JPH01500546A - Nickel-hydrogen battery with internal short-circuit device in case of failure - Google Patents

Nickel-hydrogen battery with internal short-circuit device in case of failure

Info

Publication number
JPH01500546A
JPH01500546A JP62503301A JP50330187A JPH01500546A JP H01500546 A JPH01500546 A JP H01500546A JP 62503301 A JP62503301 A JP 62503301A JP 50330187 A JP50330187 A JP 50330187A JP H01500546 A JPH01500546 A JP H01500546A
Authority
JP
Japan
Prior art keywords
electrode
battery
plate set
shorting
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62503301A
Other languages
Japanese (ja)
Other versions
JPH0582707B2 (en
Inventor
スタツドニツク,ステイーブン・ジエイ
ロジヤーズ,ハワード・エツチ
Original Assignee
ヒユーズ・エアクラフト・カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヒユーズ・エアクラフト・カンパニー filed Critical ヒユーズ・エアクラフト・カンパニー
Publication of JPH01500546A publication Critical patent/JPH01500546A/en
Publication of JPH0582707B2 publication Critical patent/JPH0582707B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H43/00Time or time-programme switches providing a choice of time-intervals for executing one or more switching actions and automatically terminating their operations after the programme is completed
    • H01H43/32Time or time-programme switches providing a choice of time-intervals for executing one or more switching actions and automatically terminating their operations after the programme is completed with timing of actuation of contacts due to electrolytic processes; with timing of actuation of contacts due to chemical processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 野つル苅A戟痒瀉I冬J佳肴イろニゾデtb −−KX!b発明の背景 本発明は電池、特に加圧型ニッケルー水素電池に関する。[Detailed description of the invention] Notsuru Karu A 戟itch 瀉 I winter J 佳薴 iro nizode tb --KX! b Background of the invention The present invention relates to batteries, particularly pressurized nickel-metal hydride batteries.

充電可能な電池あるいはバッテリは電気化学装置であり、電荷を蓄えかつ保持し 、有用な電流としてこの電荷を放電する。充電可能な電池の例としては、自動車 に使用される鉛−酸電池がある。その重量に比して大きな充電容量を有する電池 には、加圧式のガス−金属電池があり、この重要な形式のものどして宇宙船に使 用されるニッケルー水素電池がある。A rechargeable cell or battery is an electrochemical device that stores and retains an electric charge. , discharging this charge as a useful current. Examples of rechargeable batteries include automobile There are lead-acid batteries used in A battery with a large charging capacity compared to its weight has a pressurized gas-metal battery, an important type of battery used in spacecraft. There are nickel-metal hydride batteries used.

衛星内におけるニッケルー水素電池は宇宙船の太陽電池で形成された電流で定期 的に充電され、宇宙船が影に入ったときあるいは大電力が必要になったときに放 電され、電力を供給する。ニッケルー水素電池の単セルは約1.3ボルトで放電 し、通常は多数の電池を直列に接続し、宇宙船内のシステムに必要な電圧で電流 を供給する。The nickel-metal hydride batteries inside the satellite are powered by electrical current generated by the spacecraft's solar cells. It is charged automatically and released when the spacecraft enters shadow or when large amounts of power are needed. powered and provides power. A single cell of a nickel-metal hydride battery discharges at approximately 1.3 volts. Usually, a large number of batteries are connected in series to provide the required voltage and current for the systems inside the spacecraft. supply.

ニッケルー水素電池は電荷を電気化学的に蓄えかつ有用な電流として放電する一 連の活性板セットを有し、圧力容器内に保持される。更に、この圧力容器内には 電解質板セットと、電池の作動中に形成される水素及び酸素のガスと、水蒸気と が密閉されており、これらのガス及び水蒸気が漏洩すると電池が不作動となる。Nickel-metal hydride batteries are batteries that electrochemically store electrical charge and discharge it as a useful current. It has a continuous set of active plates and is held within a pressure vessel. Furthermore, inside this pressure vessel, The electrolyte plate set and the hydrogen and oxygen gases and water vapor formed during battery operation. The battery is sealed, and if these gases and water vapor leak, the battery will become inoperable.

加圧ガス貯蔵型電池は通常筋れた安定性を有し、衛星あるいは他の宇宙船内にお ける通常の寿命期間で数千回の充放電を繰返すことができる。しかし、この電池 は、圧力容器に孔か開いた場合には、内部の液体及びガスが漏洩し、故障する可 能性がある。このような電池の開回路が発生した場合、電池は故障する。これは 電池の電流路が電解質を介するのみであり、この電解質が次第に喪失するからで ある。通常は多数の単セルが直列に接続され、バッテリとして所定の電圧で電流 を供給する。したがって、単セルのいずれかが開回路により故障した場合は、こ の故障した単セルをバイパスする回路がないため、バッテリ全体の作動が危険と なる。Pressurized gas storage batteries usually have a high degree of stability and can be used inside satellites or other spacecraft. It can be charged and discharged several thousand times over its normal lifespan. However, this battery If there is a hole in the pressure vessel, the liquid and gas inside may leak and cause a malfunction. There is a potential. If such a battery open circuit occurs, the battery will fail. this is This is because the current path in the battery is only through the electrolyte, and this electrolyte is gradually lost. be. Normally, a large number of single cells are connected in series, and the current flows at a given voltage as a battery. supply. Therefore, if any of the single cells fails due to an open circuit, this Since there is no circuit to bypass a failed single cell, the operation of the entire battery is at risk. Become.

単セルの故障でバッテリ全体が作動不能となる可能性かあり、また、宇宙空間で は修理することができないため、宇宙空間で使用するバッテリには、各単セルの 故障を検出し、故障したセルを迂回して電流路を形成する故障保護回路装置を設 けるのが通常である。故障が発生した場合は、この故障保護回路装置が故障した 単セルを分離し、この故障した単セルを迂回して電流を導通ずる。バッテリの出 力電圧は故障した単セルの電圧分低下するが、バッテリは通常は充分な余裕を持 って形成されており、ある程度の単セルが故障しても宇宙船の必要とする電圧よ り低下させることはない。It is possible that a single cell failure could render the entire battery inoperable, and cannot be repaired, so batteries used in space require a A fault protection circuit device is installed that detects a fault and creates a current path around the faulty cell. It is normal to If a fault occurs, this fault protection circuit device is The single cell is isolated and current is conducted around the failed single cell. battery out The power voltage will drop by the voltage of the failed single cell, but the battery usually has sufficient margin. Even if a certain number of single cells fail, the voltage required by the spacecraft will be maintained. It does not cause any deterioration.

故障保護回路装置は電池の内部あるいは外部に設けられ、ダイオードネットワー クあるいはリレーにより単セルの故障を検出し、故障した単セルの回りに回路を 再形成する。これらの電気部材の重量及び関連する回路によりバッテリの重量が 著しく増加し、宇宙船の利用可能なペイロードが減少する。A fault protection circuit device is installed inside or outside the battery and includes a diode network. A single cell failure is detected by a circuit or relay, and a circuit is installed around the failed single cell. Reshape. The weight of these electrical components and associated circuitry add to the weight of the battery. significantly increases and reduces the spacecraft's available payload.

更に、故障保護回路装置の構成部材が故障した場合は、バッテリ及び宇宙船全体 が危険となる。Additionally, if any component of the fault protection circuit device fails, the battery and the entire spacecraft will be damaged. becomes dangerous.

したがって、このようなバッテリの単セルの故障を排除する必要がある。この方 法としては、外部回路とはせず、更に故障保護回路装置以上に重くなく、バッテ リを長期間確実に作動させるものとする必要がある。更に、最近のバッテリは信 頼性が高いため、従来のものに適合するものでなければならない。本発明はこれ らの要件を充足し、更に勝れた利点を提供する。Therefore, there is a need to eliminate such single cell failures of batteries. This person According to the law, it should not be an external circuit, should not be heavier than a failure protection circuit device, and should be a battery-powered device. It is necessary to ensure that the system operates reliably for a long period of time. Furthermore, modern batteries are not reliable. Because it is highly reliable, it must be compatible with conventional ones. This invention is this It satisfies these requirements and provides further advantages.

発明の概要 本発明によるニッケルー水素電池は、その内部構造により、故障したときに短絡 状態となり、外部に故障保護回路装置を必要としない。したがって、バッテリの 単セルが故障しても、バッテリ全体の故障とはならず、単に故障した単セルの出 力電圧性が低下するだけである。このような単セルを用いるバッテリの重量は、 故障保護回路装置を有する通常のバッテリよりも大きく減少し、セルの貯蔵部材 は変化しない。Summary of the invention Due to its internal structure, the nickel-metal hydride battery according to the present invention has a short circuit when it fails. state, and does not require an external failure protection circuit device. Therefore, the battery Even if a single cell fails, it does not cause a failure of the entire battery, but simply the output of the failed single cell. This will only reduce the power and voltage properties. The weight of a battery using such a single cell is Largely reduced cell storage component than normal battery with fault protection circuit device does not change.

本発明によるニッケルー水素電池は、ニッケル正極と水素負極とこれらの正極及 び負極間に配設されたセパレータとを含む活性板セット(active pla teset)と、この活性板セットと前記正負の電極の内部及びこれらの間の電 解質とを収容する圧力容器とを備え、この圧力容器は活性板を結合する電気導体 (electrical feed throughs)を有し、更に、セルの 電圧が所定の負の値を越えたときにこのセルを貫通して電流路を短絡する手段を 圧力容器内に内包し、これによりセルは故障すると短絡状態となる。更に、ニッ ケルー水素電池は、ニッケル正極と水素負極とこれらの正極及び負極間に配設さ れたセパレータとを含む活性板セラ!・と、この活性板セットに併置された短絡 板セットとを備え、この短絡板セットはニッケル短絡電極と、銀溶解性電極と、 このニッケル短絡電極及び銀溶解性電極間に配置された短絡セパレータとを有し 、更に、活性板セットと短絡板セラ(・と電解質とを収容する圧力容器を備え、 この圧力容器はこれらの板セットに対する電気導体を備える。The nickel-hydrogen battery according to the present invention comprises a nickel positive electrode, a hydrogen negative electrode, and these positive and negative electrodes. An active plate set including a separator disposed between the negative electrode and the negative electrode. teset), and the voltage inside and between this active plate set and the positive and negative electrodes. a pressure vessel containing a solute and an electrical conductor connecting the active plate. (electrical feed throughs), and furthermore, the cell means to short-circuit the current path through this cell when the voltage exceeds a predetermined negative value. The cell is enclosed in a pressure vessel, which causes the cell to become short-circuited if it fails. Furthermore, Ni A Kellu hydrogen battery consists of a nickel positive electrode, a hydrogen negative electrode, and a battery placed between these positive and negative electrodes. An activated plate including a separator!・And the short circuit placed in parallel with this active board set This shorting plate set includes a nickel shorting electrode, a silver soluble electrode, This has a nickel shorting electrode and a shorting separator placed between the silver soluble electrode. , further comprising a pressure vessel containing an active plate set, a short circuit plate cella (.) and an electrolyte, The pressure vessel includes electrical conductors for these plate sets.

溶解性電極(dissolvable elect、rode)は、この電池に 対して同様な機能を有するものであれば、銀量外の物質で形成してもよい。物質 の機能の面からは、ニッケルー水素電池は、ニッケル正極と水素負極とこれらの 正極及び負極間のセパレータとを含む活性板セットと、この活性板セットに並列 の短絡板セットとを備え、この短絡板セットは短絡電極と、溶解性電極と、この 短絡電極及び溶解性電極間の短絡セパレータとを有し、この溶解性電極は最大負 電圧が約0.3ボルトの通常作動中に短絡電極の材料と共に高い過電圧を有しか つ電解質中で不活性の材料で形成され、この溶解性電極材料は電解質中で不活性 でかつ短絡板セットに約1.5ボルトより大きな負電圧が作用したときに短絡電 極に堆積可能であり、更に、活性板セットと短絡板セットと電解質とを収容する 圧力容器を備え、この圧力容器はこれら板セットに対する電気導体を備える。短 絡電極はニッケルであるのが好ましい。溶解性電極を形成する材料としては銀が 好ましいが、例えば鉛、銅あるいはカドミウム等の材料で溶解性電極を形成して もよい。A dissolvable electrode (rod) is used in this battery. However, it may be formed of a substance other than silver as long as it has a similar function. material In terms of functionality, nickel-metal hydride batteries have a nickel positive electrode, a hydrogen negative electrode, and An active plate set including a separator between the positive electrode and the negative electrode, and an active plate set parallel to this active plate set. This short-circuit plate set includes a short-circuit electrode, a soluble electrode, and a short-circuit plate set. a shorting electrode and a shorting separator between the soluble electrodes, and the soluble electrode has a maximum negative If the voltage has a high overvoltage with the material of the shorting electrode during normal operation when the voltage is about 0.3 volts, This soluble electrode material is inert in the electrolyte. A short circuit occurs when a negative voltage greater than approximately 1.5 volts is applied to the short circuit plate set. can be deposited on the poles and further contains an active plate set, a shorting plate set and an electrolyte. A pressure vessel is provided which includes electrical conductors to the set of plates. short Preferably, the crossing electrode is nickel. Silver is the material for forming soluble electrodes. Preferably, the soluble electrodes are made of materials such as lead, copper or cadmium. Good too.

通常の電池作動中は、プラス約1.7ボルトからマイナス約0.3ボルトの範囲 で作動し、ニッケル及び銀の表面に過電圧が存在するため、短絡板セット内で無 視できる程度の電流が流れる。この通常の作動中、本発明の電池は通常のニッケ ルー水素電池とほぼ同様に作動する。圧力容器に孔が形成される等の故障が発生 した場合、短絡板セットに大きな負電圧が発生する。この負電圧が約マイナス1 .5ボルトを越えると(すなわち、より負電圧の方向に)、銀電極は酸化されて 酸化銀(Ag20)となり、この酸化銀(silver 1IIonoxide )は電解質に溶ける。溶けた酸化銀(silver oxide)は短絡電極に 移動して銀に変化し、これにより短絡電極に銀が堆積する。そして、短絡電極と 銀電極間が銀で完全に架橋されて短絡され、セル自体が短絡される。短絡板セッ トは活性板セットと併置されているため、セルは内部短絡により短絡状態となる 。したがって、本発明によるセルの故障はショートあるいは短絡回路を形成し、 この故障したセルを介して電流が流れる。故障したセルは電圧を発生しないが、 このセルを直列に接続したバッテリ全体の出力電圧は故障したセルの電圧分だけ 低下する。故障時に短絡回路を形成するための、外部故障保護回路装置は必要な い。During normal battery operation, the voltage ranges from +1.7 volts to -0.3 volts. Due to the presence of overvoltage on the nickel and silver surfaces, there is no A visible current flows. During this normal operation, the battery of the present invention It operates in much the same way as a hydrogen battery. Failures such as holes forming in the pressure vessel occur. In this case, a large negative voltage will be generated on the shorting plate set. This negative voltage is approximately minus 1 .. Above 5 volts (i.e. in the direction of more negative voltages), the silver electrode becomes oxidized. becomes silver oxide (Ag20), and this silver oxide (silver 1IIonoxide) ) is soluble in electrolytes. Melted silver oxide becomes a short-circuit electrode. It migrates and turns into silver, thereby depositing silver on the shorting electrode. And the short circuit electrode The silver electrodes are completely bridged with silver and short-circuited, and the cell itself is short-circuited. Short circuit plate set Since the cell is placed in parallel with the active plate set, the cell will be shorted due to an internal short circuit. . Therefore, a cell failure according to the invention forms a short or short circuit; Current flows through this failed cell. A failed cell produces no voltage, but The output voltage of the entire battery with these cells connected in series is only the voltage of the failed cell. descend. External fault protection circuit equipment is not required to create a short circuit in the event of a fault. stomach.

したがって本発明によれば、宇宙船のバッテリは単セルが開回路となって故障し た場合に、重い故障保護回路を必要とすることなく、バッテリの完全な故障が防 止される。単セルが故障すると、このセル内の短絡板セットが短絡状態とし、こ れにより故障したセルの電圧分を低下した電圧で作動を継続する。本発明のその 他の特徴及び利点は、本発明の原理を例示する添付図面と共に、下記の詳細な説 明より明らかとな図面の簡単な説明 第1図は複数のセルを直列に接続した軽量型ニッケルー水素バッテリの図式的な 立面図、 第2図は第1図の軽量型ニッケルー水素セルの1の断面立面図、 第3図は第2図の3−3線に沿う詳細な説明図で、活性板セットと好ましい形式 の短絡板セットの構造、配置及び電気結合を示し、 第4図は短絡板セットの他の構造を示す断面図、第5図は短絡板セットの他の構 造を示す断面図、第6図は短絡板セットの作動中における時間と電圧のグラフ図 である。Therefore, according to the present invention, a spacecraft battery cannot fail due to an open circuit in a single cell. prevents complete battery failure without the need for heavy fault protection circuitry. will be stopped. When a single cell fails, the short-circuit plate set in this cell will short-circuit. As a result, operation continues at a voltage reduced by the voltage of the failed cell. The present invention Other features and advantages will be apparent from the detailed description below, along with the accompanying drawings that illustrate the principles of the invention. A brief explanation of the drawing that is clearer Figure 1 is a schematic diagram of a lightweight nickel-metal hydride battery with multiple cells connected in series. Elevation, Figure 2 is a cross-sectional elevation view of 1 of the lightweight nickel-metal hydride cell shown in Figure 1; Figure 3 is a detailed explanatory diagram along line 3-3 in Figure 2, showing the active board set and preferred format. shows the structure, arrangement and electrical connection of the shorting plate set, Fig. 4 is a sectional view showing another structure of the shorting plate set, and Fig. 5 is a sectional view showing another structure of the shorting plate set. Figure 6 is a graph of time and voltage during operation of the short circuit plate set. It is.

好ましい実施例の説明 ニッケルー水素バッテリ10は宇宙船の太陽電池で形成された余剰エネルギを蓄 え、太陽電池の出力が低下したときに、蓄えたエネルギを宇宙船システムに供給 する。バッテリ10はエネルギ貯蔵ユニットとして多数のニッケルー水素セル1 2を含む。各セル12は約1.3ボルトの電圧で蓄えたエネルギを供給するが、 この電圧では宇宙船システムを作動するには低過ぎる。したがって、各セル12 は第1図に示すように互いに直列に接続され、各セル12の電圧の総計でバッテ リ電圧を形成する。第1図の実施例では、5つのセル12がそれぞれ1.3ボル トの出力電圧を有するとすると、直列に接続された5つのセルはバッテリ電圧と して6.5ボルトで電流を供給する。故障保護装置が設けてない場合に1のセル 12が故障すると、バッテリ10は開回路となり、電流を供給することができな い。従来の外部故障保護装置は、図式的に点線で示す導線14のように故障した セルを迂回する外部線路を形成する。本発明では、点線で図式的に示すように故 障したセルを介する導線16により、内部線路を形成し、これによりバッテリ1 0は第1図の例では5.2ボルトに低下した電圧で、残りのセルにより作動を続 ける。これによれば、外部線路14を形成するために必要であった従来の重い故 障保護回路装置は不要となる。Description of the preferred embodiment The nickel-metal hydride battery 10 stores excess energy generated by the spacecraft's solar cells. In addition, when the output of the solar cells decreases, the stored energy is supplied to the spacecraft system. do. A battery 10 includes a number of nickel-metal hydride cells 1 as an energy storage unit. Contains 2. Each cell 12 provides stored energy at a voltage of approximately 1.3 volts, This voltage is too low to operate spacecraft systems. Therefore, each cell 12 are connected in series with each other as shown in Figure 1, and the total voltage of each cell 12 is the battery voltage. form a voltage. In the embodiment of FIG. 1, five cells 12 each have a voltage of 1.3 volts. five cells connected in series have an output voltage of to supply current at 6.5 volts. 1 cell if no fault protection device is installed 12 fails, the battery 10 becomes an open circuit and cannot supply current. stomach. Conventional external fault protection devices fail as shown schematically by the dotted line 14. Form an external line that detours around the cell. In the present invention, as shown diagrammatically by dotted lines, The conductor 16 passing through the failed cell forms an internal track, which connects the battery 1. 0 is the voltage that has dropped to 5.2 volts in the example of Figure 1, and the remaining cells continue to operate. Let's go. According to this, it is possible to eliminate the conventional heavy burden required to form the external line 14. A fault protection circuit device is not required.

第2図はニッケルー水素セル12及びその構成部材を示す。FIG. 2 shows the nickel-metal hydride cell 12 and its constituent parts.

このセル12は並列に接続された多数の独立した活性板セット18を備え、この 細部は第3図に示しである。各活性板セット18はアノードあるいは負電極20 と、カソードあるいは負電極22と、電解質を含有するセパレータ24とを備え 、このセパレータは電極20.22を物理的に分離し、更にイオン及び電子を移 動する電解質媒体を供給する。電極20゜22の充放電は2セツトのリード線2 6を介して行われる。The cell 12 comprises a number of independent active plate sets 18 connected in parallel. Details are shown in FIG. Each active plate set 18 has an anode or a negative electrode 20 , a cathode or negative electrode 22, and a separator 24 containing an electrolyte. , this separator physically separates the electrodes 20.22 and also transports ions and electrons. supply a moving electrolyte medium. Charging and discharging of the electrodes 20° and 22 are performed using two sets of lead wires 2. 6.

全ての正電極20は一方のセットのリード線26に並列に接続され、負電極22 の全ては他方のリード線セット26に並列に接続される。All the positive electrodes 20 are connected in parallel to one set of leads 26 and the negative electrodes 22 are all connected in parallel to the other lead wire set 26.

ニッケルー水素電池の構造及びその構成部材は種々のものが知られており、参考 までに列記すると、米国特許第4,389,212号、第4,283,844号 、第4,262.061号、第4.250,235号、第4.000,350号 及び第3.Ei69.744号がある。Various structures and constituent parts of nickel-metal hydride batteries are known. U.S. Patent Nos. 4,389,212 and 4,283,844 , No. 4,262.061, No. 4.250,235, No. 4.000,350 and 3rd. There is Ei69.744.

正電極20は、多孔性の焼成ニッケル内に水酸化ニッケルを含浸させ、この焼成 ニッケルをエツチング処理されたニッケル電極基材で支持することにより形成す るのが好ましい。The positive electrode 20 is made by impregnating porous fired nickel with nickel hydroxide. Formed by supporting nickel with an etched nickel electrode base material. It is preferable to

負T電極22は、−側を白金黒とポリテロラフルオロエチレンとの焼成混合体で 被覆し、他側を多孔性のポリテロラフルオロエチレン層で被覆されている。これ らの層は、エツチング処理されたシートあるいは編成網状のニッケル基材に設け られて負電極22に形成され、水素電極と称される。セパレータ24は種々の形 式のものを使用でき、例えばアスベスト、ナイロン及び酸化ジルコニューム−酸 化イットリューム(zironiuIloxide−yttrlumu oxi de)布である。電解質は水酸化カリウムの水溶液、特に31%水溶液を、セパ レータ24内、及び、電極間並びに内部のスペース内に含ませるのが好ましい。The negative T electrode 22 is made of a fired mixture of platinum black and polytetrafluoroethylene on the negative side. The other side is covered with a porous polytetrafluoroethylene layer. this These layers are applied to an etched sheet or knitted nickel substrate. is formed into a negative electrode 22, which is called a hydrogen electrode. The separator 24 has various shapes. Formulas can be used, such as asbestos, nylon and zirconium oxide. zironiuIloxide-yttrlumu oxi de) It is cloth. The electrolyte is a potassium hydroxide aqueous solution, especially a 31% aqueous solution, separated into Preferably, it is included within the electrode 24 and between and within the electrode spaces.

各活性板セット18は中央コア28と共に配置した積層体(siaeked a rray) 30に形成される。この積層体30を形成する場合、単繊条のポリ プロピレンスクリーン(IIlonofilaa+ent polypropy len 5creen) 32を各活性板セツト18間に配置し、各正電極20 で過充電される間に放出された酸素は、この電極20から負電極22に向けて拡 散し、水素と結合される。積層体30は、各端部に当接する結合用の押圧板34 により、例えば約1平方インチ当りIOボンド(約0.7kg/caりの長手方 向圧力を受けている。押圧板34の締付けは、積層体30を押圧し、コア28の ねじにナツト36を締付け、これにより皿ばねセット38を押圧板34に押圧し 、積層体30を所定位置に保持することが好ましい。Each active plate set 18 has a laminate (siaeked a) arranged with a central core 28. rray) 30. When forming this laminate 30, single fiber polyester Propylene screen (IIlonofilaa+ent polypropy len 5 screen) 32 is placed between each active plate set 18, and each positive electrode 20 Oxygen released during overcharging is spread from this electrode 20 toward the negative electrode 22. dispersed and combined with hydrogen. The laminate 30 has a bonding press plate 34 that abuts each end. For example, IO bond per square inch (about 0.7 kg/ca in the longitudinal direction) Under pressure. Tightening of the pressing plate 34 presses the laminate 30 and tightens the core 28. Tighten the nut 36 on the screw, thereby pressing the disc spring set 38 against the pressing plate 34. , it is preferable to hold the stack 30 in a predetermined position.

積層体30は圧力容器40内に密封されており、この圧力容器は例えばインコネ ル718ニッケル基合金で形成されており、これは水素脆性による破損あるいは 電解質による腐蝕を受けず、絶対圧力1.000psl (約700kg/c− d)のオーダの内圧に耐えることができる。ガス供給チューブ42により、圧力 容器内のガス量及び圧力が制御できる。この圧力容器40は、通常球状の端部を 有する円筒状チューブに形成される。図示のセルすなわち電池12における圧力 容器は外径31/2インチ(約8.9cm ) 、長さ13インチ(約33cm )に形成され、約40個の活性板セット18を有し、約1.3ボルトの電圧で約 50AHの充電能力(electrical storagecapacity )を有する。この電池は充電及び放電が適正に行われた場合には、認められる程 度の損傷を生じることなく通常数千サイクルの充放電サイクル寿命を有する。こ れらの多数の電池12が第1図に示すように高電圧を形成する直列に接続され、 あるいは、高電流を供給可能な並列に接続されてバッテリを形成する。The laminate 30 is sealed within a pressure vessel 40, which may be, for example, an in-connector. 718 nickel-based alloy, which is susceptible to damage due to hydrogen embrittlement. Absolute pressure 1.000 psl (approximately 700 kg/c- d) can withstand internal pressures of the order of magnitude. The gas supply tube 42 allows pressure The amount and pressure of gas inside the container can be controlled. This pressure vessel 40 usually has a spherical end. It is formed into a cylindrical tube with. Pressure in the illustrated cell or battery 12 The container has an outer diameter of 31/2 inches (approximately 8.9 cm) and a length of 13 inches (approximately 33 cm). ), has a set of about 40 active plates 18, and has a voltage of about 1.3 volts. 50AH electrical storage capacity ). This battery is acceptable if charged and discharged properly. They typically have a charge/discharge cycle life of several thousand cycles without significant damage. child A large number of these batteries 12 are connected in series to form a high voltage as shown in FIG. Alternatively, they can be connected in parallel to form a battery capable of supplying high current.

リード線26を介して各活性板セット18に電圧を印加すると、電子が電極22 から電極20に流れ、充電される。これにより、各活性板セット18に化学反応 により電気エネルギが蓄えられ、放電時に有用な電流を形成する。上記形式のニ ッケルー水素電池は太陽電池列により完全に充電することができ、その能力は例 えば、放電状態から、約1.5ボルト5アンペアの電流で約14時間充電するこ とにより50アンペア−アワーの能力を存する。この電圧及び充電時間は、太陽 電池列の出力、及び、宇宙船の軌道により広範囲で変化することができる。When a voltage is applied to each active plate set 18 via the lead wire 26, electrons are transferred to the electrode 22. It flows from the battery to the electrode 20 and is charged. This causes each activated plate set 18 to undergo a chemical reaction. Electrical energy is stored and forms a useful current when discharged. 2 of the above format Kkeru hydrogen batteries can be fully charged by solar arrays, and their capacity is as follows: For example, it can be charged from a discharged state for about 14 hours at a current of about 1.5 volts and 5 amperes. It has a capacity of 50 ampere-hours. This voltage and charging time It can vary over a wide range depending on the power of the battery array and the orbit of the spacecraft.

本発明によると、電池12はセルの電圧が約マイナス1.5ボルトを越えたとき に(すなわちマイナス1.5ボルトよりもよりマイナス側)、このセルを短絡す る手段を内包している。According to the present invention, battery 12 is activated when the cell voltage exceeds approximately minus 1.5 volts. (i.e. more negative than -1.5 volts), short this cell. It includes a means to do so.

好ましい実施例では、この手段は電池12内の活性板セット18に併置された短 絡板セット50であり、この好ましい実施例が第3図に示しである。この短絡板 セット50は短絡電極52と、溶解性電極54と、電極サポート56とを有し、 この電極サポートに溶解性電極54が支持され、短絡セパレータ58が短絡電極 と溶解性電極54間に介挿されている。In a preferred embodiment, this means includes a short circuit juxtaposed to the active plate set 18 within the battery 12. A preferred embodiment of a bridging plate set 50 is shown in FIG. This shorting plate Set 50 includes a shorting electrode 52, a dissolvable electrode 54, and an electrode support 56; A soluble electrode 54 is supported on this electrode support, and a short-circuit separator 58 is a short-circuit electrode. and the soluble electrode 54.

この短絡板セット50はリード線26により、活性板セット18と電気的に並列 に接続されており、第3図に示すように、積層体30の付加部材として中央コア 28に装着されている点で有利である。短絡電極52は正電極20に接続され、 溶解性電極54は負電極22に接続されている。短絡電極52はニッケル板ある いはシート、溶解性電極54は焼成銀板あるいはシート、短絡セパレータ58は 改良ジルコニア布(a+odiried zirconia cloth)でそ れぞれ形成するのが好ましい。This shorting plate set 50 is electrically parallel to the active plate set 18 via the lead wire 26. As shown in FIG. It is advantageous in that it is attached to 28. The shorting electrode 52 is connected to the positive electrode 20, Soluble electrode 54 is connected to negative electrode 22 . The shorting electrode 52 is a nickel plate. The soluble electrode 54 is a fired silver plate or sheet, and the short-circuit separator 58 is a sheet. Made of improved zirconia cloth (a+odiried zirconia cloth) It is preferable to form each.

セル12の通常の作動中、電極52.54に過電圧が作用しているため、短絡板 セット50に無視できる程度に小さな電流が流れる。圧力容器の破損により水素 、電解質が漏洩し、開回路となるようなセル12の故障が発生すると、マイナス 1.5ボルトよりも高いマイナス電圧がセル12に形成される。During normal operation of the cell 12, the shorting plate A negligibly small current flows through the set 50. Hydrogen was released due to damage to the pressure vessel. , if a cell 12 failure occurs such that electrolyte leaks and an open circuit occurs, the negative A negative voltage greater than 1.5 volts is created across cell 12.

溶解性電極54は酸化され、電解質に溶解可能物となる。溶解性電極を銀板ある いはシートで形成した好ましい実施例では、この銀が酸化銀(S目ver a+ onoxlde)に酸化され、錯体となり、水酸化カリウム電解質内に溶解され る。この溶解した酸化銀(silver oxide)はニッケル電極52上に 被覆される。被覆された銀はセル10の充放電を繰返す間に厚みを増加し、最終 的には電極52.54間を架橋するのに充分な厚さとなり、これらの電極52. 54間に電流路あるいは短絡路を形成する。したがって、マイナスの高電圧を形 成するセルの故障は、電極52.54間を内部で直接短絡することになる。セル の故障で開回路となるのではなく、短絡回路となるため、故障したセルが構成部 材となっているバッテリは減少した電圧で作動を継続することができる。The soluble electrode 54 is oxidized and becomes soluble in the electrolyte. There is a silver plate with a soluble electrode In the preferred embodiment, the silver is silver oxide (S ver. a+). onoxlde), complexed and dissolved in potassium hydroxide electrolyte. Ru. This dissolved silver oxide is deposited on the nickel electrode 52. coated. The coated silver increases in thickness during repeated charging and discharging of the cell 10, and the final is thick enough to bridge the electrodes 52.54 between the electrodes 52.54. 54 to form a current path or short circuit path. Therefore, negative high voltage A cell failure resulting in a cell failure would result in a direct internal short between electrodes 52,54. cell Instead of a failure resulting in an open circuit, it results in a short circuit, meaning that the failed cell The underlying battery can continue to operate at reduced voltage.

第4図は短絡板セット50の他の実施例を示す。この板セットの構造は第3図の 短絡板セットと同様であるが、ニッケルスクリーン60が短絡セパレータ58と 短絡電極52との間に介挿されている点が異なる。短絡電極52に銀が堆積され 、板セット50を短絡するブリッジの形成が始まると所要の熱が発生し、この熱 により皿ばね38が溶解性電極54の残部を短絡電極52の方向に押圧し、ニッ ケルスクリーン60を破壊する。これにより短絡工程が加速される。FIG. 4 shows another embodiment of the shorting plate set 50. The structure of this board set is shown in Figure 3. Similar to the shorting plate set, except that the nickel screen 60 is connected to the shorting separator 58. The difference is that it is inserted between the short-circuiting electrode 52 and the short-circuiting electrode 52. Silver is deposited on the shorting electrode 52. , when the formation of a bridge shorting the plate set 50 begins, the required heat is generated, and this heat The disc spring 38 presses the remaining part of the dissolvable electrode 54 toward the shorting electrode 52, and the Ni Destroy Kelscreen 60. This accelerates the shorting process.

第5図は短絡板セット50の更に他の実施例を示す。この構造は第3図に示す短 絡板セットとほぼ同様であるが、電極ト56は溶解性電極54を支持し、これと 電気的に接触保持することを目的としており、絶対必要な機能をなすものではな い。溶解性電極54が充分剛性を有し、これと確実に電気接触できるものであれ ば、第5図に示す実施例のように電極サポート56を省略できる。しかし、溶解 性電極サポート54の使用により信頼性が増し、そのflfjlも僅かに増加す るだけであるため、このサポートを使用することが好ましい。FIG. 5 shows yet another embodiment of the shorting plate set 50. This structure is shown in Figure 3. Almost similar to the board set, but the electrode plate 56 supports the dissolvable electrode 54 and The purpose is to maintain electrical contact and does not serve any absolutely necessary function. stomach. As long as the soluble electrode 54 has sufficient rigidity and can make reliable electrical contact with it. For example, the electrode support 56 can be omitted as in the embodiment shown in FIG. But dissolved The use of the sexual electrode support 54 increases reliability and its flfjl also increases slightly. It is preferable to use this support because only

短絡電極52は、活性板セット18の正電極20と適合性がよいため、ニッケル が好ましい。溶解性電極54は銀が好ましく、他の材料としては鉛、銅及びカド ミウムを使用することもできる。これらの材料の31%水酸化カリウム溶液中に おける酸化電位は、銀がマイナス0.35ボルト、銅が0.36ボルト、鉛が0 .58ボルト、カドミウムが0,81ボルトである。マイナスの酸化電位が最も 高い材料である銀が好ましい。The shorting electrode 52 is made of nickel because it is compatible with the positive electrode 20 of the active plate set 18. is preferred. Dissolvable electrode 54 is preferably made of silver; other materials include lead, copper, and cadmium. Mium can also be used. These materials in a 31% potassium hydroxide solution The oxidation potential is -0.35 volts for silver, 0.36 volts for copper, and 0 for lead. .. 58 volts, cadmium is 0.81 volts. The negative oxidation potential is the most Silver, which is an expensive material, is preferred.

下記の実例は例示であり、本発明を限定するものではない。The following examples are illustrative and do not limit the invention.

実例1 第3図に示す好ましい形式の短絡板セットに、通常作動中は負極として作用し、 故障時は正極として作用する銀の溶解性電極を用いてテストした。下記テーブル Iはテストの結果をまとめたものである。Example 1 The preferred type of shorting plate set shown in FIG. Tests were conducted using a silver soluble electrode that acted as a positive electrode in case of failure. Table below I summarizes the test results.

テーブルI 電流 時間間隔 銀の状態 電圧 (ミリアンペア)初期 1.30 8 − 1.91 19 − 2.54 2250 − 1.58 1 逆行 + −0,440 + −0,661 + −1,5018 + −2,582781 十 −3,0310110 短絡板セツトがプラス約1.7ボルトより低くかつマイナス約0.3ボルトより マイナスが少ない通常範囲で作動した場合には電流はほとんど流れなかった。セ ルの故障状態である電圧が約マイナス1,5ボルトより増加すると(すなわち、 マイナス1.5ボルトよりもよりマイナス側に)、電流が多く流れ、銀電極の溶 解と、ニッケル電極に堆積してセルを短絡したこ実例1で使用したものと同じ構 造の短絡板セットに、故障セルに対応する銀電極を正極として、15アンペアの 電流を連続して流した。時間とセルの電圧は下記テーブルHに示す結果となった 。Table I current Time interval Silver state Voltage (milliampere) Initial 1.30 8 - 1.91 19 -2.54 2250 -1.58 1 Retrograde + -0,440 + −0,661 + −1,5018 + -2,582781 10-3,0310110 The shorting plate set is lower than +1.7 volts and lower than -0.3 volts. When operated in the normal range with little negative current, almost no current flowed. Se If the voltage increases above approximately minus 1.5 volts (i.e., (more negative than -1.5 volts), more current flows and the silver electrode melts. solution and the same structure used in Example 1, with nickel deposited on the electrode and shorting the cell. Connect the silver electrode corresponding to the faulty cell as the positive electrode to a short-circuit plate set made of A current was passed continuously. The time and cell voltage results are shown in Table H below. .

テーブル■ 0.6 2.9 0.8B 2.7 0.88 2.Ei 3 0.88 12 0.59 26 0.57 67 0.53 123 0.50 189 0.49 251 0.48 397 0.43 電圧を記録した帯状グラフレコーダは、過渡的な状態(transients) を伴うことなく連続的下降状態を示した。これは板セットを介する短絡回路の形 成が緩やかかつ連続的に望ましい態様で行われることを示す。Table■ 0.6 2.9 0.8B 2.7 0.88 2. Ei 3 0.88 12 0.59 26 0.57 67 0.53 123 0.50 189 0.49 251 0.48 397 0.43 The band graph recorder that recorded the voltage was able to record the transients It showed a continuous downward trend without any lag. This is a form of short circuit through the plate set This shows that the formation occurs slowly and continuously in the desired manner.

実例3 実例1て使用した形式の短絡板セットを、通常の充電及び放電状態で作動させた 。この状態を第6図に示す。titu的に短絡板セットに大きなマイナス電圧を 印加し、短絡状態を作り、銀溶解性電極を正極とした。マイナス電圧が増加する と、短絡板セットは望ましい方法で機能して短絡し、板セツト間を低電圧とした 。Example 3 A shorting plate set of the type used in Example 1 was operated under normal charging and discharging conditions. . This state is shown in FIG. A large negative voltage is applied to the short circuit plate set according to the nature. The voltage was applied to create a short-circuit condition, and the silver-soluble electrode was used as the positive electrode. Negative voltage increases , the shorting plate set functions in the desired manner to short circuit and create a low voltage across the plate set. .

上記実例で示すように、本発明の短絡板セットは望ましい態様で作用し、故障し たセルを内包する電池を開回路とするのではなく、短絡状態とする。外部故障保 護回路装置は必要でなく、これにより連続作動を補償しつつバッテリの重量を減 少する。以上、本発明の特定の実施例について図示しかつ説明したが、本発明の 範囲内で種々の変更が可能なことは明らかである。したがって、本発明は請求の 範囲を除き、同等制限されるものではない。As shown in the above examples, the shorting plate set of the present invention operates in a desirable manner and does not fail. Instead of putting the battery containing the cell in an open circuit, it puts it into a short circuit. External failure insurance No protection circuitry is required, which reduces battery weight while ensuring continuous operation. Do a little. While specific embodiments of the invention have been illustrated and described above, Obviously, various modifications within the scope are possible. Therefore, the present invention does not cover the claimed invention. There are no equivalent limitations except in scope.

FIG、 I FIG、 2 国際調査報告 ANNEX To THE rNTERNATIONA乙 5EARCHREP ORT ONFIG, I FIG. 2 international search report ANNEX To THE rNTERNATIONA 5EARCHREP ORT ON

Claims (16)

【特許請求の範囲】[Claims] 1.ニッケル正電極と、水素負電極と、これらの正電極と負電極間に設けられた セパレータとを有する活性板セットと、前記活性板セットに併置された短絡板セ ットとを備え、この短絡板セットは短絡電極と、溶解性電極と、これらの短絡電 極と溶解性電極間に配置された短絡セパレータととを有し、前記溶解性電極は、 最大マイナス電圧が約0.3ボルトである通常作動中に、前記短絡電極の材料と 組合わせられて高い過電圧を有しかつ電解質中で不溶性の材料で形成され、この 溶解性電極の材料は前記短絡板セットに約マイナス1.5ボルトよりも高いマイ ナス電圧が作用したときに、前記電解質中に溶解して短絡電極に堆積可能であり 、更に、前記活性板セットと、短絡板セットと、電解質とを内包する圧力容器を 備え、この圧力容器は前記板セットの電気導体を含むことを特徴とするニッケル ー水素電池。1. A nickel positive electrode, a hydrogen negative electrode, and a an active plate set having a separator; and a short circuit plate set juxtaposed to the active plate set. This short-circuit plate set includes a short-circuit electrode, a soluble electrode, and a short-circuit electrode. a short circuit separator disposed between the electrode and the soluble electrode, the soluble electrode comprising: During normal operation, where the maximum negative voltage is about 0.3 volts, the shorting electrode material and This is made of materials that have a high overvoltage in combination and are insoluble in the electrolyte. The soluble electrode material has a voltage higher than about -1.5 volts on the shorting plate set. When negative voltage is applied, it can be dissolved in the electrolyte and deposited on the shorted electrode. , further comprising a pressure vessel containing the active plate set, the short circuit plate set, and the electrolyte. nickel, the pressure vessel comprising an electrical conductor of said set of plates. -Hydrogen battery. 2.前記溶解性電極は、銀、鉛、銅及びカドミウムからなるグループより選択さ れた材料で形成される請求の範囲第1項記載の電池。2. The soluble electrode is selected from the group consisting of silver, lead, copper and cadmium. 2. A battery according to claim 1, wherein the battery is made of a material made of 3.前記溶解性電極は銀で形成される請求の範囲第1項記載の電池。3. 2. The battery of claim 1, wherein said soluble electrode is formed of silver. 4.前記短絡電極はニッケルで形成される請求の範囲第1項記載の電池。4. 2. The battery of claim 1, wherein said shorting electrode is formed of nickel. 5.前記溶解性電極は電極サポートで支持される請求の範囲第1項記載の電池。5. 2. The battery of claim 1, wherein the soluble electrode is supported by an electrode support. 6.前記短絡板セットは、前記短絡電極と短絡セパレータ間に介挿されたスクリ ーンを含む請求の範囲第1項記載の電池。6. The shorting plate set includes a screen inserted between the shorting electrode and the shorting separator. 2. The battery according to claim 1, comprising: a battery. 7.前記活性板セットを複数含む請求の範囲第1項記載の電池。7. The battery according to claim 1, comprising a plurality of said active plate sets. 8.前記電解質は水酸化カリウムの水溶液である請求の範囲第1項記載の電池。8. 2. The battery of claim 1, wherein the electrolyte is an aqueous solution of potassium hydroxide. 9.ニッケル正電極と、水素負電極と、これらの正電極と負電極間に設けられた セパレータとを有する活性板セットと、前記活性板セットに併置された短絡板セ ットとを備え、この短絡板セットはニッケル短絡電極と、銀溶解電極と、これら ニッケル短絡電極と銀溶解性電極間に配設された短絡セパレータとを有し、更に 、 前記活性板セットと、短絡板セットと、電解質とを有する圧力容器を備え、この 圧力容器は前記板セットの電気導体を含むことを特徴とするニッケルー水素電池 。9. A nickel positive electrode, a hydrogen negative electrode, and a an active plate set having a separator; and a short circuit plate set juxtaposed to the active plate set. This shorting plate set includes a nickel shorting electrode, a silver melting electrode, and a shorting separator disposed between the nickel shorting electrode and the silver soluble electrode; , A pressure vessel having the activation plate set, the short circuit plate set, and an electrolyte is provided. A nickel-metal hydride battery, wherein the pressure vessel includes the electrical conductor of the plate set. . 10.前記活性板セットを複数含む請求の範囲第9項記載の電池。10. The battery according to claim 9, comprising a plurality of said active plate sets. 11.前記電解質は水酸化カリウムの水溶液である請求の範囲第9項記載の電池 。11. The battery according to claim 9, wherein the electrolyte is an aqueous solution of potassium hydroxide. . 12.前記溶解性電極は電極サポートで支持される請求の範囲第9項記載の電池 。12. 10. The battery of claim 9, wherein the soluble electrode is supported by an electrode support. . 13.前記短絡電極と前記短絡セパレータとの間にスクリーンが配設されている 請求の範囲第9項記載の電池。13. A screen is disposed between the shorting electrode and the shorting separator. The battery according to claim 9. 14.前記短絡セパレータは酸化ジルコニウムで形成されている請求の範囲第9 項記載の電池。14. Claim 9, wherein the short circuit separator is made of zirconium oxide. Batteries listed in section. 15.ニッケルー水素電池であって、 ニッケル正電極と、水素負電極と、これらの正電極と負電極間に設けられたセパ レータとを有する活性板セットと、前記活性板セットと、電解質とを有する圧力 容器を備え、この圧力容器は前記活性板セットを結合する電気導体とを備え、更 に、 前記圧力容器内に内包され、電池の電圧が所定のマイナス値を越えたときに前記 電池を介する電流路を電気化学的に短絡し、この電池故障時に短絡状態とする手 段を備えることを特徴とするニッケルー水素電池。15. A nickel-metal hydride battery, A nickel positive electrode, a hydrogen negative electrode, and a separator between these positive and negative electrodes. an activated plate set having a pressure regulator; the activated plate set; and an electrolyte; a pressure vessel, the pressure vessel further comprising an electrical conductor coupling the active plate set; To, contained in the pressure vessel, and when the voltage of the battery exceeds a predetermined negative value, the A method of electrochemically shorting the current path through the battery and creating a short-circuit state when the battery fails. A nickel-metal hydride battery characterized by having stages. 16.前記手段は短絡板セットを含む請求の範囲第15項記載の電池。16. 16. The battery of claim 15, wherein said means includes a set of shorting plates.
JP62503301A 1986-06-30 1987-05-26 Nickel-hydrogen battery with internal short-circuit device in case of failure Granted JPH01500546A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US88045186A 1986-06-30 1986-06-30
US880,451 1986-06-30

Publications (2)

Publication Number Publication Date
JPH01500546A true JPH01500546A (en) 1989-02-23
JPH0582707B2 JPH0582707B2 (en) 1993-11-22

Family

ID=25376309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62503301A Granted JPH01500546A (en) 1986-06-30 1987-05-26 Nickel-hydrogen battery with internal short-circuit device in case of failure

Country Status (5)

Country Link
EP (1) EP0271525B1 (en)
JP (1) JPH01500546A (en)
CN (1) CN87104502A (en)
DE (1) DE3780010T2 (en)
WO (1) WO1988000400A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007284A (en) * 2001-06-22 2003-01-10 Toyota Motor Corp Secondary battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1090675A (en) * 1993-11-03 1994-08-10 谢大新 Magnetic energy cell
DE4409268C1 (en) * 1994-03-18 1995-06-22 Daimler Benz Ag Electrochemical storage battery for electric vehicle
FR2737605B1 (en) * 1995-08-03 1997-10-03 Europ Agence Spatiale THERMALLY ACTIVE SHORT CIRCUIT SWITCH FOR A BATTERY CELL
CN109085502A (en) * 2018-06-29 2018-12-25 湖南科霸汽车动力电池有限责任公司 The method for identifying micro-short circuit position inside nickel-metal hydride battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3213345A (en) * 1963-09-05 1965-10-19 Mallory & Co Inc P R Polarized shorting fuse for battery cells
US3470025A (en) * 1967-11-08 1969-09-30 Sonotone Corp Third-electrode rechargeable alkaline battery cells and associated battery circuits
US4061955A (en) * 1976-05-19 1977-12-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multi-cell battery protection system
US4420545A (en) * 1981-11-05 1983-12-13 Ford Aerospace & Communications Corporation Lightweight metal-gas battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007284A (en) * 2001-06-22 2003-01-10 Toyota Motor Corp Secondary battery

Also Published As

Publication number Publication date
DE3780010T2 (en) 1993-02-18
CN87104502A (en) 1988-01-20
WO1988000400A1 (en) 1988-01-14
JPH0582707B2 (en) 1993-11-22
EP0271525A1 (en) 1988-06-22
EP0271525B1 (en) 1992-06-24
DE3780010D1 (en) 1992-07-30

Similar Documents

Publication Publication Date Title
EP0254730B1 (en) Process for preventing electrical storage cell capacity loss
US6087035A (en) Low-voltage-drop diode bypass of failed battery cell
KR0169015B1 (en) Electrical energy storage device and method of charging and discharging the same
US4112199A (en) Lanthanum nickel hydride-hydrogen/metal oxide cell
JPS6247174Y2 (en)
US9209445B2 (en) Nickel-metal hydride/hydrogen hybrid battery using alkali ion conducting separator
JPS61501352A (en) Nickel-hydrogen bipolar battery
US4820597A (en) Extended life nickel-hydrogen storage cell
JPH01500546A (en) Nickel-hydrogen battery with internal short-circuit device in case of failure
US6275005B1 (en) Low-voltage-drop bypass of failed battery cell
JP3341817B2 (en) Seawater power system
US6229282B1 (en) Low-voltage-drop, spring-activated bypass of failed battery cell
US5248510A (en) Cobalt oxide passivation of nickel battery electrode substrates
US5030524A (en) Battery cell stack having extended life
US5389460A (en) Vibration-resistant battery having individually supported storage cells
US5225295A (en) Bi-cell electrical storage battery
WO2001018890A1 (en) Chargeable electrochemical cell
US4965145A (en) Electrical storage cell resistant to freezing
US5584892A (en) Process for producing nickel electrode having lightweight substrate
JP3033153B2 (en) Battery charging control method
EP0379203B1 (en) Method for rejuvenating Ni-H2 batteries
Caldwell et al. Commercial aerospace and terrestrial applications of nickel‐hydrogen batteries
Gearing et al. High discharge rate characteristics of nickel-cadmium batteries for pulse load filtering
Coates et al. The development of nickel-hydrogen batteries for commercial applications
US5916703A (en) Energy storage cell with hydrogen vent