JPH01502618A - Light beam deflection device - Google Patents

Light beam deflection device

Info

Publication number
JPH01502618A
JPH01502618A JP63501975A JP50197588A JPH01502618A JP H01502618 A JPH01502618 A JP H01502618A JP 63501975 A JP63501975 A JP 63501975A JP 50197588 A JP50197588 A JP 50197588A JP H01502618 A JPH01502618 A JP H01502618A
Authority
JP
Japan
Prior art keywords
prism
axis
undeposited
sided
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63501975A
Other languages
Japanese (ja)
Inventor
ハンケ.ペーター
ブライハー.ヤコブ
Original Assignee
オプティッシェ.ウエルケ.ゲー.ローデンストック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オプティッシェ.ウエルケ.ゲー.ローデンストック filed Critical オプティッシェ.ウエルケ.ゲー.ローデンストック
Publication of JPH01502618A publication Critical patent/JPH01502618A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0875Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements
    • G02B26/0883Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements the refracting element being a prism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/0005Optical objectives specially designed for the purposes specified below having F-Theta characteristic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/108Scanning systems having one or more prisms as scanning elements

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 光束の面内装置 技術分野 本発明は、軸のまわりで一定偏向の転回可能な転向プリズムを用いて平面へ及び この転向プリズムに組み合わされる合焦装置、特にF−θ(エフ−シータ)対物 レンズで光束を偏光させる装置に関する。[Detailed description of the invention] In-plane device of luminous flux Technical field The present invention uses a rotatable turning prism of constant deflection about an axis to A focusing device combined with this turning prism, especially an F-theta (F-theta) objective This invention relates to a device that polarizes a beam of light using a lens.

技術水準 このような多数の装置は、走査装置で使用される。公知の走査装置類では光源か ら出る光束は、回転する転向部材によって偏向されかつ合焦装置を用いて走査さ れる表面で光点として合焦される。回転する転向部材によってその光束は、例え ば、一平面へ偏向される。上記表面の走査は、ライン状に行なわれる。technical level A large number of such devices are used in scanning devices. In known scanning devices, there is no light source. The light beam emerging from the beam is deflected by a rotating deflection member and scanned using a focusing device. It is focused as a point of light on the surface of the object. The light flux is transformed by the rotating turning member, e.g. For example, it is deflected to one plane. The scanning of the surface is performed in a line.

この種の光学走査装置では、走査線が直線であり、その際上下に続く走査線が互 いに平行に設けられおり、夫々線間隔が一定であることが必要である。実際上上 記光点の上記理想的運動パターンから常に偏差を生ずる。従って、例えば、不正 確につくられた倉庫で貯蔵された転向部材は、フラッタ−(Flatter ) 及び振動運動(雲台)へ移動される。このような作用は、その走査装置の正確な 動作を阻害する。In this type of optical scanning device, the scanning line is a straight line, and the scanning lines that follow one above the other are interchangeable. It is necessary that the lines be provided in parallel to each other, and that the distance between the lines be constant. practically Deviations from the ideal movement pattern of the recording point always occur. Therefore, for example, fraud Turning parts stored in a properly constructed warehouse are flutter. and moved into an oscillatory motion (head). Such effects depend on the accuracy of the scanning device. impede movement.

互いに直交している側面の1つと貫通する軸のまわりに回転するペンタプリズム の助けをかりて雲台の障害となる影響を補償することが公知である。このペンタ プリズムによってプリズムの回転軸に傾斜に左右されない一定の光束の偏向を達 成する。走査装置内部でペンタプリズムのこの応用は、例えば、米国特許第4. 475.787号で説明されている。A pentaprism that rotates around an axis that passes through one of its mutually orthogonal sides. It is known to compensate for the disturbing effects of a tripod head with the help of. This penta The prism achieves a constant beam deflection that is independent of the tilt of the prism axis of rotation. to be accomplished. This application of a pentaprism within a scanning device is described, for example, in US Pat. No. 475.787.

この種のペンタプリズムが最小直径へ設計されるので、後続する合焦装置の入口 切断幅ができるだけ小さくされる場合、回転されるペンタプリズムの周期特性が 不満足である。これは特に大きい欠陥である。なぜならば、ペンタプリズムが比 較的大きい回転数で回転するからである。従って駆動モータの高価な均衡及び/ スは高い遠心力による転向部材の比較的低い回転数によって限定される。This kind of pentaprism is designed to the smallest diameter so that the entrance of the subsequent focusing device If the cutting width is made as small as possible, the periodic characteristic of the rotated pentaprism is Not satisfied. This is a particularly large flaw. This is because the pentaprism is This is because it rotates at a relatively high rotational speed. Therefore, expensive balancing of the drive motor and/or The speed is limited by the relatively low rotational speed of the deflecting member due to the high centrifugal forces.

本発明の主要な課題は、秀れた平衡特性をもつ始めに述べた種類の簡単につくる 転向プリズムを提供することにある。The main object of the present invention is to easily produce the type mentioned at the beginning with excellent equilibrium properties. The purpose is to provide a turning prism.

この課題は、本発明によるその転向プリズムがウオラストンによる4角プリズム であるかまたその回転軸が直角を相互に形成する両プリズム面の1面に対してほ ぼ直交して配向されていることによって解決さノする。This problem is solved by the fact that the turning prism according to the present invention is a four-sided prism according to Wollaston. or its axis of rotation is approximately relative to one surface of both prism surfaces forming a right angle to each other. This is solved by being orthogonally oriented.

始めに述べた種類の装置の内部でウオラストンによる自体公知の4角プリズムに あってはこのプリズムの回転軸と重心との間の距離、プリズム重量及び後置され る合距離)を決定する回転軸と回転軸から最も遠いプリズム部分との間の距離に 関して、転向部材の驚くべき程好ましい構成を達成できることが判明した。最少 寸法へ設計されたペンタプリズムに比較してウオラストンによる4角プリズムは 、より一層少ない重量である。後続する合焦装置の入口焦点区間は、ペンタプリ ズムに必要な入口焦点区間の最大に等しい。けれどもウオラストンによる4角プ リズムは、4角プリズムの機械的重心が平行入射する光の重心に極めて近くなる ように位置決めすることができるのは、特に重要である。なぜならばこのプリズ ムは、入射する平行光線の重心のまわりで回転されるので、ペンタプリズムに較 べて最早やほとんど不平衡がないからである。従って高い回転数の場合特に平衡 特性は、著しく改良される。Inside a device of the type mentioned at the outset, a four-sided prism known per se by Wollaston is used. If so, the distance between the axis of rotation and the center of gravity of this prism, the weight of the prism, and the The distance between the axis of rotation and the part of the prism furthest from the axis of rotation determines the In this regard, it has been found that a surprisingly favorable configuration of the deflection member can be achieved. minimum Compared to the pentaprism designed to the dimensions, the four-sided prism by Wollaston is , even less weight. The entrance focus section of the subsequent focusing device is equal to the maximum entrance focal length required for the system. However, Wollaston's four-cornered The rhythm is that the mechanical center of gravity of the square prism becomes extremely close to the center of gravity of parallel incident light. It is particularly important to be able to position the Because this priz The prism is rotated around the center of gravity of the incident parallel rays, so it is This is because there is no longer any disequilibrium in all cases. Therefore, the balance is particularly high at high speeds. The properties are significantly improved.

ウオラストンによる4角プリズムは、2つの蒸着されかつ2つの蒸発されない表 面をもっている。互いに隣接している蒸発されない表面は、互いに90’の角度 を挾む。A four-sided prism by Wollaston consists of two evaporated and two non-evaporated surfaces. It has a face. Adjacent non-evaporated surfaces are at a 90' angle to each other. sandwich.

基本的に言えば、回転軸に対して平行に配向されている光束を、回転軸に対して ほぼ垂直にある第1の蒸着されない表面を介してこの4角プリズムへ入り、次い で蒸着されない表面へ隣接する蒸着面でまた別の蒸着面で反射され、結局第2の 蒸着されない表面を介してこの4角プリズムから出るようにさせる。Basically speaking, a beam of light that is oriented parallel to the axis of rotation is It enters this square prism through a first undeposited surface that is approximately vertical; It is reflected by another deposition surface on the deposition surface adjacent to the surface that is not deposited, and ends up being a second deposition surface. It is allowed to exit the square prism through the surface that is not deposited.

けれども合焦装置の最適に小さい入口焦点区間は、特に請求項2で指示される本 発明の構成で達成させることができる。However, the optimally small entrance focus section of the focusing device is particularly important in the present invention as indicated in claim 2. This can be achieved with the configuration of the invention.

プリズム回転軸の傾斜の場合にも光束の正しくかつ完全な転向を維持できるため 、4角プリズムの入口表面は、光束横断面より大きく選択される。本発明の好ま しい実施の態様では互いに直交して配向される両プリズム面は、それらの交差直 線に対し直交する方向に請求項3で請求される幅をもっている。Correct and complete deflection of the luminous flux can be maintained even in the case of tilting of the prism rotation axis. , the entrance surface of the square prism is selected to be larger than the beam cross-section. Preferences of the present invention In a new embodiment, both prism surfaces oriented orthogonally to each other are It has the width claimed in claim 3 in the direction orthogonal to the line.

本発明の別の好ましい構成は請求項4及び5で指示される。Further preferred embodiments of the invention are indicated in claims 4 and 5.

図面の簡単な説明 以下添付の図面に基づいて本発明を例示的に説明する。Brief description of the drawing The present invention will be exemplarily described below based on the accompanying drawings.

図において、 第1図は、従来のペンタプリズムの断面図、第2図は、ウオラストンによる四角 プリズムの断面図である。In the figure, Figure 1 is a cross-sectional view of a conventional pentaprism, and Figure 2 is a square drawn by Wollaston. FIG. 3 is a cross-sectional view of a prism.

実施例の説明 両図では、入射する光束を90%だけ偏向すべき転向プリズムを示している。両 温付図において合焦装置も各プリズムの取付は部及び指示部をも示さない。プリ ズムに組み合わされる合焦装置は、その光路でプリズムの前部或いは後部に設け ることができる。Description of examples In both figures, a deflecting prism is shown, which is to deflect the incident light beam by 90%. both In the heating diagram, neither the focusing device nor the mounting and indicating portions of each prism are shown. Puri The focusing device combined with the prism is installed in the front or rear of the prism in its optical path. can be done.

第1図では蒸着されない両表面1.2、蒸着される両表面3.4及び別の表面5 を示している。光束、例えば、直径dを有するレーザビームは、蒸着されない面 1からこのペンタプリズムに入射する。蒸着された両表面3、4で反射の後その レーザビームは、蒸着されない表面2を介してこのペンタプリズムから出る。参 照記号6.7.8についてはこの光束のビームを示す、このペンタプリズムは、 その位置が面1に対して直交して配向されるビーム7の位置と一致する軸のまわ りに回転する。面2に対する距離をSpで示している重心の位置は、Sで特徴づ ける0面2と面4と5との間の間隔は、tで示す。In FIG. 1, both surfaces 1.2 which are not deposited, both surfaces 3.4 which are deposited and another surface 5. It shows. A beam of light, e.g. a laser beam with diameter d, is applied to the surface not to be deposited. 1 and enters this pentaprism. After reflection from both deposited surfaces 3 and 4, The laser beam exits this pentaprism via the surface 2 which is not deposited. three This pentaprism, which indicates the beam of this luminous flux with reference symbol 6.7.8, around an axis whose position coincides with the position of the beam 7 oriented perpendicular to the plane 1 rotates. The position of the center of gravity, whose distance to surface 2 is denoted by Sp, is characterized by S. The spacing between plane 0 2 and planes 4 and 5 is denoted by t.

第2図では、ウオラストンによる4角プリズムが示されている。このプリズムは 、直角を形成する2つの蒸着されない面9.10ならびに2つの蒸着面11.1 2をもっている。それらの表面10.11およびそれらの表面9.12は、角6 7.5°を挾む。In FIG. 2, a four-sided prism made by Wollaston is shown. This prism , two undeposited surfaces 9.10 and two deposited surfaces 11.1 forming a right angle. I have 2. Their surfaces 10.11 and their surfaces 9.12 are located at corner 6 7.5° in between.

そのうちビーム13.14.15だけを示している光束は、表面9を介して垂直 に4角プリズムへ入射するならば、蒸着面11で反射されかつその後それらの表 面10.9で全反射される0表面12で反射の後この光束は、表面10から出る 。この出た光束は、入射した光束に較べて90°だけ屈曲される。この光軸14 は、4角プリズムの回転軸でもある。この回転軸は、プリズム面9に対しほぼ直 交して配向され、即ち、その回転軸は、プリズム面9への垂線と最大角的4°− ガラスの屈折値に左右される−を挟さむ。The luminous flux, of which only beams 13, 14, 15 are represented, is directed vertically through surface 9. If it is incident on the square prism, it will be reflected by the vapor deposition surface 11 and then the surface Totally reflected at surface 10.9 0 After reflection at surface 12, this beam exits from surface 10 . This emitted light beam is bent by 90° compared to the incident light beam. This optical axis 14 is also the rotation axis of the square prism. This axis of rotation is approximately perpendicular to the prism surface 9. oriented crosswise, i.e. its axis of rotation is at most angularly 4°- Insert -, which depends on the refraction value of the glass.

第2図では傾けない回転軸の理想的場合を示す。入射する光束は、お互いに重な りならびに表面10に対し平行にである。FIG. 2 shows an ideal case of a rotation axis that is not tilted. The incident light beams overlap each other. and parallel to the surface 10.

aで面10と面9と12との交差像との間の距離を示す。The distance between the surface 10 and the cross image of surfaces 9 and 12 is indicated by a.

この実施例ではその光束は、表面10に対して距1XVoは例えば、0.15d を備えている。距離Xは、プリズム回転軸の傾斜の場合にも光束の正しくかつ完 全な転向を維持させることによって必要である。In this embodiment, the light beam has a distance 1XVo of, for example, 0.15d with respect to the surface 10. It is equipped with The distance This is necessary by maintaining complete conversion.

この4角プリズムによって行なわれるビーム偏向は、プリズム回転軸に対して敏 感ではない。傾斜の場合にも出射する光束と入射するとの間の角度は、互いに対 し平行にしか移動されない。下記の合焦装置により、この実施例では走査装置の エフーテータ(rhata )−光学装置は、互いに平行な光束を合焦する。The beam deflection performed by this square prism is sensitive to the prism rotation axis. It's not a feeling. Even in the case of tilt, the angle between the emitted light flux and the incident light flux is opposite to each other. and can only be moved in parallel. With the focusing device described below, in this example the scanning device Efutator (rhata) - an optical device that focuses mutually parallel beams of light.

ペンタプリズムに比較してウオラストンによる4角プリズムの重心(表面10か ら距1sW)は、ペンタプリズムの回転軸のこのプリズムの重心よりも4角プリ ズム回転軸に著しく近い、従ってこの4角プリズムは、最早や完全に不平衡がな い。従って特に高い回転数の場合その平衡特性は、ペンタプリズムに較べて著し く改良される。Compared to the pentaprism, the center of gravity of the four-sided prism by Wollaston (surface 10 The distance 1 sW) from the center of gravity of the pentaprism rotation axis is the square prism. The square prism is very close to the axis of rotation, so this square prism is no longer completely unbalanced. stomach. Therefore, especially at high rotational speeds, its equilibrium properties are significantly better than that of a pentaprism. Improved.

距Mj及びaは、一致し、換言すれば両方の場合では合焦装置に対して同一人口 切断幅を生ずる。The distances Mj and a are identical, in other words the same population for the focusing device in both cases. Generate cutting width.

宝藻ii1審報告 国際調査報告 Dミεεクク:22Takaramo II 1st trial report international search report Dmiεεkuku: 22

Claims (1)

【特許請求の範囲】 1.軸の周りに一定偏向の回転可能な回転プリズムを用いて一平面内へまた転向 プリズムに組み合わされる合焦装置、特にエフーテータ(Theta)対物レン ズで光束を偏向する装置において、 上記転向プリズムがウオラストンによる4角プリズムであり、且つ、 その回転軸が直角を相互に形成する両プリズム表面の一表面に対しほぼ直交して 配向されていることを特徴とする装置。 2.前記4角プリズムが直角を相互に挟む2つの蒸着されない表面及び2つの蒸 着表面をもつ、上記4角プリズムが一定屈折率をもち、この場合回転軸に対しほ ぼ平行に配向されかつ第1蒸着されない表面(9)を介してこの4角プリズムへ 入りまた入射面(9)に向かい会っている第1蒸着面(11)で反射される光束 (13、14、15)が先づ第2蒸着されない表面(10)で全反射され、次い で第1蒸着されない表面(9)で全反射されてから光束が第2蒸着表面(12) で反射の後第2蒸着されない表面(10)を介してこの4角プリズムから出る。 上記諸特徴の組合せを特徴とする請求項1記載の装置。 3.互いに直交して配向される両プリズム表面(9、10)がそれらの交差線に 対し直交する方向に少なくとも1つの幅 a=(1+2X)■d■√2 をもち、ここに d=光束の直径及び 0.05≦X≦0.3特に0.1≦X≦0.2であることを特徴とする請求項1 又は2記載の装置。 4.上記光束軸がこの4角プリズムの回転軸であることを特徴とする請求項1〜 3のいずれか1項記載の装置。 5.この4角プリズムが光束の転向角度90°だけに対して設計されていること を特徴とする請求項1〜4のいずれか1項記載の装置。[Claims] 1. Redirection into one plane using a rotatable rotating prism with constant deflection around an axis A focusing device combined with a prism, especially a Theta objective lens. In a device that deflects a beam of light with The turning prism is a four-sided prism made by Wollaston, and The axis of rotation is approximately perpendicular to one surface of both prism surfaces forming a right angle to each other. A device characterized in that it is oriented. 2. The four-sided prism has two undeposited surfaces and two evaporated surfaces sandwiching right angles from each other. The above-mentioned square prism with a fixed surface has a constant refractive index, and in this case, the prism has a fixed refractive index. to this square prism via a substantially parallel oriented and first undeposited surface (9). A light beam enters and is reflected by the first vapor deposition surface (11) facing the incident surface (9). (13, 14, 15) are first totally reflected on the second undeposited surface (10), and then After being totally reflected on the first non-evaporated surface (9), the light beam reaches the second deposition surface (12). After reflection at , it exits this square prism via a second undeposited surface (10). 2. Device according to claim 1, characterized by a combination of the above features. 3. Both prism surfaces (9, 10) oriented orthogonally to each other lie at their intersection line. at least one width in the direction orthogonal to a=(1+2X)■d■√2 with here d = diameter of the luminous flux and Claim 1 characterized in that 0.05≦X≦0.3, especially 0.1≦X≦0.2. or the device described in 2. 4. Claims 1 to 3, wherein the light flux axis is a rotation axis of the four-sided prism. 3. The device according to any one of 3. 5. This four-sided prism is designed for a turning angle of only 90° of the luminous flux. The device according to any one of claims 1 to 4, characterized in that:
JP63501975A 1987-03-05 1988-03-05 Light beam deflection device Pending JPH01502618A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3707023.1 1987-03-05
DE19873707023 DE3707023A1 (en) 1987-03-05 1987-03-05 DEVICE FOR DEFLECTING A BEAM

Publications (1)

Publication Number Publication Date
JPH01502618A true JPH01502618A (en) 1989-09-07

Family

ID=6322305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63501975A Pending JPH01502618A (en) 1987-03-05 1988-03-05 Light beam deflection device

Country Status (5)

Country Link
US (1) US4878720A (en)
EP (1) EP0305423A1 (en)
JP (1) JPH01502618A (en)
DE (1) DE3707023A1 (en)
WO (1) WO1988006744A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3918075C1 (en) * 1989-06-02 1990-10-04 Optische Werke G. Rodenstock, 8000 Muenchen, De
DE4128469C2 (en) * 1991-08-28 1997-12-18 Hell Ag Linotype Beam splitter device
DE4132025C2 (en) * 1991-09-26 1994-07-21 Hell Ag Linotype Beam deflector
US5367399A (en) * 1992-02-13 1994-11-22 Holotek Ltd. Rotationally symmetric dual reflection optical beam scanner and system using same
DE4219102C2 (en) * 1992-06-11 1994-10-13 Hell Ag Linotype Beam deflector
JP3193668B2 (en) * 1997-06-17 2001-07-30 旭光学工業株式会社 Transmission type optical deflection device
US6831886B1 (en) * 1998-11-27 2004-12-14 Minolta Co., Ltd. Optical head and optical head device
US7187445B2 (en) 2001-07-19 2007-03-06 Automotive Distance Control Systems Gmbh Method and apparatus for optically scanning a scene
DE10135107A1 (en) * 2001-07-19 2003-02-06 Adc Automotive Dist Control Method for optically scanning a scene
DE10139237A1 (en) 2001-08-09 2003-03-06 Conti Temic Microelectronic Distance measuring device
DE10142425A1 (en) 2001-08-31 2003-04-17 Adc Automotive Dist Control scanning
JP2005502897A (en) * 2001-08-31 2005-01-27 アーデーツエー・オートモテイブ・デイスタンス・コントロール・システムズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Scanning device
US20060291022A1 (en) * 2005-05-26 2006-12-28 Inphase Technologies, Inc. Optical delay line in holographic drive

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475787A (en) * 1981-02-06 1984-10-09 Xerox Corporation Single facet wobble free scanner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE108686C (en) *
GB189911556A (en) * 1899-06-02 1900-05-19 Hans Schmidt Improvements in Prisms for Optical Purposes.
FR526631A (en) * 1920-10-27 1921-10-11 Rudolf Stuetzer Optical prism for marking out right angles
DE1537093C1 (en) * 1967-08-03 1978-06-15 Eltro Gmbh Device for scanning IR images
US4606601A (en) * 1982-09-24 1986-08-19 Xerox Corporation Single facet wobble free scanner
DE3434841A1 (en) * 1984-09-22 1986-04-03 Linotype GmbH, 6236 Eschborn OPTICAL LASER BEAM DEFLECTION SYSTEM

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475787A (en) * 1981-02-06 1984-10-09 Xerox Corporation Single facet wobble free scanner
US4475787B1 (en) * 1981-02-06 1995-04-11 Xeros Corp Single facet wobble free scanner.

Also Published As

Publication number Publication date
DE3707023A1 (en) 1988-09-15
WO1988006744A1 (en) 1988-09-07
EP0305423A1 (en) 1989-03-08
US4878720A (en) 1989-11-07
DE3707023C2 (en) 1989-02-23

Similar Documents

Publication Publication Date Title
US4277128A (en) Anamorphic Fθ lens system
JP3072061B2 (en) Optical scanning device
JPH01502618A (en) Light beam deflection device
JPS5893021A (en) 2-group ftheta lens having fall compensating effect of deflected surface
JPH035562B2 (en)
US4984858A (en) Light beam scanning optical system
JPH05303766A (en) Optical element for optical disk and optical head using the same
US4565421A (en) Plural-beam scanning apparatus
JPH08248340A (en) Laser beam scanner
US5247385A (en) Fθ lens and lens for forming linear image
JPH0221565B2 (en)
JP2706984B2 (en) Scanning optical device
JPH0563777B2 (en)
KR890016489A (en) Optical scanning device
JPH01177510A (en) Image rotation actuator device and plural beam condensing optical device
JPH0766107B2 (en) Variable viewing angle observation optical system
JP3381333B2 (en) Optical scanning device
JP3364525B2 (en) Scanning imaging lens and optical scanning device
JP3293662B2 (en) Telecentric fθ lens and optical scanning device
JP3206996B2 (en) Optical scanning device
JP3922382B2 (en) Optical scanning device
JPH1164760A (en) Imaging optical system for optical scanning device
JP2938550B2 (en) Ftheta lens and linear image forming lens
JP3330649B2 (en) Anamorphic fθ lens and optical scanning device
JP3441008B2 (en) Scanning imaging lens and optical scanning device