JPH01500402A - Biological tissue plasma arc cutting equipment - Google Patents

Biological tissue plasma arc cutting equipment

Info

Publication number
JPH01500402A
JPH01500402A JP61505452A JP50545286A JPH01500402A JP H01500402 A JPH01500402 A JP H01500402A JP 61505452 A JP61505452 A JP 61505452A JP 50545286 A JP50545286 A JP 50545286A JP H01500402 A JPH01500402 A JP H01500402A
Authority
JP
Japan
Prior art keywords
electrode
chamber
plasma
arc
tapered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61505452A
Other languages
Japanese (ja)
Inventor
ベレスネフ,アレクセイ セルゲービチ
セリフ レオニド アファナシエビチ
サベリエフ,ビクトル セルゲービチ
ボルコエドフ,バレリ セルゲービチ
ストゥピン,イゴール ビクトロビチ
Original Assignee
2‐イ モスコフスキ ゴスダルストベンニ メディツィンスキ インスティテュト イメニ エヌ.イー.ピロゴバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 2‐イ モスコフスキ ゴスダルストベンニ メディツィンスキ インスティテュト イメニ エヌ.イー.ピロゴバ filed Critical 2‐イ モスコフスキ ゴスダルストベンニ メディツィンスキ インスティテュト イメニ エヌ.イー.ピロゴバ
Publication of JPH01500402A publication Critical patent/JPH01500402A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/042Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating using additional gas becoming plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/24Features related to electrodes
    • B23K9/28Supporting devices for electrodes
    • B23K9/29Supporting devices adapted for making use of shielding means
    • B23K9/291Supporting devices adapted for making use of shielding means the shielding means being a gas
    • B23K9/296Supporting devices adapted for making use of shielding means the shielding means being a gas using non-consumable electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3478Geometrical details

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Geometry (AREA)
  • Plasma Technology (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 生物学的組織のプラズマアーク切断装置技術分野 本発明は医療器械に関し、更に詳しくは生物学的組織のプラズマアーク切断装置 に関する。[Detailed description of the invention] Biological tissue plasma arc cutting equipment technology field The present invention relates to medical instruments, and more particularly to plasma arc cutting devices for biological tissue. Regarding.

従来技術 生物学的組織を切断するために、間接アークまたはマイクロプラズマアークが形 成される種々の装置を使用することが可能である。Conventional technology Indirect or microplasma arcs are used to cut biological tissue. It is possible to use a variety of devices that are made.

カソード組立体及びアノード組立体を収容するハウジングを有するプラズマアー ク切断装置が公知である。アノード組立体は複雑な形状のノズルを有し、このノ ズルは先端部が電気アークを形成する方向に面している電極を受容する。カソー ド組立体はプラズマ形成ガスを供給するためのチャンネルを有する。(広告小冊 子”Elektrodugovyie plazmotrony”。A plasma arc having a housing containing a cathode assembly and an anode assembly. Cutting devices are known. The anode assembly has a complex shaped nozzle; The nozzle receives an electrode with the tip facing in the direction of forming the electric arc. Casso The door assembly has channels for supplying plasma-forming gas. (Advertisement booklet Child "Elektrodugovyie plazmotrony".

ノボシビルスク、1980年、34〜35ページ)。Novosibirsk, 1980, pp. 34-35).

この種の装置は、これらのマイクロプラズマジェットが生物学的組織を切断する のに必要な速度を維持するために十分な力を有さず、そして更にそれらはプラズ マ形成ガスの比較的高い作動圧力の下での作業を強いられその結果として生物学 的組織にガスが過剰に浸透するため、生物学的組織を切断するのに適さない。こ の公知装置により発生されたプラズマジェットの温度は5000℃以内であり、 生物学的組織を切断するのに不十分であり、且つ切断の側部においてかなりの深 さまで生物学的組織の熱障害を引起こす。This type of device uses these microplasma jets to cut biological tissue. do not have sufficient force to maintain the required speed, and furthermore they are As a result, biology is forced to work under relatively high operating pressures of ma-forming gases. It is not suitable for cutting biological tissue due to excessive gas penetration into the target tissue. child The temperature of the plasma jet generated by the known device is within 5000°C, Insufficient to cut biological tissue and significant depth on the sides of the cut heat damage to biological tissues.

カソード組立体及びアノード組立体を同様に有する生物学的組織の切断装置が別 に知られている。カソード組立体の電極はその先端部が電気アークの発生領域に 面している先細の部分を有する。カソード組立体はプラズマ形成ガスを供給する ために形成された通路を有する。アノード組立体は電極の先細部分を受容するノ ズルを有し、ノズルは円筒状チャンバ、先細のチャンバ、アーク・チャンバそし てプラズマアーク形成チャンバを連続的に所定のオーダで形成する(Sll、A  275261、ベレスネブ(Beresnev) A、 S、他、1970. 公報N(122)。A separate biological tissue cutting device also has a cathode assembly and an anode assembly. known to. The electrode of the cathode assembly has its tip in the area where the electric arc occurs. It has a facing tapered part. Cathode assembly supplies plasma forming gas It has a passageway formed for it. The anode assembly has a nozzle that receives the tapered portion of the electrode. The nozzle has a cylindrical chamber, a tapered chamber, an arc chamber and a nozzle. to continuously form plasma arc formation chambers in a predetermined order (Sll, A 275261, Beresnev A, S, et al., 1970. Publication N (122).

しかし、この装置においてアーク・チャンバにおけるアーク発生プロセスはプラ ズマ形成ガスの低い流量及び圧力の下で不適切に安定しており、不十分な点は医 薬の付加に適したように装置を形成するために除去されるべきである。さらに、 これらの条件の下でアノードのスポットはアーク・チャンバからノズルの先細チ ャンバに結局移動し、アークの電圧下降とパワーの減少、プラズマジェットの特 性の凝結と切断の損傷に帰着する。アノード・スポットをアーク・チャンバに戻 すためには、プラズマ形成ガスの作動圧力を例えば2X10’P、まで増加し、 次いで1xio’r’、の作動供給圧力まで再度減少させることが必要である。However, in this device, the arc generation process in the arc chamber is The Zuma-forming gas is inadequately stable under low flow rates and pressures, and the inadequacies are It should be removed to form the device suitable for the addition of drugs. moreover, Under these conditions the anode spot moves from the arc chamber to the tapered tip of the nozzle. The arc voltage drops and the power decreases, and the characteristics of the plasma jet decrease. Resulting in sexual condensation and cutting damage. Return the anode spot to the arc chamber. In order to It is then necessary to reduce again to the working supply pressure of 1xio'r'.

しかし、ガスの作動圧力のこの周期的な増加はプラズマジェットを噴射する速度 を増加させること、外科医の仕事を複雑にさせること、及び手術されていない臓 器への損傷の恐れがあることに帰着する。However, this periodic increase in the working pressure of the gas increases the speed at which the plasma jet is injected. complicating the surgeon's work and reducing the number of unoperated organs. This results in the possibility of damage to the equipment.

発明の開示 本発明はその目的のために生物学的組織のプラズマ・アーク切断装置の創作を有 し、ここにおいてアノード組立体の改善された構造はプラズマ形成ガスの比較的 小さい送り量及び圧力の下で安定したアークを提供する。Disclosure of invention For that purpose the invention comprises the creation of a device for plasma arc cutting of biological tissue. However, the improved structure of the anode assembly provides a relatively Provides stable arc under small feed rate and pressure.

この目的は、カッ・−ド組立体はプラズマ形成ガスを供給するための通路を具え たハウジングとこのハウジングに収容された電極とを有し且つ先細な部分を有し 、アノード組立体はプラズマジェットの発生領域に面して電極の先細部分を受容 するハウジング及びノズルを有し、ノズルは円筒状チャンバ、先細なチャンバ、 アーク・チャンバ及びプラズマジェット形成チャンバを連続的に形成する生物学 的組織のプラズマアーク切断装置において、本発明に従い、電極の先細な部分は 切頭円錐形状を有し、電極の端面であるより小さい端部はプラズマジェットの発 生領域に面し、電極は円筒状及び先細チャンバに受容され、これによりアーク・ チャンバから電極の端面までの距離は先細チャンバの長さの0.1から0.5に 等しく、そして電極の先細部分の長さは電極の直径の3.5から4.5倍である 生物学的組織のプラズマアーク切断装置により達成される。For this purpose, the cup assembly should be provided with passageways for supplying plasma-forming gas. a housing, an electrode housed in the housing, and a tapered portion. , the anode assembly receives the tapered portion of the electrode facing the plasma jet generation area. a housing and a nozzle, the nozzle having a cylindrical chamber, a tapered chamber, Biology of continuous formation of arc chamber and plasma jet formation chamber In accordance with the present invention, the tapered portion of the electrode is It has a truncated conical shape, and the smaller end, which is the end face of the electrode, is where the plasma jet is generated. Facing the live area, the electrode is received in a cylindrical and tapered chamber, thereby The distance from the chamber to the end face of the electrode is 0.1 to 0.5 of the length of the tapered chamber. equal, and the length of the tapered part of the electrode is 3.5 to 4.5 times the diameter of the electrode. Achieved by plasma arc cutting of biological tissues.

プラズマ形成ガスを供給するための通路はノズルのプラズマジェット形成チャン バの長さに略等しい長さを有するべきであり、且つ電極の端面から先細部分の長 さだけ概略離間されるべきであることが好都合である。The passage for supplying plasma forming gas is connected to the plasma jet forming channel of the nozzle. It should have a length approximately equal to the length of the bar, and the length of the tapered portion from the end face of the electrode. Conveniently, they should be approximately spaced apart.

図面の要約 本発明は添付図面になされた参照符号と共に実施例に関連してさらに記載されよ う。Drawing summary The invention will be further described with reference to embodiments with the reference numerals made in the accompanying drawings. cormorant.

第1図は本発明を具現化する、生物学的組織のプラズマアーク切断装置の縦断面 図である。FIG. 1 is a longitudinal section of a plasma arc cutting device for biological tissue embodying the present invention. It is a diagram.

第2図は第1図の■−■線に沿う、同一装置の断面図である。FIG. 2 is a sectional view of the same device taken along line 1--2 in FIG.

本発明の最良の態様 生物学的組織のプラズマアーク切断装置はカソード組立体1 (第1図)及びア ノード組立体2を有する。カソード組立体1はガス供給通路として働くスリット 5を有しコレット4がプレス嵌めされるハウジング3を有する。コレット4は非 分割ブツシュ8によりアーク・チャンバ7の上部限界に関して要求された位置に 固着された電極6を内部に保持する。BEST MODE OF THE INVENTION The apparatus for plasma arc cutting of biological tissue consists of cathode assembly 1 (Figure 1) and a It has a node assembly 2. Cathode assembly 1 has a slit that acts as a gas supply passage. 5 and a housing 3 into which a collet 4 is press-fitted. Collet 4 is non- in the required position with respect to the upper limit of the arc chamber 7 by means of a split bushing 8. The fixed electrode 6 is held inside.

同様にブツシュ8はプラズマ形成ガスをノズル12の円筒状チャンバ11に供給 するために形成されたガス供給通路9及び10を有する。Similarly, the bush 8 supplies plasma-forming gas to the cylindrical chamber 11 of the nozzle 12. It has gas supply passages 9 and 10 formed for this purpose.

カソード組立体1はコレット4の中のプラズマ形成ガスを供給するための通路1 5にチューブ14を介して連通ずるガス連結部13を備えている。The cathode assembly 1 has a passage 1 for supplying plasma forming gas in the collet 4. 5 is provided with a gas connecting portion 13 that communicates through a tube 14.

さらにカソード組立体1は連結部17及びチューブ18を介して現れる冷却液を 供給するための通路16を有する。電極6は切頭円錐形状の先細な部分19を有 し、この切頭円錐部分のより小さい端部は電極6の端面である。Furthermore, the cathode assembly 1 has a cooling liquid appearing through the connection 17 and the tube 18. It has a passage 16 for feeding. The electrode 6 has a tapered portion 19 in the shape of a truncated cone. However, the smaller end of this truncated conical portion is the end face of the electrode 6.

アノード組立体はアーク・チャンバ7及びプラズマジェット形成チャンバ23に より形成されたプラズマ形成チャンネル22、先細チャンバ21、及び円筒状ガ スチャンバ11を内部に形成する上述のノズル12とハウジングを有する。The anode assembly is located in the arc chamber 7 and plasma jet formation chamber 23. The plasma forming channel 22, the tapered chamber 21, and the cylindrical gas It has the above-mentioned nozzle 12 and a housing, which form a suction chamber 11 therein.

アノード組立体は通路24及び25を通り、そしてノズル12を取り囲む通路2 6を通って供給される冷却液により冷却される。冷却液は連結部27(第2図) を介して供給され、連結部29及びチューブ28(第1図)を介して戻される。The anode assembly passes through passages 24 and 25 and surrounds nozzle 12 in passage 2. It is cooled by a cooling liquid supplied through 6. The cooling liquid is connected to the connection part 27 (Fig. 2) and returned via connection 29 and tube 28 (FIG. 1).

カソード及びアノード組立体1及び2は絶縁部材30.31゜32.33及び3 4により互いに電気的に絶縁されている。Cathode and anode assemblies 1 and 2 are insulating members 30.31°32.33 and 3 4 and are electrically insulated from each other.

ノズル12はアノード、組立体2と連結するためのねじ部分を有する。アノード 組立体の端部部分及びその内部部分はシール・ガスケット35及び36のための 切除された溝を有し、これらのガスケットの部分は、ノズル12を要求された位 置まで容易にねじ込み、同時に(漏れテストで)冷却液供給圧力が2.5 at m又はそれ以上において作動空間への冷却液の侵入から装置をシールするように 選択される。The nozzle 12 has a threaded portion for connection with the anode assembly 2. anode The end portions of the assembly and its interior portions are provided for sealing gaskets 35 and 36. With grooves cut out, these gasket sections hold the nozzle 12 in the required position. At the same time, the coolant supply pressure was 2.5 at (in a leak test). to seal the equipment from ingress of coolant into the working space at m or more. selected.

ブツシュ8の底端部部分は、ブツシュ8をカソード組立体1のハウジング3にね じ込むことによりアーク・チャンバ7の上端に関して電極6をノズル12の先細 チャンバ21に保持するように形成される。この要求された位置において、電極 6はチャンバ11及び12に受容された先細部分19を有し、その端面はプラズ マジェット形成領域に面している。ア−り・チャンバ7から電極6の端面までの 距離“11″は先細チャンバ21の長さ“l”の0,1から0.5に等しいよう に選択される。この距離は電極の熱安定性を損い安定したアーク発生に影響する ので0,11より短くするべきでなく、またアークがプラズマ形成ガスの非常に 高い供給率において点火されるので0.5β(h>0.54’)を越えるべきで ない。The bottom end portion of the bushing 8 connects the bushing 8 to the housing 3 of the cathode assembly 1. By inserting the electrode 6 into the nozzle 12 with respect to the upper end of the arc chamber 7. It is formed to be held in the chamber 21. At this required position, the electrode 6 has a tapered portion 19 received in chambers 11 and 12, the end faces of which are plated with plasma. Facing the magget forming area. From the air chamber 7 to the end face of the electrode 6 The distance "11" is equal to 0.1 to 0.5 of the length "l" of the tapered chamber 21. selected. This distance impairs the thermal stability of the electrode and affects stable arc generation. Therefore, it should not be shorter than 0.11, and the arc is very close to the plasma forming gas. It should exceed 0.5β (h > 0.54') as it will be ignited at high feed rates. do not have.

電極6の先細部分19の長さ“b”は直径“d”の3.5から4.5倍になるよ うに選択され、且つ安定したアーク発生に影響するので3.5dより小さくなる べきでなく、一方、長さが4.5dを越える(b>4.5d)場合には安定した アーク発生のためにプラズマ形成ガスの非常に高い供給率が要求される。The length "b" of the tapered portion 19 of the electrode 6 is 3.5 to 4.5 times the diameter "d". It is selected to be smaller than 3.5d because it affects stable arc generation. On the other hand, if the length exceeds 4.5d (b>4.5d), it is stable. A very high supply rate of plasma-forming gas is required for arc generation.

記載された実施例において、冷却液はQ、 6atmより低くなく1゜5 at mより高くない圧力により供給された給水(tapwater )である。圧力 が0.6 atmより低い場合にはノズル12の冷却の度合いが不充分でありア ークは不安定となり、また圧力が1.5 atmより高い場合にはシー・ル・ガ スケット35゜36の負荷が増大し結局のところ破損に至るので、記載した範囲 を越える冷却液供給圧力の使用は無分別である。ガスケット36のシール特性が 損われると水はガス・チャンバ11に入りアノード組立体2に関する電極6の電 気的絶縁を破壊する。電気アークが電極6の側面とアノード組立体2のハウジン グ20との間で点火されるにつれて電気的故障となる。In the described embodiment, the coolant has a Q, not lower than 6 atm and 1°5 atm. The tapwater is supplied at a pressure not higher than m. pressure If it is lower than 0.6 atm, the degree of cooling of the nozzle 12 is insufficient and the The arc becomes unstable, and if the pressure is higher than 1.5 atm, the seal The load on the sockets 35 and 36 will increase and eventually lead to damage, so please do not exceed the specified range. It is imprudent to use a coolant supply pressure in excess of . The sealing characteristics of gasket 36 are Once damaged, water enters the gas chamber 11 and reduces the voltage of the electrode 6 with respect to the anode assembly 2. Destroys electrical insulation. An electric arc connects the side of electrode 6 and the housing of anode assembly 2. As the fuel is ignited between the spark plug and the plug 20, an electrical failure occurs.

生物学的組織のプラズマアーク切断装置は次のように作動する。The apparatus for plasma arc cutting of biological tissue operates as follows.

先ず第1に装置は、ノズル12の作動状態を検査し、且つ入口からアーク−チャ ンバ7までを約0.4〜0.5 @IIの所定の距離でチャンバ21のブツシュ 8に電極6をセットすることにより調整される。First of all, the device checks the operating condition of the nozzle 12 and discharges the arc chamber from the inlet. At a predetermined distance of approximately 0.4 to 0.5@II from the chamber 7 to the chamber 21, It is adjusted by setting the electrode 6 at 8.

プラズマ形成ガスの必要な供給量がセットされ、冷却液の送りが作動され、そし てアーク電圧はスイッチを入れられる。The required supply of plasma-forming gas is set, the coolant feed is activated, and The arc voltage is then switched on.

連結部29及びチューブ28を介する冷却液の流れは、電極6及びカソード組立 体1を冷却し且つ連結部17を介して装置から離れるために、アノード組立体2 及びノズル12を冷却し、そしてチャンネル24から連結部27を介してチャン ネル9に流れながら通路24.25及び26に入る。しかしながら、冷却水の循 環は添付された図面、第1図に示され且つ上述された如く逆転され得る。The flow of coolant through connection 29 and tube 28 connects electrode 6 and cathode assembly. The anode assembly 2 is used to cool the body 1 and leave the device via the connection 17. and cools the nozzle 12 and drains the chamber from the channel 24 via the connection 27. Flowing into channel 9, it enters passages 24, 25 and 26. However, the cooling water circulation The ring may be inverted as shown in the accompanying drawings, FIG. 1, and as described above.

プラズマ形成ガスは、スリット5及び通路9を介してノズル12の円筒状ガスチ ャンバ11に流れるためチューブ14の連結部13に供給される。ガスの低い供 給圧力(0,1sts以下)と低い供給率でチャンバ7の全面における安定した アークは、電極6の先細部分19の長さのその直径に対する最適な比、及びアー ク・チャンバ7に関するノズル12の先細チャンバ21における電極6の最適な 位置決めに基づき、並びに先細チャンバ21の先細りにより、維持される。アー ク・チャンバ7からの通路10の遠隔さ及びこれらの通路10の長さはプラズマ ジェット形成チャンバ23の長さに整合される。The plasma-forming gas enters the cylindrical gas outlet of the nozzle 12 through the slit 5 and the passage 9. It is supplied to the connection 13 of the tube 14 to flow into the chamber 11 . low gas supply Stable supply pressure (below 0.1 sts) and low supply rate on the entire surface of chamber 7 The arc is determined by the optimum ratio of the length of the tapered portion 19 of the electrode 6 to its diameter and the arc Optimal alignment of the electrode 6 in the tapered chamber 21 of the nozzle 12 with respect to the arc chamber 7 This is maintained based on the positioning as well as the taper of the tapered chamber 21. Ah The remoteness of the passageways 10 from the plasma chamber 7 and the length of these passageways 10 Matched to the length of the jet forming chamber 23.

冷却液及びプラズマ形成ガスが装置に供給されると、電極6の端面とノズル12 のアーク・チャンバ7の円筒状表面との間のギャップは破壊され且つイオン化さ れ、電圧は圧縮アーク電力供給源からノズル12及び電極6を横切って供給され る。アーク点火の瞬間における閃光を避は且つアノード組立体2を暖めるための 時間をもつために、アークは低い供給電流と低いガス供給率で初期的にイオン化 される。このことが成し遂げられ、アーク電流が作動値まで上昇され、そしてプ ラズマ形成ガスの供給量が必要なパラメータのプラズマジェットを得るために調 節される。When the cooling liquid and plasma forming gas are supplied to the device, the end face of the electrode 6 and the nozzle 12 and the cylindrical surface of the arc chamber 7 is destroyed and ionized. and voltage is supplied across the nozzle 12 and electrode 6 from a compressed arc power supply. Ru. to avoid flash at the moment of arc ignition and to warm the anode assembly 2. In order to have time, the arc is initially ionized with low supply current and low gas supply rate. be done. This is accomplished, the arc current is raised to the operating value, and the The supply amount of plasma-forming gas is adjusted to obtain a plasma jet with the required parameters. It is stipulated.

トーチすなわち生物学的組織のプラズマ切断装置の開示したデザインは、幅広い 範囲内での可変自在のプラズマジェットを発する低い速度を考慮して、プラズマ 形成ガスの非常に低い供給率及び圧力に対して信頼でき且つ能率的な生物学的組 織の切断を提供する。The disclosed design of a torch or plasma cutting device for biological tissue has a wide range of uses. Considering the low velocity of emitting a variable plasma jet within a range, the plasma Reliable and efficient biological assembly for very low supply rates and pressures of forming gases Provides textile cutting.

産業上の利用可能性 本発明は手術、例えば腫瘍を切り裂き切開した血管を凝結させる作業において使 用され得る。Industrial applicability The present invention can be used in surgery, for example, to cut open a tumor and coagulate the incised blood vessels. can be used.

国際調査報告international search report

Claims (1)

【特許請求の範囲】 1.カソード組立体(1)はプラズマ形成ガスを供給するための通路(15)を 具えたハウジング(3)とハウジング(3)に収容された電極(6)とを有し且 つ先細な部分(19)を有し、アノード組立体(2)はプラズマジェットの発生 領域に面して電極(6)の先細部分(19)を受容するハウジング(20)及び ノズル(12)を有し、ノズル(12)は円筒状チャンバ(11)、先細なチャ ンバ(21)、アーク・チャンバ(7)及びプラズマジェット形成チャンバ(2 3)を連続的に形成する生物学的組織のプラズマアーク切断装置において、電極 (6)の先細部分(19)は切頭円錐形状を有し、電極(6)の端面であるより 小さい端部はプラズマ・ジェットの発生領域に面し、電極(6)は円筒状及び先 細チャンバ(11及び21)に受容され、これによりアーク・チャンバ(7)か ら電極(6)の端面までの距離は先細チャンバ(21)の長さの0.1から0. 5に等しく、そして電極(6)の先細部分(19)の長さは電極の直径の3.5 から4.5倍であることを特徴とする生物学的組織のプラズマアーク切断装置。 2.上記カソード組立体(1)のプラズマ形成ガスを供給するための通路(10 )はノズル(12)のプラズマジェット形成チャンバ(23)の長さに略等しい 長さを有し、電極(6)の端面から先細部分(19)の長さだけ概略離間されて いることを特徴とする請求の範囲第1項に記載の装置。[Claims] 1. The cathode assembly (1) has a passageway (15) for supplying plasma-forming gas. a housing (3) and an electrode (6) housed in the housing (3); The anode assembly (2) has two tapered portions (19) for generating a plasma jet. a housing (20) receiving the tapered portion (19) of the electrode (6) facing the area; The nozzle (12) has a cylindrical chamber (11), a tapered chamfer chamber (21), arc chamber (7) and plasma jet formation chamber (2). 3) In a plasma arc cutting device for biological tissue that continuously forms The tapered part (19) of (6) has a truncated conical shape and is the end face of the electrode (6). The small end faces the generation area of the plasma jet, and the electrode (6) has a cylindrical shape and a tip. is received in the narrow chambers (11 and 21), thereby allowing the arc chamber (7) to The distance from the end face of the electrode (6) to the end face of the electrode (6) is between 0.1 and 0.1 of the length of the tapered chamber (21). 5 and the length of the tapered portion (19) of the electrode (6) is equal to 3.5 of the diameter of the electrode. A plasma arc cutting device for biological tissue, characterized in that the cutting speed is 4.5 times greater than 2. Passage (10) for supplying plasma forming gas of the cathode assembly (1) ) is approximately equal to the length of the plasma jet formation chamber (23) of the nozzle (12). having a length and spaced approximately the length of the tapered portion (19) from the end surface of the electrode (6). 2. A device according to claim 1, characterized in that:
JP61505452A 1986-08-11 1986-08-11 Biological tissue plasma arc cutting equipment Pending JPH01500402A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SU1986/000077 WO1988001218A1 (en) 1986-08-11 1986-08-11 Device for plasma-arc cutting of biological tissues

Publications (1)

Publication Number Publication Date
JPH01500402A true JPH01500402A (en) 1989-02-16

Family

ID=21617022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61505452A Pending JPH01500402A (en) 1986-08-11 1986-08-11 Biological tissue plasma arc cutting equipment

Country Status (5)

Country Link
US (1) US4855563A (en)
EP (1) EP0277233B1 (en)
JP (1) JPH01500402A (en)
DE (1) DE3670022D1 (en)
WO (1) WO1988001218A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285679A (en) * 2004-03-30 2005-10-13 Toshio Goto Arc discharge negative electrode, arc discharge electrode, and arc discharge light source
JP2008543355A (en) * 2005-05-09 2008-12-04 エルベ エレクトロメディジン ゲーエムベーハー Endoscopic surgery device for argon plasma coagulation

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008511C1 (en) * 1990-06-26 2001-03-20 Univ British Columbia Plasma torch with axial reactant feed
US5214262A (en) * 1992-04-03 1993-05-25 Esab Welding Products, Inc. Electrode adaptor
US5591356A (en) * 1992-11-27 1997-01-07 Kabushiki Kaisha Komatsu Seisakusho Plasma torch having cylindrical velocity reduction space between electrode end and nozzle orifice
SE503334C2 (en) * 1993-06-01 1996-05-28 Nikval Int Ab Device for stopping bleeding and forming a crust by means of a plasma jet
DK0784452T3 (en) * 1994-08-29 2004-02-16 Plasma Surgical Invest Ltd Apparatus for stopping bleeding in living human and animal tissues
US5514848A (en) * 1994-10-14 1996-05-07 The University Of British Columbia Plasma torch electrode structure
US5958266A (en) * 1997-10-24 1999-09-28 Fugo; Richard J. Method of plasma incision of matter with a specifically tuned radiofrequency electromagnetic field generator
US6479785B1 (en) 1998-07-09 2002-11-12 Richard J. Fugo Device for plasma incision of mater with a specifically tuned radiofrequencty electromagnetic field generator
US6787730B2 (en) 1998-07-09 2004-09-07 Damian Coccio Device for plasma incision of matter with a specifically tuned radiofrequency electromagnetic field generator
US6475215B1 (en) * 2000-10-12 2002-11-05 Naim Erturk Tanrisever Quantum energy surgical device and method
US8308682B2 (en) 2003-07-18 2012-11-13 Broncus Medical Inc. Devices for maintaining patency of surgically created channels in tissue
US8409167B2 (en) 2004-07-19 2013-04-02 Broncus Medical Inc Devices for delivering substances through an extra-anatomic opening created in an airway
SE529056C2 (en) 2005-07-08 2007-04-17 Plasma Surgical Invest Ltd Plasma generating device, plasma surgical device and use of a plasma surgical device
SE529053C2 (en) 2005-07-08 2007-04-17 Plasma Surgical Invest Ltd Plasma generating device, plasma surgical device and use of a plasma surgical device
SE529058C2 (en) 2005-07-08 2007-04-17 Plasma Surgical Invest Ltd Plasma generating device, plasma surgical device, use of a plasma surgical device and method for forming a plasma
US8088126B2 (en) * 2006-08-17 2012-01-03 Fugo Richard J Method and apparatus for plasma incision of cardiovascular tissue
US7928338B2 (en) 2007-02-02 2011-04-19 Plasma Surgical Investments Ltd. Plasma spraying device and method
US8735766B2 (en) 2007-08-06 2014-05-27 Plasma Surgical Investments Limited Cathode assembly and method for pulsed plasma generation
US7589473B2 (en) * 2007-08-06 2009-09-15 Plasma Surgical Investments, Ltd. Pulsed plasma device and method for generating pulsed plasma
US8513565B2 (en) * 2008-04-10 2013-08-20 Hypertherm, Inc. Nozzle head with increased shoulder thickness
US8613742B2 (en) 2010-01-29 2013-12-24 Plasma Surgical Investments Limited Methods of sealing vessels using plasma
US9089319B2 (en) 2010-07-22 2015-07-28 Plasma Surgical Investments Limited Volumetrically oscillating plasma flows
US9345532B2 (en) 2011-05-13 2016-05-24 Broncus Medical Inc. Methods and devices for ablation of tissue
US8709034B2 (en) 2011-05-13 2014-04-29 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
WO2013078235A1 (en) 2011-11-23 2013-05-30 Broncus Medical Inc Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
JP5526345B2 (en) * 2012-03-02 2014-06-18 独立行政法人科学技術振興機構 Bubble ejection member and manufacturing method thereof, gas-liquid ejection member and manufacturing method thereof, local ablation device and local ablation method, injection device and injection method
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
US20140276717A1 (en) * 2013-03-15 2014-09-18 Covidien Lp Bipolar gas plasma coagulation nozzle
US10237962B2 (en) 2014-02-26 2019-03-19 Covidien Lp Variable frequency excitation plasma device for thermal and non-thermal tissue effects
WO2017204682A1 (en) * 2016-05-26 2017-11-30 Александр Иннокентьевич ЛАЖЕНИЦЫН Device for plasma treatment of wounds
US10524849B2 (en) 2016-08-02 2020-01-07 Covidien Lp System and method for catheter-based plasma coagulation
EP4205515A2 (en) 2020-08-28 2023-07-05 Plasma Surgical Investments Limited Systems, methods, and devices for generating predominantly radially expanded plasma flow

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2862099A (en) * 1957-06-17 1958-11-25 Union Carbide Corp Arc torch process with reactive gases
US3434476A (en) * 1966-04-07 1969-03-25 Robert F Shaw Plasma arc scalpel
SE385274B (en) * 1970-04-24 1976-06-21 Messer Griesheim Gmbh PLASMASKER BURNER
US3914573A (en) * 1971-05-17 1975-10-21 Geotel Inc Coating heat softened particles by projection in a plasma stream of Mach 1 to Mach 3 velocity
US3838242A (en) * 1972-05-25 1974-09-24 Hogle Kearns Int Surgical instrument employing electrically neutral, d.c. induced cold plasma
US3991764A (en) * 1973-11-28 1976-11-16 Purdue Research Foundation Plasma arc scalpel
FR2348168A1 (en) * 1976-04-14 1977-11-10 Cables De Lyon Geoffroy Delore BUTT-TO-BUT OPTIC FIBER WELDING DEVICE
JPS551017A (en) * 1978-06-16 1980-01-07 Hiroshi Tanida Torch for generating transfer type plasma jet
DD142267B1 (en) * 1979-03-06 1980-12-24 Jochen Boehme Plasma torch with contact protection
US4369919A (en) * 1980-10-31 1983-01-25 Npk Za Kontrolno Zavarachni Raboti Plasma torch for processing metals in the air and under water
JPH0763033B2 (en) * 1984-06-27 1995-07-05 吉明 荒田 High power plasma jet generator
US4748312A (en) * 1986-04-10 1988-05-31 Thermal Dynamics Corporation Plasma-arc torch with gas cooled blow-out electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285679A (en) * 2004-03-30 2005-10-13 Toshio Goto Arc discharge negative electrode, arc discharge electrode, and arc discharge light source
JP2008543355A (en) * 2005-05-09 2008-12-04 エルベ エレクトロメディジン ゲーエムベーハー Endoscopic surgery device for argon plasma coagulation

Also Published As

Publication number Publication date
WO1988001218A1 (en) 1988-02-25
US4855563A (en) 1989-08-08
EP0277233A1 (en) 1988-08-10
DE3670022D1 (en) 1990-05-10
EP0277233A4 (en) 1988-12-12
EP0277233B1 (en) 1990-04-04

Similar Documents

Publication Publication Date Title
JPH01500402A (en) Biological tissue plasma arc cutting equipment
US3562486A (en) Electric arc torches
JP5231221B2 (en) Plasma generator and plasma surgical device
US7544913B2 (en) Cooled plasma torch and method for cooling the torch
US7375303B2 (en) Plasma arc torch having an electrode with internal passages
US3991764A (en) Plasma arc scalpel
US8465487B2 (en) Plasma-generating device having a throttling portion
US4311897A (en) Plasma arc torch and nozzle assembly
KR0137957B1 (en) Gas cooled cathode for arc torch
CN100443234C (en) Tip for a plasma arc torch
US2951143A (en) Arc torch
EP0106091A2 (en) Plasma spray gun
JPH10512708A (en) Alignment device and method for plasma arc torch device
KR100303959B1 (en) Plasma gun head
US5944901A (en) Indirect plasmatron
CN104439662B (en) Electrode structure for plasma torch
JPS63175324A (en) Plasma electron gun assembly
US4851636A (en) Method and apparatus for generating an ultra low current plasma arc
WO1992018983A1 (en) Long life arcjet thruster having diffuse cathode arc attachment
EP0314791A1 (en) Electrode structure of a non-transfer-type plasma torch
US4706257A (en) Gas laser generator and method of operating same
RU2287203C2 (en) Plasma cathode-compensator
JPH082500B2 (en) Plasma cutting torch
JP2010137266A (en) Insert chip and plasma torch
JP2002086274A (en) Nozzle for plasma torch