JPH0150093B2 - - Google Patents

Info

Publication number
JPH0150093B2
JPH0150093B2 JP57219280A JP21928082A JPH0150093B2 JP H0150093 B2 JPH0150093 B2 JP H0150093B2 JP 57219280 A JP57219280 A JP 57219280A JP 21928082 A JP21928082 A JP 21928082A JP H0150093 B2 JPH0150093 B2 JP H0150093B2
Authority
JP
Japan
Prior art keywords
conductor
coil
turns
solenoid coil
solenoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57219280A
Other languages
Japanese (ja)
Other versions
JPS59110107A (en
Inventor
Kikuo Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP21928082A priority Critical patent/JPS59110107A/en
Publication of JPS59110107A publication Critical patent/JPS59110107A/en
Publication of JPH0150093B2 publication Critical patent/JPH0150093B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Coil Winding Methods And Apparatuses (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はソレノイドコイルに関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a solenoid coil.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

所定のサイズの空間にソレノイドコイルを用い
て出来る限り強い磁場を発生させるマグネツトシ
ステムの一例に於ける縦断面図を第1図に示す。
第1図は、単層に巻回されたソレノイドコイル
1,2,3を軸芯Cに対して同芯に配置した例で
あり、最内周コイル1の内径Diが、所定のサイ
ズの空間として指定されているものとする。
FIG. 1 shows a longitudinal sectional view of an example of a magnet system that uses solenoid coils to generate as strong a magnetic field as possible in a space of a predetermined size.
Fig. 1 shows an example in which solenoid coils 1, 2, and 3 wound in a single layer are arranged concentrically with respect to the axis C, and the inner diameter Di of the innermost circumferential coil 1 is set in a space of a predetermined size. Assume that it is specified as .

一方、単一のソレノイドコイルの中心に於ける
磁場の強さHは、 H=n・I・L/√4・22 …(101) で与えられる。ここで記号はそれぞれ R:コイルの半径 L:コイルの軸方向の長さ n:コイルの軸方向単位長さ当りの巻数 I:電流 である。(101)式に於いて、ソレノイドコイルの
形状を表わすR、およびLによつて磁場強さHを
増大させるには、R/Lを適度に小さくすること
により得られる。次に、n、Iによつて磁場強さ
Hを増大させるには、 r:コイル導体断面の半径方向の巾 l:コイル導体断面の高さ方向の巾 i:電流密度 とすれば、 i=I/(r・1) …(102) l=1/n …(103) であるから (n・I)max=(i・r)max …(104) となり、電流密度iを許容限度に増大させると共
に、導体巾rを増すことになる。
On the other hand, the strength H of the magnetic field at the center of a single solenoid coil is given by H=n・I・L/√4・2 + 2 (101). Here, the symbols are as follows: R: Radius of the coil L: Length of the coil in the axial direction n: Number of turns per unit length of the coil in the axial direction I: Current. In equation (101), the magnetic field strength H can be increased by R and L representing the shape of the solenoid coil by appropriately reducing R/L. Next, to increase the magnetic field strength H by n and I, r: Width in the radial direction of the cross section of the coil conductor l: Width in the height direction of the cross section of the coil conductor i: Current density, then i= I/(r・1) …(102) l=1/n …(103) Therefore, (n・I)max=(i・r)max …(104), and the current density i is increased to the allowable limit. At the same time, the conductor width r is increased.

然るにrを増せば、第1図に於て明らかなよう
に、ソレノイドコイル2,3の半径を増大させ、
電源容量に制限があるならば、つまる所、システ
ム全体としての磁場強さは低下する。
However, if r is increased, the radius of the solenoid coils 2 and 3 will be increased, as is clear in FIG.
If the power supply capacity is limited, the magnetic field strength of the system as a whole will ultimately decrease.

以上で概要明らかなように、内周側ソレノイド
コイルに於ては殊に、Rが小さく、Lが大きく、
又、フープ応力に対する許容限度内で、導体巾r
の小さいコイルが望ましい。
As is clear from the above overview, in the inner circumference side solenoid coil, especially, R is small, L is large,
Also, within the allowable limit for hoop stress, the conductor width r
A small coil is desirable.

又、一方、ソレノイドコイルには、軸方向に強
大な圧縮力が働く。発生するターン間の圧縮応力
の一例を第2図に示す。この力は何層にも配列さ
れたコイルによる磁場の半径方向成分に基くもの
である。
On the other hand, a strong compressive force acts on the solenoid coil in the axial direction. An example of the compressive stress generated between turns is shown in FIG. This force is based on the radial component of the magnetic field produced by the coils arranged in layers.

以上述べたように、軸方向長さLが長く、半径
Rが小さく、導体の半径方向の巾rも小さいソレ
ノイドコイルに、軸方向に強大な圧縮力が働く場
合には、コイルに座屈が生ずる恐れがある。これ
は線材を巻回して整形したコイルに於ては、第3
図に示すように、導体4の断面形状がくさび形に
変形するため、絶縁材5が外径側へ押し出される
こと、導体の整形精度に限度があることなどの理
由に依るものである。
As mentioned above, if a strong compressive force is applied in the axial direction to a solenoid coil that has a long axial length L, a small radius R, and a small radial width r of the conductor, the coil will buckle. There is a possibility that this may occur. This is because the third coil is formed by winding the wire and shaping it.
As shown in the figure, this is because the cross-sectional shape of the conductor 4 is deformed into a wedge shape, so that the insulating material 5 is pushed out toward the outer diameter side, and there is a limit to the shaping accuracy of the conductor.

そこで第4図ないし第6図に示すソレノイドコ
イルが考案された。
Therefore, solenoid coils shown in FIGS. 4 to 6 were devised.

第4図は改良された従来例に用いるソレノイド
コイル導体の素材6の形状を示す。内・外面、端
面等は既に加工を終了し、ターン間の切離し加工
が残された状態であり、筒状になつている。小孔
7は、次工程に於けるターン間切離し加工の始
点、終点部である。
FIG. 4 shows the shape of the material 6 of the solenoid coil conductor used in the improved conventional example. The inner/outer surfaces, end faces, etc. have already been machined, and the cutting between the turns remains, making it cylindrical. The small holes 7 are the starting and ending points of the inter-turn cutting process in the next step.

第5図は、コイル導体素材6を放電加工に依つ
て、ターン間の切離し加工を施したコイル整形導
体8を示すものである。第6図に、コイル整形導
体8の軸芯Cを含む切断面を部分拡大して示す。
4は導体、5は絶縁部材である。
FIG. 5 shows a coil-shaped conductor 8 in which the coil conductor material 6 has been subjected to electrical discharge machining to separate the turns. FIG. 6 shows a partially enlarged section of the coil-shaped conductor 8 including the axis C thereof.
4 is a conductor, and 5 is an insulating member.

このようにすると、第3図に示した平角導体を
巻回した場合と異り、ターンの隣接対向面が、常
にコイル軸芯Cに垂直な平行線を母線とするら線
面を形成している。従つて、コイルに働く軸方向
圧縮力(締結力と電磁圧縮力)に対し、コイルの
座屈、絶縁部材5のはみ出し等信頼性の低下原因
が除かれている。
In this way, unlike the case where the rectangular conductor shown in Fig. 3 is wound, the adjacent opposing surfaces of the turns always form a helical surface with the generatrix being a parallel line perpendicular to the coil axis C. There is. Therefore, with respect to the axial compressive force (fastening force and electromagnetic compressive force) acting on the coil, causes of decrease in reliability such as buckling of the coil and protrusion of the insulating member 5 are eliminated.

又、この従来例に示すように放電加工(ワイヤ
ーカツト法)を用いる場合には、ターン間の切削
巾を、例えば0.09mmと指定することが可能で、市
販の絶縁部材5厚さ、例えば0.10mmを挟み込んだ
後に軸方向に圧縮しながら加熱硬化させるには甚
だ好都合である。即ち、平角導体を巻回した場合
に比べて、導体のスプリングバツク効果に基くコ
イル軸長、内外径寸法の誤差が少く、全長にわた
り均一で、使用中もコイルとしての真直度の維持
が容易な、信頼性の高い製品を提供できる効果が
ある。
Further, when using electric discharge machining (wire cutting method) as shown in this conventional example, the cutting width between turns can be specified as, for example, 0.09 mm, and the thickness of commercially available insulating member 5, for example, 0.10 mm. It is very convenient to heat and harden the material while compressing it in the axial direction after sandwiching the material. In other words, compared to the case where a rectangular conductor is wound, errors in the coil axis length and inner and outer diameter dimensions due to the springback effect of the conductor are smaller, and the errors are uniform over the entire length, making it easier to maintain the straightness of the coil during use. This has the effect of providing highly reliable products.

又、この従来例を採用することにより、コイル
端部の電流の出、入り及び支持構造を甚だ簡便に
することが出来る。即ち、平角導体を巻回した場
合には、ソレノイドコイルの端面はコイル軸芯C
に垂直な平面上にはなく、かつ、電流リードの立
上りが必要となる。従つて、支持部は、導体のピ
ツチに合せた3次元加工が必要で、更に、電流リ
ード立上り部は、支持することが不可能である。
コイル両端から軸方向に強力に圧縮締結すること
が必要なこの種のコイルに於て、端部全周にわた
り、均等に支持することが出来る本構造は、信類
性が高く、かつ低廉な製品を提供できる効果があ
る。
Further, by adopting this conventional example, the current output and input at the end of the coil and the support structure can be greatly simplified. In other words, when a rectangular conductor is wound, the end face of the solenoid coil is aligned with the coil axis C.
The current lead must rise. Therefore, the support part requires three-dimensional processing to match the pitch of the conductor, and furthermore, it is impossible to support the rising part of the current lead.
For this type of coil, which requires strong compression and fastening in the axial direction from both ends of the coil, this structure, which can evenly support the entire circumference of the ends, is a highly reliable and inexpensive product. It is effective in providing the following.

更に又、本ソレノイドコイルを採用することに
より、治工具費を著しく低減することが出来る。
この種のマグネツトシステムは、第1図も示した
ように、数個以上の径方向寸法の異るソレノイド
コイルを組合せて構成される。従つて、従来は
個々に寸法の異る導体製造用治工具および巻回治
工具を準備する必要がある。導体の巻回整形精度
は、既に述べたようにシステムの信頼性、寿命に
重大な影響を持つがために、甚だ高価になりがち
で、サイズの違いにより融通性の無い部品も多
い。これに対して本ソレノイドコイルを作るに
は、汎用的な旋盤と、放電加工機によつていかな
るサイズのものも製作が可能であり、製品の低廉
化に貢献する所は甚だ大きい。
Furthermore, by employing this solenoid coil, tool costs can be significantly reduced.
As shown in FIG. 1, this type of magnet system is constructed by combining several or more solenoid coils with different radial dimensions. Therefore, conventionally, it is necessary to prepare conductor manufacturing jigs and winding jigs of different sizes. As mentioned above, the winding precision of the conductor has a significant effect on the reliability and life of the system, so it tends to be extremely expensive, and there are many parts that are inflexible due to differences in size. On the other hand, this solenoid coil can be manufactured in any size using a general-purpose lathe and an electric discharge machine, which greatly contributes to lowering the cost of the product.

しかしながら、上記の従来例では次に述べる問
題点がある。
However, the above conventional example has the following problems.

第1に、ターン間の切離し加工後、数十ターン
の導体の周方向位置を正確に管理することが出来
ない。即ち、ターン間に絶縁部材を挿入し、軸方
向の締結と加熱昇温とを施す絶縁部材の硬化工程
於て、治具による内外径寸法の管理だけでは、導
体の周方向位置の管理は完全を期し難い。
First, after the turns are separated, the circumferential position of several tens of turns of the conductor cannot be accurately controlled. In other words, in the curing process of the insulating member, which involves inserting the insulating member between the turns, axially fastening it, and heating it to raise the temperature, it is not possible to completely control the circumferential position of the conductor by controlling the inner and outer diameter dimensions using a jig. It is difficult to predict.

第2に内側或いは外側に隣接するソレノイドコ
イル又は支持構造材と、絶縁部材を介して圧縮整
形するときに、両者間に円環状の〓間があると座
屈変形を生じることがある。
Second, when compressing and shaping the solenoid coil or supporting structure material adjacent to the inner or outer side through an insulating member, if there is an annular gap between the two, buckling deformation may occur.

第3に運転の際にソレノイドコイル間の〓間に
冷却水を流す場合、冷却水が偏流し、ソレノイド
コイルが変形することがある。
Third, when cooling water is allowed to flow between the solenoid coils during operation, the cooling water may flow unevenly and the solenoid coil may be deformed.

〔発明の目的〕[Purpose of the invention]

本発明は、整形性を良くし、軸方向に力が加わ
つても座屈を生じないようにし、又、運転時の冷
却水の偏流を防止し、以つて信頼性の高いソレノ
イドコイルを提供することを目的とする。
The present invention provides a highly reliable solenoid coil that has good shaping properties, prevents buckling even when force is applied in the axial direction, and prevents uneven flow of cooling water during operation. The purpose is to

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明において
は、内周面あるいは外周面に軸方向の突条を有す
る筒状の導体に放電加工を施してターン間となる
部分を切り離し、このターン間に絶縁部材を配置
して整形することにより、整形性を良くし、軸方
向に力が加わつても座屈を生じないようにし、
又、運転時の冷却水偏流を防止できるソレノイド
コイルとする。
In order to achieve the above object, in the present invention, a cylindrical conductor having an axial protrusion on its inner or outer circumferential surface is subjected to electric discharge machining to separate the parts between turns, and insulate between the turns. By arranging and shaping the members, we improve shaping properties and prevent buckling even when force is applied in the axial direction.
In addition, the solenoid coil is used to prevent cooling water drift during operation.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について、第7図ない
し第10図を参照して説明する。尚これらの図面
において、第1図ないし第6図と同一部分には同
一筒号を付して説明を省略する。そして、完成さ
れたソレノイドコイルは第1図の通りであるか
ら、これも参照されたい。第7図と第8図は第4
図と同一工程にあるソレノイドコイル導体素材6
を示す。径方向の外側(又は内側でもよい)に軸
方向の突条9を設けた所が、第4図とは異り、他
は第4図ないし第6図に示した従来例と同様であ
る。
An embodiment of the present invention will be described below with reference to FIGS. 7 to 10. In these drawings, the same parts as in FIGS. 1 to 6 are designated by the same cylinder numbers, and their explanations will be omitted. The completed solenoid coil is shown in Figure 1, so please refer to it as well. Figures 7 and 8 are the 4th
Solenoid coil conductor material 6 in the same process as shown in the figure
shows. The difference from FIG. 4 is that an axial protrusion 9 is provided on the outside (or inside) in the radial direction, but the rest is the same as the conventional example shown in FIGS. 4 to 6.

この突条9の働きは、次の通りである。 The function of this protrusion 9 is as follows.

第1に、突条9はターン間の切離し加工後、数
十ターンの導体の周方向位置を正確に管理するた
めである。ターン間に絶縁部材を挿入し、軸方向
の締結と加熱昇温とを施す絶縁部材の硬化工程に
於て、治具による内外径寸法の管理だけでは、導
体の周方向位置の管理は完全を基し難い。常に、
突条9の周方向位置を揃えて、締結、加熱硬化を
旋行することにより、ソレノイドコイルの長手方
向、径方向の均一性が保たれる。従つてこの種の
製法に於て製品の信頼性を確保することができ
る。
First, the protrusions 9 are used to accurately manage the circumferential position of several tens of turns of the conductor after the turns are separated. In the curing process of the insulating material, which involves inserting the insulating material between the turns, axially fastening it, and heating the material to raise the temperature, it is not possible to completely control the circumferential position of the conductor by controlling the inner and outer diameter dimensions using a jig. Difficult to base. always,
By aligning the positions of the protrusions 9 in the circumferential direction and rotating the fastening and heating hardening, the uniformity of the solenoid coil in the longitudinal direction and the radial direction is maintained. Therefore, in this type of manufacturing method, product reliability can be ensured.

第2の働きは、内側或いは外側に隣接するソレ
ノイドコイル又は支持構造材と、絶縁部材(図示
せず)を介して接触させることにより、座屈等の
変形を防止しようとするものである。従来の各ソ
レノイドコイル1,2,3(第1図参照)は、運
転時の夫々の温度上昇、夫々のフープ応力に従つ
て、径方向に拡大し、設計に依つては、ギヤツプ
を生じたり、或いはフープ応力を相互に伝達し合
つたりする影響があるが、本実施例はこれを防止
できる。
The second function is to prevent deformation such as buckling by bringing the solenoid coil into contact with the adjacent solenoid coil or support structure material on the inside or outside through an insulating member (not shown). Each of the conventional solenoid coils 1, 2, and 3 (see Figure 1) expands in the radial direction in accordance with the respective temperature rise and respective hoop stress during operation, and depending on the design, may produce a gap. , or mutually transmitting hoop stress, but this embodiment can prevent this.

第3には、各ソレノイドコイル1,2,3間に
軸方向に冷却水を流す場合、冷却水の偏流を防止
する働きがある。
Thirdly, when cooling water is allowed to flow between the solenoid coils 1, 2, and 3 in the axial direction, it serves to prevent uneven flow of the cooling water.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば従来の円筒
状の材料の内周面又は外周面に軸方向の突条を設
けたからソレノイドコイルは整形性を良くし、軸
方向に力が加わつても座屈を生じないようにし、
又、運転時の冷却水偏流を防止することができ、
信頼性の高いソレノイドコイルを提供することが
できる。
As described above, according to the present invention, since axial protrusions are provided on the inner or outer circumferential surface of a conventional cylindrical material, the solenoid coil can be easily shaped, and even when a force is applied in the axial direction. Avoid buckling,
Also, it is possible to prevent cooling water drift during operation.
We can provide highly reliable solenoid coils.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はマグネツトシステムの一例に於ける従
来例と本発明の一実施例に共通なソレノイドコイ
ルを示す縦断面図、第2図は第1図のコイルが電
磁力によつて生ずる圧縮応力と軸方向位置を示す
曲線図、第3図は従来の平角導体巻回によるソレ
ノイドコイルに於ける導体と絶縁部材の形状を示
す縦断面図、第4図は第3図のものを改良した異
なる従来例を適用するソレノイドコイル導体素材
を示す一部断面立面図、第5図は第4図の素材を
切断加工したコイル整形導体形状を示す立面図、
第6図は第5図のターン間に絶縁部材を挿入した
状態を示す要部拡大断面図、第7図は本発明のソ
レノイドコイルの一実施例に使用する導体素材を
示す側面図、第8図は第7図の一部断面立面図、
第9図は第7図の導体素材を切断加工した整形導
体形状を示す立面図、第10図は第9図のターン
間に絶縁部材を挿入した状態を示す要部拡大断面
図である。 1,2,3……ソレノイドコイル、4……導
体、5……絶縁部材、6……導体素材、7……小
孔、8……コイル整形導体、9……突条。
Fig. 1 is a vertical cross-sectional view showing a solenoid coil common to a conventional example and an embodiment of the present invention in an example of a magnet system, and Fig. 2 shows the compressive stress caused by the electromagnetic force in the coil of Fig. 1. Fig. 3 is a longitudinal cross-sectional view showing the shape of the conductor and insulating member in a solenoid coil with conventional rectangular conductor winding, and Fig. 4 is a different and improved version of the one in Fig. 3. FIG. 5 is a partial cross-sectional elevation view showing a solenoid coil conductor material to which a conventional example is applied; FIG. 5 is an elevation view showing a coil shaped conductor shape obtained by cutting the material shown in FIG. 4;
FIG. 6 is an enlarged cross-sectional view of the main part showing the insulating member inserted between the turns of FIG. 5, FIG. 7 is a side view showing the conductor material used in one embodiment of the solenoid coil of the present invention, and FIG. The figure is a partial cross-sectional elevation view of Figure 7.
FIG. 9 is an elevational view showing a shaped conductor shape obtained by cutting the conductor material shown in FIG. 7, and FIG. 10 is an enlarged sectional view of a main part showing a state in which an insulating member is inserted between the turns shown in FIG. 1, 2, 3...Solenoid coil, 4...Conductor, 5...Insulating member, 6...Conductor material, 7...Small hole, 8...Coil shaping conductor, 9...Protrusion.

Claims (1)

【特許請求の範囲】[Claims] 1 内周面あるいは外周面に軸方向の突条を有す
る筒状の導体に放電加工を施してターン間となる
部分を切り離し、このターン間に絶縁部材を配置
して整形したことを特徴とするソレノイドコイ
ル。
1. A cylindrical conductor having an axial protrusion on its inner or outer circumferential surface is subjected to electrical discharge machining to separate the portions between turns, and an insulating member is placed between the turns to shape the conductor. solenoid coil.
JP21928082A 1982-12-16 1982-12-16 Manufacture of solenoid coil Granted JPS59110107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21928082A JPS59110107A (en) 1982-12-16 1982-12-16 Manufacture of solenoid coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21928082A JPS59110107A (en) 1982-12-16 1982-12-16 Manufacture of solenoid coil

Publications (2)

Publication Number Publication Date
JPS59110107A JPS59110107A (en) 1984-06-26
JPH0150093B2 true JPH0150093B2 (en) 1989-10-27

Family

ID=16733037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21928082A Granted JPS59110107A (en) 1982-12-16 1982-12-16 Manufacture of solenoid coil

Country Status (1)

Country Link
JP (1) JPS59110107A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60257507A (en) * 1984-06-04 1985-12-19 Inoue Japax Res Inc Manufacture of electromagnetic coil
CN1179374C (en) * 1999-04-14 2004-12-08 西孝 Microsolenoid coil and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997220A (en) * 1973-01-23 1974-09-13
JPS5159317A (en) * 1974-11-20 1976-05-24 Matsushita Electric Ind Co Ltd KOIRUSEIZOHO

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997220A (en) * 1973-01-23 1974-09-13
JPS5159317A (en) * 1974-11-20 1976-05-24 Matsushita Electric Ind Co Ltd KOIRUSEIZOHO

Also Published As

Publication number Publication date
JPS59110107A (en) 1984-06-26

Similar Documents

Publication Publication Date Title
US3827141A (en) Method of manufacturing an electric rotary machine
US4392072A (en) Dynamoelectric machine stator having articulated amorphous metal components
US3256590A (en) Method of assembling a stator structure
US3792299A (en) Stator for electric motors
JP6534902B2 (en) Method of manufacturing magnetic body, and method of manufacturing coil component using the magnetic body
US3507039A (en) Method of making a miniature inductive device
US2057503A (en) Laminated core and method of producing the same
EP2597657B1 (en) Manufacturing method of a reactor device
US3176380A (en) Method of assembling a dynamoelectric machine
KR100341321B1 (en) Transformer for a microwave oven
JPH0150093B2 (en)
US3810058A (en) Expandable coil bracing tubes for electrical inductive apparatus
US4590668A (en) Method of and apparatus for assembling dynamoelectric machine
JP2011187504A (en) Inductor for electromagnetic pipe expanding, and method of manufacturing the same
US3568118A (en) Transformer
US4646044A (en) Bobbinless solenoid coil
JPS6184006A (en) Production of rotary transformer
JP4482295B2 (en) Manufacturing method of coil for electric equipment
USRE29476E (en) Method for fabricating a dielectric filled ferrite toroid for use in microwave devices
US3786353A (en) Coil forming apparatus method and galvo-motor product
JPH07130531A (en) Manufacture of superconducting coil
US3263198A (en) Positioning transformer structure
US3276107A (en) Method of making a traveling wave tube helix mounting
KR920007123Y1 (en) Torotidal core type transformer
JPS60182704A (en) Coil for electromagnet