されており、S−Sの架橋によるゲルではないと
考えられる。 このようにして得られたゲル化物は、比較的短
時間、即ち、1分以内、長くとも30分以内にてゲ
ル化し、しかも一般のゲル化物と同等のゲル物性
を備えたものである。 また、本発明で用いる蛋白含有溶液は単に蛋白
質と水との混合物に限らず、蛋白質、水及び油脂
を混合したエマルジヨンであつてもよい。 更にこのゲル化物は加熱することにより、強度
のより強いゲルを作ることができる。 本発明のゲル化物は、従来のゲル状食品と同様
にヨーグルト、ゼリーなどとして用いることもも
ちろん、未加熱で製造でき、熱に安定なゲルであ
るため、マイクロカプセルの素材、固定化酵素の
素材などとしても用いることができるものであ
る。 実施例 1 以下の方法によりトランスグルタミナーゼを調
製した。モルモツト肝800gに冷0.25Mシヨ糖溶
液約2加え、20000rpm、2分でホモゲイズし、
遠心分離(105000×g、5℃、1時間)を行ない
上清を得た。 これを5mMトリス・塩酸緩衝液(2m
MEDTA 含有、PH7.5)で平衡化してある
DEAEセルロースカラムに添加・吸着させた後、
上記緩衝液の食塩濃度を0Mから1.0Mまで変化さ
せる勾配溶離法で分画し、酵素活性の高い画分を
得た。 これをゆつくりと撹拌しながら1%硫酸プロタ
ミン40mlを添加し、遠心分離(14600×g、15分、
5℃)で沈澱を集め、これを0.2Mトリス・酢酸
緩衝液(PH6.0)に懸濁、ホモゲイズして洗い、
遠心分離(2500×g、1分、5℃)で、沈澱を集
めた。 この沈澱より、0.05M硫安を含む5mMトリス
塩酸緩衝液(2mM EDTA含有、PH7.5)を添
加し、ホモゲイズすることによつて、トランスグ
ルタミナーゼを抽出した。これを3度繰り返し、
集めた抽出液を5mMトリス・コハク酸緩衝液
(2mM EDTA含有、PH6.0)で平衡化したカル
ボキシメチル・セルロースカラムに添加し、プロ
タミンを除去し、濾液に1M EDTA(PH8.0)2.4
mlと硫安47.4gを加え、よく撹拌した後に、遠心
分離(15000×g、10分、5℃)で沈澱を集めた。 これを10mMトリス・酢酸緩衝液(1mM
EDTA 0.16M KCl 含有、PH6.0)に溶解し、遠
心分離(27000×g、30分、5℃)で難溶物を除
いた後、上清を同じ緩衝液で平衡化している10%
アガロース(Bio Ge A−0.5M)でゲル濾過を
行ない、活性の高い画分を集め、これを10〜20
mg/mlの濃度となるよう限外濾過(UM−10、ア
ミコン社製)で濃縮し、トランスグルタミナーゼ
溶液とした。この溶液を−30℃以下で凍結保存
し、適時溶解し使用した(尚、これは常時5℃で
操作し調製した。)。 表1に示した基質蛋白にトランスグルタミナー
ゼを作用させ、ゲル化物を得た。
The present invention relates to a novel method for producing a gelled product. Among existing protein resources, the use of many of them is restricted due to reasons such as low biological value and poor functional properties. If technology is established to intentionally modify these protein resources into protein materials with functionality and nutritional properties suitable for structured foods, it will not only be possible to increase their utilization, but also to produce high-quality protein foods. can be made. One of the modification techniques is modification by enzyme modification, but at present, modification by hydrolase is the main method, and there are few examples of the use of other enzymes. The present inventors focused on transglutaminase, which is one of the acyltransferases, and formed a crosslink between glutamine (abbreviated as Gln) and lysine (abbreviated as Lys) residues, which are abundant in food proteins. They discovered that it is possible to produce a gel-like substance and completed the present invention. That is, in the present invention, transglutaminase is added to 1 g of protein in a protein-containing solution with a protein concentration of 2% by weight or more.
This is a method for producing a gelled product, which is characterized by adding one or more units to a gel to form a gel. The protein used in the present invention is not limited by its origin, and any protein such as vegetable protein or animal protein can be used. Examples of vegetable proteins include defatted oilseed products (defatted soybeans) and proteins separated from them. In addition, animal proteins include milk protein, gelatin,
Collagen etc. can be illustrated. A protein-containing solution containing 2% by weight or more of these proteins is prepared. The concentration of the protein-containing solution is desirably relatively high, usually 2% by weight or more, preferably 5% to 15% by weight. In this case, food additives such as starch, polysaccharides, seasonings, colorants, and spices can be added. These amounts may be selected and added as appropriate within a range that does not inhibit subsequent gelation by transglutaminase.
If the concentration of the protein solution is less than 2% by weight,
It remains in solution or forms a precipitate and does not gel. Further, the pH of the protein-containing solution is preferably 6 to 9. One or more units of transglutaminase per 1 g of protein is added to this protein-containing solution to form a gel. This transglutaminase
Connellan et al.'s method [Journal of Biological
Chemistry, 246 (4), 1093 (1971)],
Prepared from guinea pig liver. That is, guinea pig liver is dispersed in a sucrose solution, centrifuged, the supernatant liquid is collected, and the crude transglucosidase is obtained by fractionating it with a diethylaminoethyl cellulose column. This is precipitated with 1% protamine sulfate and the precipitate is collected. Furthermore, after washing this precipitate with 0.2M Tris-acetate buffer, 0.05M ammonium sulfate-5mM Tris-HCl buffer (2mM ethylenediaminetetraacetic acid (hereinafter referred to as
Protamine was removed from the resulting extract using a carboxymethylcellulose column, and ammonium sulfate solution (containing 1M EDTA) was added to the oral fluid, followed by centrifugation to remove the precipitate. to recover. 10mM of precipitate
Tris-acetate buffer (1mM EPTA, 0.16M
(containing KCl) and centrifuged supernatant for 10 min.
% agarose (Bio Gel A-0.5M), and the resulting highly active fraction is concentrated by ultrafiltration to obtain purified transglutaminase. Other methods for preparing transglutaminase include the method of Clarke et al. [Archives of
Biochemistry and Biophysics, 79, 338 (1959)]
There is. That is, 600 ml of 0.25M sucrose solution is added to 300 g of guinea pig liver and homogenized. Centrifuge this to obtain a supernatant. Add sodium acetate to 0.01M, adjust pH to 5.0 with acetic acid, and centrifuge. Homogenize the resulting precipitate by adding 30 ml of 0.05M phosphate buffer (PH6.5). This suspension is centrifuged, the supernatant is dialyzed against 0.001M phosphate buffer (PH7.5), and this is used as a crude transglutaminase solution. In these methods, there is no problem even if the order of operations is changed or the amount added, concentration, PH value separation device, etc. are slightly changed. The protein concentration of transglutaminase obtained in this way was measured using the Lowry method.
Biological Chemistry, 193, 265 (1951)],
Enzyme activity was measured using the hydroxysamic acid method using N-carbobenzoxy-L-glutaminylglycine and hydroxyamine [Journal of Biological
Chemistry, 241(23), 5518 (1966)], the specific activity of the prepared enzyme solution is 6.0 to 13.0.
indicates a range of values. Furthermore, when the molecular weight is measured by electrophoresis, the value is in the range of 80,000 to 90,000. This transglutaminase solution can be stored at a low temperature of about -30°C and thawed for use. The transglutaminase thus obtained is added in an amount of 1 unit or more per 1 g of protein to form a gel. If the amount added is less than 1 unit, a highly viscous solution will result. Moreover, even if more than 2000 units are added, the effect does not change much. Transglutaminase adds Glu- to protein molecules.
It is known that Lye crosslinking occurs (JEFolk
and JSFinlayson “Advances in Protein
Chemistry”Vol.31 ed.by CBAnfinsen, JT
Edsall and FMRichards, Academic Press
Inc., New York, NY, 1977, pl) deduced from the following experimental data that the gel produced when transglutaminase was applied to a high protein solution was due to Glu-Lye crosslinking. Serves as a reaction site for transglutaminase
αsl casein with acetylated and succinylated Lys residues did not gel even when transglutaminase was applied. Since the reaction is carried out in the presence of dithiothreitol, which is an S-S ring agent, in the reaction solution, the gel is not mainly composed of S-S bonds. When the elastic modulus of normal gelatin gel obtained by heating and cooling and gelatin gel gelatinized with transglutaminase was measured, the elastic modulus of normal gelatin gel decreased significantly as the temperature increased. This is thought to be because the crosslinks that form the gel network structure are secondary bonds, rather than strong bonds such as covalent bonds, and these weak bonds break as the temperature rises. In contrast, the gel produced by transglutaminase shows only a small amount of change even when the temperature changes, suggesting that the gel has strong covalent bonds. In fact, when both gels were exposed to temperatures above 40°C, the transglutaminase gel remained intact, but the regular gelatin gel melted. From the above, it is considered that the gel is produced by Glu-Lys crosslinking and not by SS crosslinking. The gelled product thus obtained gels in a relatively short time, that is, within 1 minute, and within 30 minutes at the most, and has gel physical properties equivalent to those of general gelled products. Further, the protein-containing solution used in the present invention is not limited to a simple mixture of protein and water, but may be an emulsion containing a mixture of protein, water, and oil. Furthermore, by heating this gelled product, a stronger gel can be made. The gelled product of the present invention can be used as yogurt, jelly, etc. as well as conventional gelled foods, and can be produced without heating and is a heat-stable gel, so it can be used as a material for microcapsules or as a material for immobilized enzymes. It can also be used as Example 1 Transglutaminase was prepared by the following method. Add about 2 drops of cold 0.25M sucrose solution to 800 g of guinea pig liver, homogenize at 20,000 rpm for 2 minutes,
Centrifugation (105,000 xg, 5°C, 1 hour) was performed to obtain a supernatant. This was mixed with 5mM Tris-HCl buffer (2mM
Equilibrated with MEDTA (PH7.5)
After adding and adsorbing to DEAE cellulose column,
Fractionation was performed using a gradient elution method in which the salt concentration of the above buffer was varied from 0M to 1.0M to obtain a fraction with high enzyme activity. Add 40 ml of 1% protamine sulfate while stirring gently, and centrifuge (14,600 x g, 15 minutes,
Collect the precipitate at 5℃), suspend it in 0.2M Tris-acetate buffer (PH6.0), homogenize and wash.
The precipitate was collected by centrifugation (2500 xg, 1 minute, 5°C). Transglutaminase was extracted from the precipitate by adding 5mM Tris-HCl buffer (containing 2mM EDTA, PH7.5) containing 0.05M ammonium sulfate and homogenizing. Repeat this three times,
The collected extract was added to a carboxymethyl cellulose column equilibrated with 5mM Tris-succinate buffer (containing 2mM EDTA, PH6.0) to remove protamine, and the filtrate was added with 1M EDTA (PH8.0) 2.4
After adding 47.4 g of ammonium sulfate and stirring well, the precipitate was collected by centrifugation (15,000 x g, 10 minutes, 5°C). This was mixed with 10mM Tris-acetate buffer (1mM
After dissolving in EDTA (containing 0.16M KCl, pH 6.0) and removing hardly soluble substances by centrifugation (27,000 x g, 30 minutes, 5°C), the supernatant was equilibrated with the same buffer.
Perform gel filtration with agarose (Bio Ge A-0.5M), collect the highly active fraction, and filter it for 10 to 20 minutes.
It was concentrated by ultrafiltration (UM-10, manufactured by Amicon) to a concentration of mg/ml to obtain a transglutaminase solution. This solution was stored frozen at -30°C or below, dissolved at appropriate times, and used (this solution was prepared by constantly operating at 5°C). Transglutaminase was allowed to act on the substrate proteins shown in Table 1 to obtain a gelled product.

【表】【table】

【表】 実施例 2 αslカゼイン、Na−カゼイネート、大豆蛋白
11Sグロブリン、水抽出大豆蛋白、各々500mgを
0.1Mトリス塩酸緩衝液(5mM CaCl2、20mM
ジチオスレイトール含有、PHを7.6)3.5mlに溶解
し、これに大豆油1.5mlを加えて20000rpmで3分
間ホモゲナイズして乳化物を得た。これにトラン
スグルタミナーゼを蛋白1mgに対して0.09ユニツ
ト加えると即座にゲル化物を得た。 実施例 3 αslカゼイン、大豆蛋白11Sグロブリン及び大豆
蛋白7Sグロブリンの2、5、10重量%溶液を
0.1Mトリス・塩酸緩衝液(5mM CaCl2、20m
Mジチオスレイトール含有PH7.6)で0.5ml作成
し、37℃で各々にトランスグルタミナーゼを蛋白
1mgに対して0.1ユニツトの割合で加えて、ゲル
化するか否を判定し、表2の結果を得た。
[Table] Example 2 α sl casein, Na-caseinate, soybean protein
11S globulin, water-extracted soy protein, 500mg each
0.1M Tris-HCl buffer (5mM CaCl 2 , 20mM
Containing dithiothreitol (pH 7.6) was dissolved in 3.5 ml, 1.5 ml of soybean oil was added thereto, and homogenized at 20,000 rpm for 3 minutes to obtain an emulsion. When 0.09 units of transglutaminase was added to 1 mg of protein, a gelled product was immediately obtained. Example 3 2, 5, and 10% by weight solutions of α sl casein, soybean protein 11S globulin, and soybean protein 7S globulin were prepared.
0.1M Tris-HCl buffer (5mM CaCl 2 , 20mM
0.5 ml of M dithiothreitol (pH 7.6) was prepared, and transglutaminase was added to each at 37°C at a ratio of 0.1 unit per 1 mg of protein to determine whether gelation occurred. Obtained.

【表】 ○:ゲル化
△:弱いゲル
×:溶液のまま
実施例 4 αslカゼインの5重量%溶液と大豆蛋白11Sグロ
ブリンの10重量%溶液を0.1Mトリス−塩酸緩衝
液(5mM CaCl2、200mMジチオスレイトー
ル含有、PH7.6)で調製し、これら溶液0.8mlに対
して、トランスグルタミナーゼを蛋白1mgあたり
5×10-4〜2.0ユニツト添加してゲル化するか否
かを観察したところ、表3に示すような結果を得
た。
[Table] ○: Gelation △: Weak gel ×: Still in solution Example 4 A 5% by weight solution of α sl casein and a 10% by weight solution of soybean protein 11S globulin were mixed in 0.1M Tris-HCl buffer (5mM CaCl 2 , 200mM dithiothreitol (containing 200mM dithiothreitol, pH 7.6) was prepared, and to 0.8ml of these solutions, 5 x 10 -4 - 2.0 units of transglutaminase was added per 1mg of protein, and it was observed whether gelation occurred. The results shown in Table 3 were obtained.

【表】 実施例 5 5mM CaCl2と20mMジチオスレイトールを
含んだPH7.0〜PH9.0のトリス−塩酸緩衝液を調製
し、それを用いて、5重量%αslカゼイン溶液と
10重量%大豆蛋白11Sグロブリン溶液を各0.8mlず
つ作成し、トランスグルタミナーゼを蛋白1mgに
対して0.1ユニツト添加してゲル化するか否かを
観察した。結果を表4に示す。
[Table] Example 5 A Tris-HCl buffer solution containing 5mM CaCl 2 and 20mM dithiothreitol with a pH of 7.0 to 9.0 was prepared, and used to prepare a 5% by weight α sl casein solution.
0.8 ml of each 10% by weight soybean protein 11S globulin solution was prepared, 0.1 unit of transglutaminase was added to 1 mg of protein, and it was observed whether gelation occurred. The results are shown in Table 4.

【表】 ◎:即座にゲル化
○:ややゲル化に時間を要した
×:溶液のまま
実施例 6 直径9.3mm、高さ15mmのテストピース作成容器
に試料溶液1mlを流し込み、下記に示す様にゲル
化させて円筒ゲルを作成し、これをレオログラム
(東洋精機製作所(株)、CV−100)にて、18から25
℃まで昇温させ、各温度の貯蔵弾性率を測定し
た。 ゼラチン冷却ゲル 10重量%溶液となるように、ゼラチンに水を
加え、60℃、3分で完全にゼラチンを溶解後、
1mlをテストピース作成容器に流し込み、3℃
にて20分放置し、ゲル化させ室温に戻して測定
した。 ゼラチンTGaseゲル ゼラチンに10重量%溶液となるように0.1M
トリス塩酸溶液(5mM CaCl2、20mMジチ
オレイトール含有、PH7.6)を加え、60℃、3
分で完全にゼラチンを溶解し、テストピース作
成容器に流し込み、すばやくトランスグルタミ
ナーゼをゼラチン1mgに対して0.1ユニツトの
割合で加え、室温に1時間放置しゲル化させ、
測定した。 結果を図1に示す。ゼラチン冷却ゲルは温度が
増加するとともに貯蔵弾性率が著しく低下する
が、それに比してゼラチンTGaseゲルは温度変
化の影響が少なかつた。 実施例 7 αslカゼインについて5重量%、大豆11Sグロブ
リンについては10重量%となるように0.1Mトリ
ス・塩酸緩衝液(5mM CaCl2、20mMジチオ
スレイトール含有、PH7.6)で1mlを調製し、こ
れにトランスグルタミナーゼを蛋白1mgに対して
0.1ユニツトを加えてゲルを得た。このゲルを、
さらに100℃に20分間保つた後、室温まで冷却し
た。 ゲル化させた直後のゲルと、加熱処理したゲル
についてレオメーター(不動工業(株)、NRM−
2002J)で、プランジヤー5Φ、ボール型)を侵入
させた時の最高荷重を測定し、ゲル強度とした。
結果を表5に示す。
[Table] ◎: Immediate gelation ○: It took some time for gelation ×: Example 6 as a solution Example 6 Pour 1 ml of the sample solution into a test piece preparation container with a diameter of 9.3 mm and a height of 15 mm, as shown below. gel to create a cylindrical gel, which was measured using a rheogram (Toyo Seiki Seisakusho Co., Ltd., CV-100) from 18 to 25.
The temperature was raised to ℃, and the storage elastic modulus at each temperature was measured. Gelatin cooling gel Add water to gelatin to make a 10% solution by weight, and after completely dissolving gelatin at 60℃ for 3 minutes,
Pour 1ml into a test piece making container and heat to 3℃.
The mixture was left to gel for 20 minutes, returned to room temperature, and measured. Gelatin TGase gel 0.1M to make a 10% solution by weight in gelatin
Add Tris-HCl solution (containing 5mM CaCl 2 , 20mM dithioleitol, PH7.6) and incubate at 60°C for 30 minutes.
Dissolve the gelatin completely in minutes, pour it into a test piece preparation container, quickly add transglutaminase at a ratio of 0.1 unit to 1 mg of gelatin, and leave it at room temperature for 1 hour to gel.
It was measured. The results are shown in Figure 1. The storage modulus of gelatin cooled gels decreased significantly as the temperature increased, but in contrast, gelatin TGase gels were less affected by temperature changes. Example 7 1 ml of 0.1M Tris/ HCl buffer (containing 5mM CaCl 2 , 20mM dithiothreitol, pH 7.6) was prepared to give a concentration of 5% by weight for α sl casein and 10% by weight for soybean 11S globulin. , and add transglutaminase to this for 1 mg of protein.
A gel was obtained by adding 0.1 unit. This gel
After further maintaining the temperature at 100°C for 20 minutes, it was cooled to room temperature. Rheometer (Fudou Kogyo Co., Ltd., NRM-
2002J), the maximum load when a plunger (5Φ, ball type) was inserted was measured and used as the gel strength.
The results are shown in Table 5.

【表】 上表からわかるようにいずれの場合も加熱処理
した方がゲル強度が増加した。
[Table] As can be seen from the table above, the gel strength increased with heat treatment in all cases.

【図面の簡単な説明】[Brief explanation of drawings]

図1は実施例6の結果を示す。図中、横軸は温
度(℃)、縦軸は貯蔵弾性率(dyn/cm2)であり、
実線は本発明のゼラチンTGaseゲルを、破線は
ゼラチン冷却ゲルを示す。
FIG. 1 shows the results of Example 6. In the figure, the horizontal axis is temperature (°C), the vertical axis is storage modulus (dyn/cm 2 ),
The solid line represents the gelatin TGase gel of the present invention, and the dashed line represents the gelatin cooling gel.

【特許請求の範囲】[Claims]

1 カゼインナトリウムまたはカゼインカルシウ
ムに環状リン酸類の少なくとも1種と多糖類の少
なくとも1種を配合してなることを特徴とする耐
酸性カゼイン粉末。 2 環状リン酸類として、ヘキサメタリン酸ナト
リウム、ウルトラリン酸ナトリウムおよびフイチ
ン酸からなる群から選ばれる1種または2種以上
を用いる第1項記載の粉末。 3 多糖類として、アルギン酸、コンドロイチ
ン、コンドロイチン硫酸、ヒアルロン酸、タイク
ロン酸、コロミン酸、λ−カラゲナン、κ−カラ
ゲナン、カロニン硫酸、ポリリポースリン酸、ポ
リアセチルガラクトサミンリン酸、アルギン酸ナ
トリウム、カルボキシメチルセルロース、繊維素
グリコール酸カルシウム、繊維素グリコール酸ナ
トリウム、デンプングリコール酸ナトリウム、デ
ンプンリン酸エステルまたはポリアクリル酸ナト
リウムからなる群から選ばれる1種または2種以
上を用いる第1項記載の粉末。
1. An acid-resistant casein powder characterized by blending sodium caseinate or calcium caseinate with at least one type of cyclic phosphoric acid and at least one type of polysaccharide. 2. The powder according to item 1, wherein the cyclic phosphoric acid is one or more selected from the group consisting of sodium hexametaphosphate, sodium ultraphosphate, and phytic acid. 3 As polysaccharides, alginic acid, chondroitin, chondroitin sulfate, hyaluronic acid, tycuronic acid, colominic acid, λ-carrageenan, κ-carrageenan, caronine sulfate, polylipose phosphate, polyacetylgalactosamine phosphate, sodium alginate, carboxymethylcellulose, cellulose glycol 2. The powder according to item 1, which uses one or more selected from the group consisting of calcium acid, sodium cellulose glycolate, sodium starch glycolate, starch phosphate, and sodium polyacrylate.

JP57031978A 1982-03-01 1982-03-01 Preparation of gelatinized material Granted JPS58149645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57031978A JPS58149645A (en) 1982-03-01 1982-03-01 Preparation of gelatinized material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57031978A JPS58149645A (en) 1982-03-01 1982-03-01 Preparation of gelatinized material

Publications (2)

Publication Number Publication Date
JPS58149645A JPS58149645A (en) 1983-09-06
JPH0150382B2 true JPH0150382B2 (en) 1989-10-30

Family

ID=12346027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57031978A Granted JPS58149645A (en) 1982-03-01 1982-03-01 Preparation of gelatinized material

Country Status (1)

Country Link
JP (1) JPS58149645A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020662A1 (en) * 1994-01-28 1995-08-03 Ajinomoto Co., Inc. Transglutaminase originating in japanese oyster
EP0782883A2 (en) 1996-01-08 1997-07-09 Ajinomoto Co., Ltd. Edible microcapsule and food containing the same
US6403127B1 (en) 1997-04-11 2002-06-11 Ajinomoto Co., Inc. Method for producing noodles
WO2007123223A1 (en) 2006-04-18 2007-11-01 Ajinomoto Co., Inc. Process for producing whey protein-enriched fermented milk of agitated type
WO2008120798A1 (en) 2007-03-29 2008-10-09 Ajinomoto Co., Inc. Enzyme preparation for adhesion and method of producing adhesion-molded food product
WO2009101762A1 (en) 2008-02-13 2009-08-20 Amano Enzyme Inc. Stabilized transglutaminase and process for production thereof
WO2009113628A1 (en) 2008-03-14 2009-09-17 味の素株式会社 Method of denaturing protein with enzymes
WO2009116662A1 (en) 2008-03-17 2009-09-24 味の素株式会社 Method of producing fish paste product and enzyme preparation for fish paste products
WO2010035856A1 (en) 2008-09-25 2010-04-01 味の素株式会社 Enzyme preparation for adhesion-molded foods and method for producing adhesion-molded food
WO2010074338A1 (en) 2008-12-26 2010-07-01 味の素株式会社 Enzyme preparation for single-ingredient meat product and method for producing single-ingredient meat product
WO2012026618A1 (en) 2010-08-27 2012-03-01 味の素株式会社 Process for production of fish paste product, and enzyme preparation for modifying fish paste product
WO2013027813A1 (en) 2011-08-25 2013-02-28 天野エンザイム株式会社 Composition having improved head stability and use thereof
WO2016210395A1 (en) 2015-06-26 2016-12-29 Dupont Nutrition Biosciences Aps Aminopeptidases for protein hydrlyzates

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152247A (en) * 1984-12-26 1986-07-10 Ajinomoto Co Inc Production of protein membrane
JPS63258641A (en) * 1987-04-16 1988-10-26 Suntory Ltd Manufacture of microcapsules
JP2705024B2 (en) * 1987-07-02 1998-01-26 マルハ株式会社 Food manufacturing method
JPH02107163A (en) * 1988-10-15 1990-04-19 Suntory Ltd Production of novel gelatinous food
JP2782849B2 (en) * 1988-12-08 1998-08-06 味の素株式会社 Vegetable protein powder and method for producing tofu using the same
JP2897780B2 (en) * 1990-03-09 1999-05-31 ニッピゼラチン工業株式会社 Manufacturing method of highly polymerized gelatin
DK148492D0 (en) * 1992-12-10 1992-12-10 Novo Nordisk As
DK31293D0 (en) * 1993-03-19 1993-03-19 Novo Nordisk As
JP3423763B2 (en) * 1994-03-04 2003-07-07 日本テトラパック株式会社 Method for producing protein gel
JP3637718B2 (en) * 1996-04-10 2005-04-13 味の素株式会社 Chocolate production method
JP3407599B2 (en) * 1996-07-01 2003-05-19 味の素株式会社 Enzyme preparation for adhesion and method for producing adhesive food
US6039901A (en) * 1997-01-31 2000-03-21 Givaudan Roure Flavors Corporation Enzymatically protein encapsulating oil particles by complex coacervation
KR100406273B1 (en) 1998-04-08 2003-11-17 뉴트레코 아쿠아컬쳐 리서치 센터 에이/에스 A method for the modification of protein structure in finish shaped feed pellets, balls or the like in order to achieve shape stability, and feed mass made in accordance with the method
US6444227B1 (en) * 1999-08-05 2002-09-03 Roche Vitamins Inc. Process for preparing fat soluble beadlets
JP4096284B2 (en) 2000-08-31 2008-06-04 味の素株式会社 How to improve cheese yield
JP3951584B2 (en) 2000-10-10 2007-08-01 味の素株式会社 Method for producing modified raw milk and dairy product using the same
US6974592B2 (en) 2002-04-11 2005-12-13 Ocean Nutrition Canada Limited Encapsulated agglomeration of microcapsules and method for the preparation thereof
US6908634B2 (en) 2003-03-20 2005-06-21 Solae, Llc Transglutaminase soy fish and meat products and analogs thereof
US9968120B2 (en) 2006-05-17 2018-05-15 Dsm Nutritional Products Ag Homogenized formulations containing microcapsules and methods of making and using thereof
JP2007277217A (en) * 2006-03-17 2007-10-25 Fujifilm Corp Biodegradable matrix homogeneously encapsulating medicament
CN107362154B (en) 2006-06-05 2020-10-30 帝斯曼营养品股份公司 Microcapsules with improved shell
US10166196B2 (en) 2007-01-10 2019-01-01 Dsm Nutritional Products Ag Vegetarian microcapsules
JP5508703B2 (en) * 2007-10-11 2014-06-04 青葉化成株式会社 Method for producing food quality improver and kneaded product production method
CN101909460B (en) 2007-11-08 2014-07-09 不二制油株式会社 Soy protein gel and method of producing the same

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ADVANCES IN PROTEIN CHEMISTRY=1948 *
AGRIC BIOL CHEM=1980 *
METHODS IN ENZYMOLOGY=1970 *
NEW FOOD INDUSTRY=S55 *
PROC NAT ACAD SCI USA=1972 *
PROTEIN FUNCTIONALITY IN FOODS=1981 *
THE JORNAL OF BIOLOGICAL CHEMISTRY=1971 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020662A1 (en) * 1994-01-28 1995-08-03 Ajinomoto Co., Inc. Transglutaminase originating in japanese oyster
EP0782883A2 (en) 1996-01-08 1997-07-09 Ajinomoto Co., Ltd. Edible microcapsule and food containing the same
US6403127B1 (en) 1997-04-11 2002-06-11 Ajinomoto Co., Inc. Method for producing noodles
WO2007123223A1 (en) 2006-04-18 2007-11-01 Ajinomoto Co., Inc. Process for producing whey protein-enriched fermented milk of agitated type
WO2008120798A1 (en) 2007-03-29 2008-10-09 Ajinomoto Co., Inc. Enzyme preparation for adhesion and method of producing adhesion-molded food product
WO2009101762A1 (en) 2008-02-13 2009-08-20 Amano Enzyme Inc. Stabilized transglutaminase and process for production thereof
WO2009113628A1 (en) 2008-03-14 2009-09-17 味の素株式会社 Method of denaturing protein with enzymes
WO2009116662A1 (en) 2008-03-17 2009-09-24 味の素株式会社 Method of producing fish paste product and enzyme preparation for fish paste products
EP2353406A1 (en) 2008-03-17 2011-08-10 Ajinomoto Co., Inc. Use of an enzyme preparation for the production of a fish paste product
WO2010035856A1 (en) 2008-09-25 2010-04-01 味の素株式会社 Enzyme preparation for adhesion-molded foods and method for producing adhesion-molded food
WO2010074338A1 (en) 2008-12-26 2010-07-01 味の素株式会社 Enzyme preparation for single-ingredient meat product and method for producing single-ingredient meat product
WO2012026618A1 (en) 2010-08-27 2012-03-01 味の素株式会社 Process for production of fish paste product, and enzyme preparation for modifying fish paste product
WO2013027813A1 (en) 2011-08-25 2013-02-28 天野エンザイム株式会社 Composition having improved head stability and use thereof
WO2016210395A1 (en) 2015-06-26 2016-12-29 Dupont Nutrition Biosciences Aps Aminopeptidases for protein hydrlyzates

Also Published As

Publication number Publication date
JPS58149645A (en) 1983-09-06

Similar Documents

Publication Publication Date Title
JPH0150382B2 (en)
Stainsby Proteinaceous gelling systems and their complexes with polysaccharides
EP0379606B1 (en) Novel transglutaminase
JPS60176549A (en) Preparation of protein hydrolyzate
CA1186549A (en) Heat-gelling and foam-stabilizing enzymatically modified vegetable isolates
GERRITSEN et al. Freeze‐Fracture Appearance and Disposition of Band 3 Protein from the Human Erythrocyte Membrane in Lipid Vesicles
JPS59500996A (en) Production method of chymosin
CA1198072A (en) Process for the preparation of protein hydrolysates
CHAN et al. Herring surimi during low temperature setting, physicochemical and textural properties
JPH08509605A (en) Method for purifying collagenase
Singh et al. Purification and characterization of a novel transglutaminase from filarial nematode Brugia malayi
Papahadjopoulos et al. Purification and properties of bovine factor X: Molecular changes during activation
Kiosseoglou et al. Physical characterization of thermally induced networks of lupin protein isolates prepared by isoelectric precipitation and dialysis
US4636388A (en) Preparing protein for hydrolysis and product
US20040091575A1 (en) Method of deamidation of milk protein and method of denaturation of milk protein
Ustunol Physical, chemical, and processing‐induced changes in proteins
Witzemann et al. Structural differences in the catalytic subunits of acetylcholinesterase forms from the electric organ of Torpedo marmorata.
OSMUNDSVAG et al. Cellulases from Sporocytophaga myxococcoides: Purification and properties
Azari et al. Transglutaminase activity in normal and hereditary cataractous rat lens and its partial purification
JP2572716B2 (en) Novel transglutaminase
Kinsella et al. Yeast proteins: recovery, nutritional and functional properties
JP3656094B2 (en) Pickle for meat processing
Klomklao et al. EFFECT OF SALTS AND POLYETHYLENE GLYCOLS ON THE PARTITIONING AND RECOVERY OF TRYPSIN FROM HYBRID CATFISH VISCERA IN AQUEOUS TWO‐PHASE SYSTEMS
Benguigui et al. Study of junction zones in gelatin gels through selective enzymatic digestion
JPH08224063A (en) Gelatinized composition of protein