JPH0150360B2 - - Google Patents

Info

Publication number
JPH0150360B2
JPH0150360B2 JP5704482A JP5704482A JPH0150360B2 JP H0150360 B2 JPH0150360 B2 JP H0150360B2 JP 5704482 A JP5704482 A JP 5704482A JP 5704482 A JP5704482 A JP 5704482A JP H0150360 B2 JPH0150360 B2 JP H0150360B2
Authority
JP
Japan
Prior art keywords
oil
distilled
essential oil
bergapten
distillation residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5704482A
Other languages
Japanese (ja)
Other versions
JPS58173195A (en
Inventor
Hiroshi Kakishima
Takashi Abe
Masayoshi Inui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP5704482A priority Critical patent/JPS58173195A/en
Publication of JPS58173195A publication Critical patent/JPS58173195A/en
Publication of JPH0150360B2 publication Critical patent/JPH0150360B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fats And Perfumes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、皮膚に有害な作用(光毒性)を与え
る原因となるベルガプテンを含有する天然香油か
ら、該原因物質を、天然精油の香気、色調、成分
バランス、収量などに悪影響を与えることなく、
工業的有利に品質の優れた光毒性を有しない天然
精油の製造できる製法に関する。 天然精油は、香水、オーデコロン、クリーム、
化粧水、ローシヨン、口紅、白粉、フアンデーシ
ヨン、ポマード、チツク、ヘアクリーム、等の香
粧品用香料として広く利用されている。 しかしながら、ベルガモツト油、ライム油、レ
モン油、オレンジ油、グレープフルーツ油等の天
然精油に含有されているベルガプテンは光毒性を
有することはよく知られている。 従来ベルガプテンのようなクマリン核をもつ化
合物を除去する方法としては、天然精油のベルガ
モツト油を、ベルガモツト油の成分を変化せしめ
ない程度の温度で減圧蒸留して留出精油を得、一
方蒸留残渣をアルコール性のアルカリで加水分解
し、フロクマリン類を、その加水分解物のアルカ
リ塩の形に転化させて除去し、残つた中性油を上
記留出精油と合することにより、皮膚に刺激を与
えないベルガモツト精油を製造する提案(特公昭
35−15363号)がなされている。 しかしながら、この方法では、加水分解時のア
ルカリによつて、ベルガプテン以外の有用な前記
の中性油成分が副反応(酸化、重合、異性化、分
解等)を生起しやすく、また天然香油の香気、色
調、成分バランス等の悪化、着色、香気変調等、
多くの技術欠陥があることが指摘されている(特
開昭55−3434号公報第2項左欄)。 また、他の方法として、レモン油を、レモン油
の成分を変化せしめない程度の温度で減圧蒸留し
て留出精油を得、一方蒸留残渣を無極性溶媒の存
在下に冷却して該残渣中のプソラレン類を晶出、
除去し、残液から無極性溶媒を除去して得られる
精油分を、上記留出精油と合することを特徴とす
る、プソラレン類を含有しない天然精油の製法が
提案されている(特開昭55−3434)。 しかしながら、この方法(蒸留残渣からの抽
出)ではベルガプテンを充分に除去することは困
難であつて、その事実は改良発明としての前記特
開昭56−70096号が提案されていることからも明
らかである。 本発明者等は、ベルガプテンを含有する天然精
油から光毒性を有しない天然精油を製造する方法
を開発すべく鋭意研究した結果、ベルガプテンを
含有する天然精油の蒸留残渣を後述の如く還元処
理する場合は、ベルガプテンは光毒性を有しない
化合物に転化し、そして還元処理混合物から有機
溶剤で抽出した成分(後記第3段階で得られる蒸
留残渣)を、後記第1段階で得られる留出精油と
合することによつて、天然精油の香気、色調、成
分バランス、収量などに悪影響を与えることな
く、品質に優れかつ光毒性を有しない天然精油が
得られることを見出し、本発明を完成した。 従つて、本発明の目的は、ベルガプテンを含有
する天然精油から、ベルガプテンを実質的に含有
せずかつ光毒性を有しない高品質の天然精油を工
業的容易に製造できる製法を提供するにある。 本発明の他の多くの目的および利点は以下の記
載から一層明らかとなるであろう。 本発明は、 (1) ベルガプテンを含有する天然精油を減圧条件
下に蒸留して、ベルガプテンを実質的に含有し
ない留出精油を採取する第1段階と、 (2) その蒸留残渣を、飽和脂肪族低級1価アルコ
ールに溶解して還元処理を行なう第2段階と、 (3) 還元処理した後の生成混合物に有機溶媒を添
加して抽出し、得られた抽出液を水洗後、脱水
し、その後抽出液中の有機溶媒を留去せしめる
第3段階と、 (4) 有機溶媒を留去した後の蒸留残液を、前記第
1段階で採取した留出精油に混合せしめる第4
段階とからなることを特徴とする光毒性を有し
ない天然精油の製造法である。 以下、本発明の実施の態様を詳説する。 本発明の方法において使用し得るベルガプテン
を含有する天然精油としては、例えば、ベルガモ
ツト油、レモン油、オレンジ油、ライム油、グレ
ープフルーツ油、マンダリン油、プチクレン油等
を例示することができる。 前記第1段階において、ベルガプテンを含有す
る天然精油の減圧条件下の蒸留は、天然精油を変
質せしめずにベルガプテンを実質的に含有しない
天然精油が得られるように適宜に減圧度および温
度を選択して行なうことができる。 一般に、該天然精油中に含有される精油成分の
香気を損わない程度の条件が採用でき、例えば温
度125℃以下、減圧度約10mmHg以下の程度の条
件が採用される。一般に温度および減圧度とも低
い方を選択するのが好ましい。 また、蒸留による留出量は、該天然精油中のベ
ルガプテンの含有量により選択されるが、一般に
仕込みの天然精油に対して約95重量%程度の留出
量が採用される。香気が損わない程度でできるだ
け留出させるのが良い。 上述のように第1段階で減圧蒸留して得られた
留出精油は、前記第3段階で得られる蒸留残渣と
含体(混合)されるが、それまで貯蔵される。第
1段階で得られた蒸留残渣は、飽和脂肪族低級1
価アルコール(溶媒)に溶解した後、その溶液に
還元剤としての水素化ホウ素ナトリウムまたは水
素化ホウ素ナトリウムと、ホウ化ニツケルを添加
して、還元処理される。(第2段階)。 この還元処理によつて、第1段階の蒸留残渣中
に比較的多量(約3〜6重量%)含有するベルガ
プテンを光毒性を有しない化合物に転化すること
ができる。 前記の蒸留残渣を溶解せしめる飽和脂肪族低級
1価アルコールとしては、例えばメチルアルコー
ル、エチルアルコール、nープロピルアルコー
ル、イソプロピルアルコール、nーブチルアルコ
ール、イソブチルアルコール、nーアミルアルコ
ール、イソアミルアルコール等を挙げることがで
きる。前記低級1価アルコールの使用量は、蒸留
残渣の重量に対して5倍〜10倍重量の範囲が好ま
しい。 前記還元処理は、蒸留残渣の前記アルコール溶
液に還元剤の水素化ナトリウムの単独またはホウ
化ニツケルとを蒸留残渣の重量に対して通常0.1
〜0.2倍重量添加し、、40℃〜該アルコールの還流
温度の範囲内で、約5〜7時間撹拌することによ
つて行なわれる。 還元処理した後の生成昆合物には、ベルガプテ
ンは実質的に存在せず、例えばこれを高速クロマ
トグラフイー分析してもベルガプテンのピークは
認められない。 本発明は、このように第1段階の蒸留残渣を還
元処理してもよいが、必要に応じ、他の方法(付
加工程)として、第1段階の蒸留残渣を、無極性
溶媒に溶解した後、その溶液を冷却して、析出す
る固形物を分離除去(別)し、その残液(
液)を蒸留して無極性溶媒を留去した後の蒸留残
渣を、前述の如く該低級アルコールに溶解して還
元処理してもよい。この付加工程の実施は、工程
数を多くする反面、蒸留残渣中のベルガプテン含
有量が少なくなるので、還元処理の所要時間が短
縮される利点がある。 尚、この付加工程で使用し得る非極性溶媒とし
ては、例えば、石油ベンゼン、石油ベンジン、n
ーヘキサン、nーペンタン、イソペンタン、nー
オクタン、シクロヘキサン等が挙げられる。その
使用量は前記工程の蒸留残渣の重量に対して1〜
5倍重量が好ましい。 また第1段階の蒸留残渣の無極性溶媒溶液を冷
却する温度は、10℃以下、好ましくは0℃以下が
好ましい。また析出した固形物を分離除去した後
の残液から、無極性溶媒を留去するための蒸留
は、減圧蒸留が好ましい。 第2段階で還元処理した後の生成混合物は、蒸
留して含有している飽和脂肪族低級1価アルコー
ルを留去し、その後残留物に疎水性溶媒を添加し
て抽出し、抽出液を水洗、脱水してから、抽出液
を蒸留して含有している疎水性溶媒を留去せしめ
る(第3段階)。 この第3段階において、飽和脂肪族低級1価ア
ルコールおよび疎水性溶媒を各当該溶液から留去
(回収)するための蒸留は、減圧蒸留が好ましい。 飽和脂肪族低級1価アルコールを留去した後の
残留物に添加される疎水性溶媒(抽出溶媒)とし
ては、例えばエチルエーテル、メチルエチルエー
テル、ベンゼン、クロロホルム、塩化メチレン等
が好ましい。 前記疎水性溶媒による抽出は、通常の抽出操作
によつて充分行なわれる。この抽出液の水洗は、
抽出液中に溶存する残余の還元剤を分離・除去す
るために行なわれるが、抽出液層のPHが中性にな
るまで、充分水洗することが肝要である。水洗さ
れた抽出液は、少量の水を含有しているので、無
水硫酸ナトリウム等の不活性の脱水剤を適量添加
して、充分脱水することが望ましい。脱水した後
の疎水性溶媒抽出液は、疎水性溶媒を留去するた
めに蒸留されるが、この蒸留も減圧蒸留が好まし
い。この蒸留によつて疎水性溶媒を留去した後の
蒸留残渣(淡黄色の抽状物)は、前記第1段階で
採取した留出精油に添加し、混合(合体)して製
品とする。(第4段階) このようにして得られた精製天然精油は、実質
的に無色透明で異臭の付着がなく、当該天然精油
の香気をそのまゝ損うことなく保有し、いわゆる
ナチユラリテイーに富んだ香りを有している。し
かも皮膚に対する刺激がなくかつ光毒性を全く有
していない。また光毒性を有する成分として知ら
れているベルガプテンのみならず、オキシボイセ
ダニン、前記プソラレン類をも含有していない。
例えば、高速液体クロマトグラフイー分析によつ
てもそれらの光毒性成分のピークは認められな
い。 本発明の方法によれば、当該天然精油の香気、
色調、成分バランス(有用精油成分)に悪影響を
与えることなく、光毒性を有しない、利用価値の
高い高品質の天然精油を、再現性よく高収率で得
られ、その作用効果の特異性は著しい。 実施例 1 1.8%(重量)のベルガプテンを含有するベル
ガモツト油1.0Kgを減圧蒸留し、70℃/2mmHg
までの留出油として無色油状物(留出精油)0.96
Kg得た。この無色油状物の高速液体クロマトグラ
フイー分析の結果、ベルガプテンのピークは認め
られなかつた。次にこの蒸留残渣40gに、メチル
アルコール277gを溶媒として加えて、溶解后、
この溶液を撹拌下に水素化ホウ素ナトリウム4.0
gを徐々に1時間を要して加えた。その後4時間
加熱還流した。かゝる還元処理を行なつた後、生
成混合物を減圧蒸留してメチルアルコールを留去
した。この蒸留残渣を高速液体クロマトグラフイ
ー分析の結果、ベルガプテンのピークが認められ
なかつた。 次にこの蒸留残渣32gにエチルエーテル300ml
を加えて抽出し、抽出液のエーチルエーテル層の
PHが中性になるまで水洗し、その後抽出液に無水
硫酸ナトリウムを添加して脱水した後、エチルエ
ーテルを留去した。かくして得られた蒸留残渣
(淡黄色の油状物)20.0gを、先に得た留出精油
に添加して撹拌混合し、精製ベルガモツト油980
gを得た。 この精製ベルガモツト油の高速液体クロマトグ
ラフイー分析の結果、ベルガプテン、オキシボイ
セダニン及びプソラレン類(プソラレン、4−メ
チルプソラレン、4,4′−ジメチルプソラレン、
4,5′−ジメチルプソラレン、4′,8−ジメチル
プソラレン、4,5′,8−トリメチルプソラレ
ン、8−メトキシプソラレン、5−メトキシプソ
ラレンの各ピークは認められなかつた。 また、この精製ベルガモツト油と前記市販ベル
ガモツト油(ベルガプテン含有ベルガモツト油)
の匂いについて、官能テストを専門検査員10人に
よつて10回繰返して行なわれた。その結果、10人
中9人が両試料は、香気的に差異が無いことを確
認した。 また、この精製ベルガモツト油は、後記の如く
光毒性試験を行なつた結果、光毒性を有しないこ
とが確認された。 光毒性試験法 体重2.5〜3Kgの白色系家兎の背部を剃毛し、
24時間後に2×2cm2に試料のエタノール稀釈溶液
50μを2列に塗布する。 1列はアルミホイルで覆い1時間後にUV−A
(320nm〜400nm)を1時間照射した。光源は東
芝BLBランプ10灯にガラスフイルターを装備し
たものを用いた。この時のエネルギー量は30×
107ergs/cm2であつた。判定は照射直後、24時間
後、48時間後の紅斑、浮腫について下記の評点に
従つた。 評 点 肉眼的に変化なし 0 軽度またはまばらな紅斑 1 中程度の紅斑 2 強度の紅斑と浮腫 3 UV−Aを照射した部位と照射しない部位との
反応を比較し、照射した部位の反応が強い場合を
光毒性(+)と判断した。平均反応強度は次の様
に算出した。 平均反応強度=各家兎の評点の合計/実験に使用した家
兎の数 試験結果: 表中、UV(−)及びUV(+)の項に記載の
( )内の数字は平均強度を、分母の数字は実験
に使用した家兎の数を、分子の数字は刺激により
反応のあつた家兎の数を表わす。
The present invention removes the causative substance from a natural perfume oil containing bergapten, which causes harmful effects on the skin (phototoxicity), without adversely affecting the aroma, color, component balance, yield, etc. of the natural essential oil.
The present invention relates to a manufacturing method that can industrially advantageously produce high-quality, non-phototoxic natural essential oils. Natural essential oils are used in perfumes, colognes, creams,
It is widely used as a fragrance for cosmetics such as lotions, lipsticks, white powders, foundations, pomades, ticks, and hair creams. However, it is well known that bergapten, which is contained in natural essential oils such as bergamot oil, lime oil, lemon oil, orange oil, and grapefruit oil, has phototoxicity. Conventionally, the method for removing compounds with coumarin cores such as bergapten is to obtain a distillate essential oil by distilling natural essential oil, bergamot oil, under reduced pressure at a temperature that does not change the components of bergamot oil. It is hydrolyzed with an alcoholic alkali to remove furocoumarins by converting them into an alkali salt form of the hydrolyzate, and the remaining neutral oil is combined with the distilled essential oil, which irritates the skin. Proposal to produce bergamotu essential oil (Tokukosho)
35-15363) has been made. However, in this method, the useful neutral oil components other than bergapten tend to undergo side reactions (oxidation, polymerization, isomerization, decomposition, etc.) due to the alkali during hydrolysis, and the aroma of natural perfume oil , deterioration of color tone, component balance, etc., coloration, aroma change, etc.
It has been pointed out that there are many technical defects (Japanese Unexamined Patent Publication No. 55-3434, Paragraph 2, left column). As another method, lemon oil is distilled under reduced pressure at a temperature that does not change the components of lemon oil to obtain a distillate essential oil, and the distillation residue is cooled in the presence of a nonpolar solvent to obtain a distilled essential oil. crystallizes psoralen compounds,
A method for producing a natural essential oil that does not contain psoralen compounds has been proposed, which is characterized by combining the essential oil obtained by removing the nonpolar solvent from the residual liquid with the above-mentioned distilled essential oil (Japanese Patent Application Laid-Open No. 55−3434). However, it is difficult to sufficiently remove bergapten with this method (extraction from distillation residue), and this fact is clear from the fact that JP-A-56-70096 was proposed as an improved invention. be. As a result of intensive research to develop a method for producing non-phototoxic natural essential oil from natural essential oil containing bergapten, the present inventors found that when the distillation residue of natural essential oil containing bergapten is reduced as described below. In this method, bergapten is converted into a non-phototoxic compound, and the component extracted with an organic solvent from the reduction treatment mixture (the distillation residue obtained in the third stage described below) is combined with the distillate essential oil obtained in the first stage described later. The present invention has been completed based on the discovery that by doing so, it is possible to obtain natural essential oils of excellent quality and without phototoxicity without adversely affecting the aroma, color tone, component balance, yield, etc. of natural essential oils. Therefore, an object of the present invention is to provide a method for industrially and easily producing a high-quality natural essential oil that does not substantially contain bergapten and has no phototoxicity from a natural essential oil containing bergapten. Many other objects and advantages of the invention will become more apparent from the description below. The present invention comprises: (1) a first step of distilling a natural essential oil containing bergapten under reduced pressure conditions to collect a distilled essential oil that does not substantially contain bergapten; and (2) converting the distillation residue into a saturated fat. (3) Adding an organic solvent to the resulting mixture after the reduction treatment and extracting it, washing the obtained extract with water and dehydrating it; (4) A fourth step in which the distilled residue after distilling off the organic solvent is mixed with the distilled essential oil collected in the first step.
A method for producing a natural essential oil without phototoxicity, characterized by comprising the steps of: Hereinafter, embodiments of the present invention will be explained in detail. Examples of natural essential oils containing bergapten that can be used in the method of the present invention include bergamot oil, lemon oil, orange oil, lime oil, grapefruit oil, mandarin oil, and petitculene oil. In the first step, the natural essential oil containing bergapten is distilled under reduced pressure conditions by appropriately selecting the degree of reduced pressure and temperature so as to obtain a natural essential oil that does not substantially contain bergapten without altering the natural essential oil. can be done. Generally, conditions can be adopted that do not impair the aroma of the essential oil components contained in the natural essential oil, such as a temperature of 125° C. or less and a degree of vacuum of about 10 mmHg or less. Generally, it is preferable to select a lower temperature and reduced pressure. Further, the amount of distillation obtained by distillation is selected depending on the content of bergapten in the natural essential oil, but generally a distillation amount of about 95% by weight based on the raw natural essential oil is adopted. It is best to distill as much as possible without sacrificing the aroma. As described above, the distilled essential oil obtained by vacuum distillation in the first stage is mixed with the distillation residue obtained in the third stage, but is stored until then. The distillation residue obtained in the first stage is a saturated aliphatic lower 1
After dissolving in a alcohol (solvent), sodium borohydride or sodium borohydride as a reducing agent and nickel boride are added to the solution for reduction treatment. (Second stage). By this reduction treatment, bergapten, which is contained in a relatively large amount (approximately 3 to 6% by weight) in the distillation residue of the first stage, can be converted into a non-phototoxic compound. Examples of the saturated aliphatic lower monohydric alcohol that dissolves the distillation residue include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, n-amyl alcohol, and isoamyl alcohol. be able to. The amount of the lower monohydric alcohol used is preferably in the range of 5 to 10 times the weight of the distillation residue. In the reduction treatment, sodium hydride alone or nickel boride as a reducing agent is added to the alcohol solution of the distillation residue at a rate of usually 0.1% by weight based on the weight of the distillation residue.
This is carried out by adding ~0.2 times the weight and stirring for approximately 5 to 7 hours at a temperature ranging from 40°C to the reflux temperature of the alcohol. Bergapten is not substantially present in the resultant mixture after reduction treatment, and for example, even when analyzed by high-speed chromatography, no bergapten peak is observed. In the present invention, the distillation residue of the first stage may be subjected to reduction treatment in this way, but if necessary, as another method (addition step), the distillation residue of the first stage is dissolved in a non-polar solvent, , the solution is cooled, the precipitated solids are separated and removed (separately), and the remaining liquid (
The distillation residue after distilling off the nonpolar solvent may be dissolved in the lower alcohol and subjected to reduction treatment as described above. Implementation of this additional step increases the number of steps, but has the advantage that the time required for the reduction treatment is shortened because the content of bergapten in the distillation residue is reduced. Incidentally, examples of non-polar solvents that can be used in this addition step include petroleum benzene, petroleum benzene, n
-hexane, n-pentane, isopentane, n-octane, cyclohexane and the like. The amount used is 1 to 1 based on the weight of the distillation residue in the above step.
Five times the weight is preferred. Further, the temperature at which the nonpolar solvent solution of the distillation residue in the first stage is cooled is preferably 10°C or lower, preferably 0°C or lower. In addition, vacuum distillation is preferably used as the distillation for distilling off the nonpolar solvent from the residual liquid after separating and removing the precipitated solid matter. The product mixture after reduction treatment in the second stage is distilled to remove the saturated aliphatic lower monohydric alcohol contained therein, then a hydrophobic solvent is added to the residue for extraction, and the extract is washed with water. After dehydration, the extract is distilled to remove the hydrophobic solvent contained therein (third step). In this third step, distillation for distilling off (recovering) the saturated aliphatic lower monohydric alcohol and the hydrophobic solvent from each of the solutions is preferably vacuum distillation. As the hydrophobic solvent (extraction solvent) added to the residue after distilling off the saturated aliphatic lower monohydric alcohol, for example, ethyl ether, methyl ethyl ether, benzene, chloroform, methylene chloride, etc. are preferable. Extraction with the hydrophobic solvent can be sufficiently carried out by conventional extraction operations. Washing this extract with water is
This is done to separate and remove the remaining reducing agent dissolved in the extract, and it is important to wash thoroughly with water until the pH of the extract layer becomes neutral. Since the washed extract contains a small amount of water, it is desirable to add an appropriate amount of an inert dehydrating agent such as anhydrous sodium sulfate to sufficiently dehydrate it. The hydrophobic solvent extract after dehydration is distilled to remove the hydrophobic solvent, and this distillation is also preferably distilled under reduced pressure. The distillation residue (pale yellow extract) after removing the hydrophobic solvent by this distillation is added to the distilled essential oil collected in the first step and mixed (combined) to form a product. (Fourth stage) The purified natural essential oil obtained in this way is substantially colorless and transparent, has no foreign odor, retains the aroma of the natural essential oil without loss, and is rich in so-called naturality. It has a scent. Moreover, it does not irritate the skin and has no phototoxicity. Furthermore, it does not contain not only bergapten, which is known as a phototoxic component, but also oxyboisedanin and the above-mentioned psoralens.
For example, even in high performance liquid chromatography analysis, no peaks of these phototoxic components are observed. According to the method of the present invention, the aroma of the natural essential oil,
It is possible to obtain high-quality natural essential oils with high utility value without adversely affecting color tone and component balance (useful essential oil components), without phototoxicity, with good reproducibility, and with specificity of its action and effect. Significant. Example 1 1.0 kg of bergamot oil containing 1.8% (weight) of bergapten was distilled under reduced pressure at 70°C/2 mmHg.
Colorless oil (distillate essential oil) as distillate oil up to 0.96
Got Kg. As a result of high performance liquid chromatography analysis of this colorless oil, no peak of bergapten was observed. Next, 277 g of methyl alcohol was added as a solvent to 40 g of this distillation residue, and after dissolving it,
Add 4.0% sodium borohydride to this solution under stirring.
g was gradually added over 1 hour. Thereafter, the mixture was heated under reflux for 4 hours. After such reduction treatment, the resulting mixture was distilled under reduced pressure to remove methyl alcohol. As a result of high performance liquid chromatography analysis of this distillation residue, no peak of bergapten was observed. Next, add 300ml of ethyl ether to 32g of this distillation residue.
of the ethyl ether layer of the extract.
The extract was washed with water until the pH became neutral, and then anhydrous sodium sulfate was added to the extract to dehydrate it, and ethyl ether was distilled off. 20.0 g of the distillation residue (pale yellow oil) thus obtained was added to the distilled essential oil obtained earlier and mixed with stirring to obtain purified bergamot oil 980 g.
I got g. As a result of high performance liquid chromatography analysis of this purified bergamot oil, bergapten, oxyboisedanine and psoralen (psoralen, 4-methylpsoralen, 4,4'-dimethylpsoralen,
The peaks of 4,5'-dimethylpsoralen, 4',8-dimethylpsoralen, 4,5',8-trimethylpsoralen, 8-methoxypsoralen, and 5-methoxypsoralen were not observed. In addition, this refined bergamot oil and the commercially available bergamot oil (bergapten-containing bergamot oil)
A sensory test was repeated 10 times by 10 expert inspectors regarding the smell of . As a result, 9 out of 10 people confirmed that there was no difference in aroma between the two samples. Further, as a result of conducting a phototoxicity test as described below, this purified bergamot oil was confirmed to have no phototoxicity. Phototoxicity test method The back of a white rabbit weighing 2.5 to 3 kg was shaved.
After 24 hours, add ethanol diluted solution of sample to 2 x 2 cm2.
Apply 50μ in two rows. One row was covered with aluminum foil and exposed to UV-A after 1 hour.
(320 nm to 400 nm) was irradiated for 1 hour. The light source used was 10 Toshiba BLB lamps equipped with a glass filter. The amount of energy at this time is 30×
It was 107ergs/ cm2 . Judgments were made according to the following ratings for erythema and edema immediately after irradiation, 24 hours later, and 48 hours later. Rating: No macroscopic change 0 Mild or sparse erythema 1 Moderate erythema 2 Severe erythema and edema 3 Comparing the response between the UV-A irradiated area and the non-irradiated area, the irradiated area showed a strong reaction The case was judged as phototoxicity (+). The average reaction intensity was calculated as follows. Average reaction intensity = total score of each rabbit / number of rabbits used in the experiment Test results: In the table, the numbers in parentheses in the UV (-) and UV (+) sections indicate the average intensity. The number in the denominator represents the number of domestic rabbits used in the experiment, and the number in the numerator represents the number of domestic rabbits that responded to the stimulus.

【表】 以上の結果、市販のベルガモツト油には著明な
光毒作用を有しているが、本発明の実施例1によ
る精製ベルガモツト油については光毒性は検出さ
れない。 実施例 2 実施例1のベルガモツト油を同様に減圧蒸留し
て、70℃/mmHgまでの留出油(無色油状物の留
出精油)0.96Kgと蒸留残渣40.0gを得た。この蒸
留残渣40gに、メチルアルコール316gを加え、
あらかじめ塩化ニツケルと水素化ホウ素ナトリウ
ムより得たホウ化ニツケル40gを加え、さらに水
素化ホウ素ナトリウム4.5gを少しずつ1時間か
けて、40℃〜50℃で撹拌しながら加える。添加後
4時間加熱還流した。その後メチルアルコールを
減圧留去し、残留物30gをクロロホルム300mlで
抽出した。この抽出液に水を添加してクロロホル
ム層のPHが中性になるまで水洗した後、無水硫酸
ナトリウムを加えて脱水後、クロロホルムを減圧
下に留去する。得られた残留物(淡黄色油状物)
25gを先に得た留出精油0.96Kgとよく混合し、精
製ベルガモツト油985gを得た。 実施例1と同様に行つた結果、この精製ベルガ
モツト油には、ベルガプテン、オキシポイセダニ
ン及びプソラレン類が含有していないことが確認
された。また光毒性も第2表の如く検出されなか
つた。更に匂いについての官能テストの結果は、
10人中10人が市販のベルガモツト油(無処理、ベ
ルガプテン含有)と比較して香気的に差異が無い
ことを確認している。
[Table] As a result, commercially available bergamot oil has a significant phototoxic effect, but no phototoxicity was detected in the purified bergamot oil according to Example 1 of the present invention. Example 2 The bergamot oil of Example 1 was similarly distilled under reduced pressure to obtain 0.96 kg of distillate oil (distilled essential oil of colorless oil) up to 70°C/mmHg and 40.0 g of distillation residue. Add 316 g of methyl alcohol to 40 g of this distillation residue,
Add 40 g of nickel boride obtained in advance from nickel chloride and sodium borohydride, and then add 4.5 g of sodium borohydride little by little over 1 hour while stirring at 40°C to 50°C. After the addition, the mixture was heated under reflux for 4 hours. Thereafter, methyl alcohol was distilled off under reduced pressure, and 30 g of the residue was extracted with 300 ml of chloroform. After adding water to this extract and washing with water until the pH of the chloroform layer becomes neutral, anhydrous sodium sulfate is added to dehydrate the extract, and chloroform is distilled off under reduced pressure. Resulting residue (pale yellow oil)
25 g was thoroughly mixed with 0.96 kg of distilled essential oil obtained earlier to obtain 985 g of refined bergamot oil. As a result of carrying out the same procedure as in Example 1, it was confirmed that this purified bergamot oil did not contain bergapten, oxypoisedanine, and psoralen. Furthermore, no phototoxicity was detected as shown in Table 2. Furthermore, the results of the sensory test regarding odor are as follows:
10 out of 10 people confirmed that there was no difference in aroma compared to commercially available bergamotu oil (untreated, containing bergapten).

【表】 実施例 3 メチルアルコールの代りに下記第3表に示す各
アルコールを使用する他は、実施例1と同様に実
施して精製ベルガモツト油を製造した。 得られた各精製ベルガモツト油の収量、収率、
光毒性、香気性の結果を第3表に示した。尚、ベ
ルガモツト油の留出精油は夫々(何れも)960g
であつた。また香気性が良好とは、使用した市販
ベルガモツト油との香気性比較において差異が認
められなかつたことを意味する。
[Table] Example 3 Purified bergamot oil was produced in the same manner as in Example 1, except that each alcohol shown in Table 3 below was used instead of methyl alcohol. Yield of each refined bergamot oil obtained, yield,
The results of phototoxicity and aroma are shown in Table 3. In addition, the distilled essential oil of bergamotsu oil is 960g each.
It was hot. Also, "good aroma" means that no difference was observed in the aroma compared with the commercially available bergamot oil used.

【表】 以上の結果、還元処理における蒸留残渣の溶媒
としては、飽和脂肪族低級一価アルコールが好ま
しいことが確認された。 実施例 4 ベルガプテンを0.3重量%含有するベルガモツ
ト油1.0Kgを減圧蒸留し、70℃/2mmHgまでの
留出油として留出精油(無色油状物)0.96Kgで得
た。次にこの蒸留残渣40gに石油エーテル400ml
を加え、0℃に冷却する。析出した結晶及び不溶
物を別し、石油エーテルを減圧下留去する。石
油エーテルを留去した後の残留物にメチルアルコ
ール237gを溶媒として加え、これに水素化ホウ
素ナトリウム2.4gを少しずつ1時間で、40〜50
℃下に撹拌しながら加える。添加後4時間加熱還
流した。その後、生成混合物を減圧蒸留して、メ
チルアルコールを留去した。 次に、その残留物をエチルエーテル300mlで抽
出し、エチルエーテル層のPHが中性になるまで水
洗し、無水硫酸ナトリウムで脱水後エチルエーテ
ルを留去する。エチルエーテルを留去した後の残
留物(微黄色油状物)19gを、先に得た留出精油
960gに添加して撹拌混合し、精製ベルガモツト
油979gを得た。 この精製ベルガモツト油は、実施例1と同様に
しらべた結果、ベルガプテン、オキシポイセダニ
ン及びプソラレン類を含有していないことを確認
した。また光毒性も検出されなかつた。また匂い
についての官能テストの結果、10人中10人が、前
記市販のベルガモツト油と比較して香気的に差異
が無いことを確認している。 実施例 5 ベルガプテンを0.25重量%を含有するライム油
1.0Kgを減圧蒸留し、70℃/2mmHgまでの留出
油として、留出精油(無色油状物)960gを得た。
次にこの蒸留残渣40gに石油エーテル300mlを加
え、0℃に冷却する。析出した結晶及び不溶物を
別し、石油エーテルを減圧下に留去する。石油
エーテルを留去した後の残留物にエチルアルコー
ル237gを溶媒として加え、これに水素化ホウ素
ナトリウム2.4gを少しずつ1時間で、40℃〜50
℃下に撹拌しながら加える。添加後4時間加熱還
流する。その後エチルアルコールを減圧留去し、
残留物20gをベンゼン300mlで抽出し、ベンゼン
層のPHが中性になるまで水洗し、無水硫酸ナトリ
ウムで脱水後、ベンゼンを減圧留去する。次にこ
の残留物(淡黄色油状物)(15g)を、先に得た
留出精油960gに添加して撹拌混合して、精製ラ
イム油975gを得た。 この精製ライム油は、実施例1と同様にしらべ
た結果、ベルガプテン、プソラレン類を含有して
いないことを確認した。また光毒性も検出されな
かつた。また匂いについての官能テストの結果、
10人中9人が、使用したライム油(無処理)と比
較して香気的に差異が無いことを確認している。 実施例 6 ベルガプテンを0.25重量%含有しているライム
油1.0Kgを蒸留し、70℃/2mmHgまでの留出油
として、留出精油960gを得た。 次に蒸留残渣40gにエチルアルコール237g及
びホウ化ニツケル4.0gを加え、更に水素化ホウ
素ナトリウム2.4gを少しずつ1時間かけて、40
〜50℃で撹拌しながら添加後、4時間還流した。
その後エチルアルコールを減圧留去した。次にそ
の残留物31gをベンゼン300mlで抽出した後、抽
出液をそのPHが中性になるまで水洗後、無水硫酸
ナトリウムで脱水し、ベンゼンを減圧留去して、
蒸留残渣(淡黄色油状物)20gを得た。この蒸留
残渣20gを先に得た留出精油960gに添加してよ
く混合して、精製ライム油980gを得た。 この精製ライム油は、実施例1と同様にしらべ
た結果、ベルガプテン及びプソラレン類を含有し
ていないこと、及び光毒性を有していないこと、
を確認した。また匂いは、使用したライム油と比
較して香気的に差異が無いことを確認した。 実施例 7 ベルガプテンを0.04重量%含有するオレンジ油
1.0Kgを、減圧蒸留し70℃/2mmHgまでの留出
油として、無色透明の留出精油(オレンジ油)
970gを得た。この蒸留残渣30gに石油エーテル
300mlを加え、0℃に冷却する。析出した結晶及
び不溶物を別し、石油エーテルを減圧留去す
る。石油エーテルを留去した後の残留物にメチル
アルコール270gを加え、これに水素化ホウ素ナ
トリウム20gを少しずつ1時間で40℃〜50℃下に
撹拌しながら加える。添加後4時間加熱還流す
る。その後メチルアルコールを減圧留去し、残留
物25gをエチルエーテル300mlで抽出し、エチル
エーテル層が中性になるまで水洗した。 この抽出液を無水硫酸ナトリウムで脱水し、含
有するエチルエーテルを減圧下に留去して、蒸留
残渣(赤褐色油状物)20gを得た。この蒸留残渣
20gを先に得た留出精油970gに添加し、よく混
合して精製オレンジ油995gを得た。 この精製オレンジ油は、高速液体クロマトグラ
フイー分析の結果、ベルガプテンのピークも、ま
たプソラレン類のピークも認められなかつた。ま
た、実施例1と同様に光毒性試験を行なつた結
果、光毒性は検出されなかつた。また、匂いは、
使用したオレンジ油と比較して専門検査員10人中
10人が香気的に差異が無いことを確認している。 実施例 8 ベルガプテンを0.2重量%含有するレモン油1.0
Kgを減圧蒸留し、70℃/2mmHgまでの留出精油
として無色油状物965gを得た。次に蒸留残渣35
gにエチルアルコール277gを溶媒として加え、
さらに水素化ホウ素ナトリウム20gを少しずつ1
時間で40℃〜50℃下に撹拌しながら添加する。そ
の後、さらに4時間加熱還流する。その後エチル
アルコールを留去し、残留物30gをベンゼン300
mlで抽出する。次に抽出液が中性になるまで水洗
後、無水硫酸ナトリウムで脱水し、抽出液を減圧
蒸留してベンゼンを留去する。得られた蒸留残渣
の淡赤褐色油状物25gを、先に得た留出精油965
gとよく混合し精製レモン油980gを得た。 この精製レモン油は、高速クロマトグラフイー
分析の結果、ベルガプテン、オキシポイセダニン
及びプソラレン類の各ピークは認められなかつ
た。また実施例1と同様に光毒性試験を行なつた
結果、光毒性は検出されなかつた。 また匂いは、使用したレモン油と比較して、専
門検査員10人中10人が香気的に差異が無いことを
確認している。 実施例 9 実施例8と同じレモン油1.0Kgを減圧蒸留し、
70℃/2mmHgまでの留出精油として無色油状物
965gを得た。次に蒸留残渣35gにメチルアルコ
ール277gを加える。次にこの溶液に、塩化ニツ
ケルと水素化ホウ素ナトリウムより調製したホウ
化ニツケル3.5gを加え、さらに水素化ホウ素ナ
トリウム2.0gを少しずつ1時間かけて、40℃〜
50℃下で撹拌しながら加える。添加後4時間加熱
還流する。その後生成混合物からメチルアルコー
ルを減圧留去し、残留物31gをエチルエーテル
300mlで抽出し、抽出液(エチルエーテル層)の
PHが中性になるまで水洗後、無水硫酸ナトリウム
で脱水する。エチルエーテルを減圧留去後、得ら
れた蒸留残渣の淡赤褐色油状物25.0gを、先に得
た留出精油965gとよく混合し、精製レモン油を
990gを得た。 この精製レモン油は、実施例8で得られた精製
レモン油と同様にしらべた結果、ベルガプテン、
オキシポイセダニン及びプソラレン類を含有して
いないことを、また光毒性を有していないことを
確認している。 また、匂いは、使用したレモン油と比較して香
気的に差異が無いことを確認している。
[Table] From the above results, it was confirmed that saturated aliphatic lower monohydric alcohol is preferable as the solvent for the distillation residue in the reduction treatment. Example 4 1.0 kg of bergamot oil containing 0.3% by weight of bergapten was distilled under reduced pressure to obtain 0.96 kg of distillate essential oil (colorless oil) at a temperature of up to 70° C./2 mmHg. Next, add 400 ml of petroleum ether to 40 g of this distillation residue.
and cooled to 0°C. The precipitated crystals and insoluble matter are separated, and the petroleum ether is distilled off under reduced pressure. 237 g of methyl alcohol was added as a solvent to the residue after petroleum ether was distilled off, and 2.4 g of sodium borohydride was added little by little over 1 hour to 40 to 50 g of methyl alcohol.
℃ and add with stirring. After the addition, the mixture was heated under reflux for 4 hours. Thereafter, the resulting mixture was distilled under reduced pressure to remove methyl alcohol. Next, the residue is extracted with 300 ml of ethyl ether, washed with water until the pH of the ethyl ether layer becomes neutral, dried over anhydrous sodium sulfate, and then ethyl ether is distilled off. After distilling off the ethyl ether, 19 g of the residue (slightly yellow oil) was extracted from the previously obtained distilled essential oil.
The mixture was added to 960 g and mixed with stirring to obtain 979 g of purified bergamot oil. This purified bergamot oil was examined in the same manner as in Example 1, and it was confirmed that it did not contain bergapten, oxypoisedanine, and psoralen. Also, no phototoxicity was detected. In addition, as a result of a sensory test regarding odor, 10 out of 10 people confirmed that there was no difference in aroma compared to the commercially available bergamot oil. Example 5 Lime oil containing 0.25% by weight of bergapten
1.0 kg was distilled under reduced pressure to obtain 960 g of distilled essential oil (colorless oil) as distilled oil up to 70°C/2 mmHg.
Next, 300 ml of petroleum ether was added to 40 g of this distillation residue, and the mixture was cooled to 0°C. The precipitated crystals and insoluble matter are separated, and the petroleum ether is distilled off under reduced pressure. After distilling off the petroleum ether, 237 g of ethyl alcohol was added as a solvent, and 2.4 g of sodium borohydride was added little by little over 1 hour at 40°C to 50°C.
℃ and add with stirring. After addition, heat to reflux for 4 hours. After that, ethyl alcohol was distilled off under reduced pressure,
20 g of the residue is extracted with 300 ml of benzene, washed with water until the pH of the benzene layer becomes neutral, dried over anhydrous sodium sulfate, and then the benzene is distilled off under reduced pressure. Next, this residue (pale yellow oil) (15 g) was added to 960 g of the previously obtained distilled essential oil and mixed with stirring to obtain 975 g of refined lime oil. This refined lime oil was examined in the same manner as in Example 1, and it was confirmed that it did not contain bergapten or psoralen. Also, no phototoxicity was detected. In addition, the results of a sensory test regarding smell,
9 out of 10 people confirmed that there was no difference in aroma compared to the lime oil they used (untreated). Example 6 1.0 kg of lime oil containing 0.25% by weight of bergapten was distilled to obtain 960 g of distilled essential oil at a temperature of up to 70°C/2 mmHg. Next, 237 g of ethyl alcohol and 4.0 g of nickel boride were added to 40 g of the distillation residue, and 2.4 g of sodium borohydride was added little by little over 1 hour.
The addition was followed by refluxing for 4 hours with stirring at ~50°C.
Thereafter, ethyl alcohol was distilled off under reduced pressure. Next, 31 g of the residue was extracted with 300 ml of benzene, and the extract was washed with water until its pH became neutral, then dehydrated with anhydrous sodium sulfate, and the benzene was distilled off under reduced pressure.
20 g of distillation residue (pale yellow oil) was obtained. 20 g of this distillation residue was added to 960 g of the previously obtained distilled essential oil and mixed well to obtain 980 g of refined lime oil. As a result of examining this refined lime oil in the same manner as in Example 1, it was found that it did not contain bergapten and psoralen, and that it did not have phototoxicity.
It was confirmed. It was also confirmed that there was no difference in aroma compared to the lime oil used. Example 7 Orange oil containing 0.04% by weight of bergapten
1.0Kg is distilled under reduced pressure to 70℃/2mmHg to produce a colorless and transparent distillate essential oil (orange oil).
Obtained 970g. Add petroleum ether to 30g of this distillation residue.
Add 300ml and cool to 0°C. The precipitated crystals and insoluble matter are separated, and the petroleum ether is distilled off under reduced pressure. 270 g of methyl alcohol is added to the residue after distilling off the petroleum ether, and 20 g of sodium borohydride is added little by little over 1 hour at a temperature of 40 DEG C. to 50 DEG C. with stirring. After addition, heat to reflux for 4 hours. Thereafter, methyl alcohol was distilled off under reduced pressure, and 25 g of the residue was extracted with 300 ml of ethyl ether and washed with water until the ethyl ether layer became neutral. This extract was dehydrated over anhydrous sodium sulfate, and the ethyl ether contained therein was distilled off under reduced pressure to obtain 20 g of a distillation residue (reddish brown oil). This distillation residue
20g was added to 970g of the distilled essential oil obtained earlier and mixed well to obtain 995g of refined orange oil. As a result of high performance liquid chromatography analysis of this purified orange oil, neither a bergapten peak nor a psoralen peak was observed. Further, as a result of conducting a phototoxicity test in the same manner as in Example 1, no phototoxicity was detected. Also, the smell is
Out of 10 professional inspectors compared to used orange oil
10 people confirmed that there was no difference in aroma. Example 8 Lemon oil 1.0 containing 0.2% by weight of bergapten
Kg was distilled under reduced pressure to obtain 965 g of a colorless oil as a distilled essential oil up to 70°C/2 mmHg. Next, distillation residue 35
Add 277g of ethyl alcohol to g as a solvent,
Furthermore, add 20 g of sodium borohydride little by little.
Add with stirring to below 40°C to 50°C for an hour. Thereafter, the mixture is further heated under reflux for 4 hours. After that, ethyl alcohol was distilled off, and 30 g of the residue was dissolved in 300 g of benzene.
Extract in ml. Next, the extract is washed with water until it becomes neutral, then dehydrated with anhydrous sodium sulfate, and the extract is distilled under reduced pressure to remove benzene. 25 g of the pale reddish brown oily substance obtained from the distillation residue was added to 965 g of the distilled essential oil obtained earlier.
g and mixed well to obtain 980 g of purified lemon oil. As a result of high-speed chromatography analysis of this purified lemon oil, no peaks of bergapten, oxypoisedanine, or psoralen were observed. Further, as a result of conducting a phototoxicity test in the same manner as in Example 1, no phototoxicity was detected. In addition, 10 out of 10 expert inspectors confirmed that there was no difference in aroma compared to the lemon oil used. Example 9 1.0 kg of the same lemon oil as in Example 8 was distilled under reduced pressure,
Colorless oil as distillate essential oil up to 70℃/2mmHg
Obtained 965g. Next, 277 g of methyl alcohol is added to 35 g of the distillation residue. Next, 3.5 g of nickel boride prepared from nickel chloride and sodium borohydride was added to this solution, and then 2.0 g of sodium borohydride was added little by little over 1 hour at 40°C.
Add while stirring at 50°C. After addition, heat to reflux for 4 hours. Thereafter, methyl alcohol was distilled off from the resulting mixture under reduced pressure, and 31 g of the residue was evaporated into ethyl ether.
Extract with 300ml and remove the extract (ethyl ether layer).
After washing with water until the pH becomes neutral, dehydrate with anhydrous sodium sulfate. After distilling off the ethyl ether under reduced pressure, 25.0 g of the pale reddish brown oil obtained as the distillation residue was thoroughly mixed with 965 g of the distilled essential oil obtained earlier, and refined lemon oil was added.
Obtained 990g. This refined lemon oil was examined in the same manner as the refined lemon oil obtained in Example 8, and as a result, bergapten,
It has been confirmed that it does not contain oxypoisedanine or psoralen, and is not phototoxic. Additionally, it has been confirmed that there is no difference in aroma compared to the lemon oil used.

Claims (1)

【特許請求の範囲】 1 (1) ベルガプテンを含有する天然精油を減圧
条件下に蒸留して、ベルガプテンを実質的に含
有しない留出精油を採取する第1段階と、 (2) 蒸留残渣を、飽和脂肪族低級1価アルコール
に溶解して、水素化ホウ素ナトリウムの存在下
また水素化ホウ素ナトリウムとホウ化ニツケル
との共存下に、還元処理する第2段階と、 (3) 還元処理した後の生成混合物から飽和脂肪族
低級1価アルコールを留去し、その後残留物を
疎水性溶媒で抽出し、抽出液を水洗、脱水して
から疎水性溶剤を留去せしめる第3段階と、 (4) 疎水性溶媒を留去した後の蒸留残渣を、前記
第1段階で採取した留出精油に混合せしめる第
4段階とからなることを特徴とする、光毒性を
有しない天然精油の製造法。 2 前記の第1段階と第2段階の間に、第1段階
で得られた蒸留残渣に無極性溶媒を加え冷却し
て、析出する固形物を分離除去し、その後残液を
蒸留して無極性溶媒を留去し、その蒸留残渣を採
取する段階を含む特許請求の範囲第1項記載の製
造法。
[Scope of Claims] 1 (1) A first step of distilling a natural essential oil containing bergapten under reduced pressure conditions to collect a distilled essential oil that does not substantially contain bergapten; (2) distillation residue; a second step of dissolving in a saturated aliphatic lower monohydric alcohol and performing a reduction treatment in the presence of sodium borohydride or in the coexistence of sodium borohydride and nickel boride; (3) after the reduction treatment; a third step of distilling off the saturated aliphatic lower monohydric alcohol from the resulting mixture, then extracting the residue with a hydrophobic solvent, washing the extract with water, dehydrating it, and then distilling off the hydrophobic solvent; (4) A method for producing a natural essential oil without phototoxicity, comprising a fourth step of mixing the distillation residue after distilling off the hydrophobic solvent with the distilled essential oil collected in the first step. 2 Between the first and second stages, a non-polar solvent is added to the distillation residue obtained in the first stage and cooled to separate and remove the precipitated solids, and then the remaining liquid is distilled to form a non-polar solvent. 2. The manufacturing method according to claim 1, which comprises the step of distilling off the organic solvent and collecting the distillation residue.
JP5704482A 1982-04-05 1982-04-05 Manufacture of natural essential oil without light toxicity Granted JPS58173195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5704482A JPS58173195A (en) 1982-04-05 1982-04-05 Manufacture of natural essential oil without light toxicity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5704482A JPS58173195A (en) 1982-04-05 1982-04-05 Manufacture of natural essential oil without light toxicity

Publications (2)

Publication Number Publication Date
JPS58173195A JPS58173195A (en) 1983-10-12
JPH0150360B2 true JPH0150360B2 (en) 1989-10-30

Family

ID=13044442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5704482A Granted JPS58173195A (en) 1982-04-05 1982-04-05 Manufacture of natural essential oil without light toxicity

Country Status (1)

Country Link
JP (1) JPS58173195A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384457A (en) * 1986-09-29 1988-04-15 Nagaoka Koryo Kk Production of lemon oil free from phototoxicity

Also Published As

Publication number Publication date
JPS58173195A (en) 1983-10-12

Similar Documents

Publication Publication Date Title
EP0862547B1 (en) Products extracted from a plant of the genus commiphora, particularly the commiphora mukul plant, extracts containing same and applications thereof, for example in cosmetics
DE60224423T2 (en) NORBORNANE AND NORBORENE DERIVATIVES, THEIR USE AND THESE INCLUDING FRUIT PRODUCTS
EP0424787A2 (en) Use of unsaturated macrocyclic ketones as perfuming ingredients
RU2385319C2 (en) Tetrahydropyrans (tetrahydropyranones) substituted in beta-position, synthesis method thereof and use thereof in perfumery
JPH0150360B2 (en)
JPS6321719B2 (en)
JPS606992B2 (en) Method for producing natural essential oils without phototoxicity
EP0613680B1 (en) Use of derivatives of 6,6 dimethyl 2-acylcyclohex 4 en 1,3 dione in sunscreening compositions
JPH06509105A (en) Process for producing 8,12-oxide-13,14,15,16-tetranorabdane
JPH0230360B2 (en)
JPS606993B2 (en) Method for producing natural essential oils without phototoxicity
Blackburne et al. Terpenoid chemistry. XIX. Dehydro-and Dehydroiso-myodesmone, toxic furanoid sesquiterpene ketones from Myoporum deserti
EP0078925B1 (en) (+)- or (-)-7-hydroxymethyl-2,6,6-trimethyltricyclo-(6,2,1,0 1,5) undecane, a process for producing them and a perfume composition
JPS6019955B2 (en) Method for producing natural essential oil with excellent aroma and no phototoxicity
EP0382934B1 (en) Tricyclic ketones, method of making them and their application as perfume agents
EP0634474B1 (en) Treated labdanum oil, process for preparing the same, novel ketone compound, and perfume composition containing the same
JPS6384457A (en) Production of lemon oil free from phototoxicity
JP2943038B2 (en) Rabdanum oil reforming method
EP0282798B1 (en) Aliphatic bicyclic alcools and their use as flavouring compounds
EP0558928B1 (en) Furanethers and their use as perfume
EP0035562A1 (en) Substituted cycle alcohols, methods of preparing and compositions containing same
JPS61172839A (en) 2,5,8-undecatrien-1-ol and ester thereof
JP2754135B2 (en) Novel ketone and fragrance composition containing the same
US4212812A (en) 2,2-Dialkyltetrahydropyrans
EP0676393A1 (en) Cyclic ketones and their use in perfumery