JPH0149725B2 - - Google Patents

Info

Publication number
JPH0149725B2
JPH0149725B2 JP19774687A JP19774687A JPH0149725B2 JP H0149725 B2 JPH0149725 B2 JP H0149725B2 JP 19774687 A JP19774687 A JP 19774687A JP 19774687 A JP19774687 A JP 19774687A JP H0149725 B2 JPH0149725 B2 JP H0149725B2
Authority
JP
Japan
Prior art keywords
bacteria
water
cmps
polymer compound
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19774687A
Other languages
Japanese (ja)
Other versions
JPS6440506A (en
Inventor
Tatsuo Tashiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP19774687A priority Critical patent/JPS6440506A/en
Publication of JPS6440506A publication Critical patent/JPS6440506A/en
Publication of JPH0149725B2 publication Critical patent/JPH0149725B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、新規な細菌除去方法、さらに詳しく
いえば、特定の高分子化合物を用いて、水中に存
在する細菌、例えば大腸菌、枯草菌、黄色ブドウ
状球菌、緑膿菌などを細菌したり、補促除去する
方法に関するものである。 従来の技術 環境汚染防止や保健上の立場から、プール、浴
場、病院からの排水は、放水に先立つて殺菌する
必要があるし、また河川水、地下水、井戸水など
を飲料用として供する場合にも殺菌が必要であ
る。これまで、このよな水の殺菌には、塩素ガ
ス、塩素酸塩、オゾンなどの殺菌剤を添加する方
法が行われているが、このような方法では、薬剤
が残留し、これが二次汚染の原因となるという欠
点がある。 一方、水を浄化する方法として、適当な補捉剤
を用いて水中の微生物を補捉除去する方法が知ら
ているが、この際非水溶性物質を補捉剤として用
いることによつて、薬剤の残留を回避することが
できる。この微生物の補捉剤としては、強塩基性
アニオン交換樹脂が知らているが、その補捉性能
は十分とはいえない。また、ジビニルベンゼン橋
かけポリ−N−ベンジル−4−ビニルピリジニウ
ムブロミドも水中の微生物を補捉する作用を有す
るが、その補捉性能は低い〔「高分子加工」、第34
巻、第583ページ(1985年)参照〕。 発明が解決しようする問題点 本発明は、水中の細菌を、能率よく除去するこ
とができ、しかも残留毒性がなく、後処理も簡単
な処理方法を提供することを目的としてなされた
ものである。 問題点を解決するための手段 本発明者は、水中の細菌の除去方法について
種々研究を重ねた結果、ある種の高分子化合物が
水中の細菌に対し、強力な殺菌、除菌作用を示す
ことを見出し、この知見に基づいて本発明をなす
に至つた。 すなわち、本発明は、細菌を含む水を、 (a) スチレン単位、 (b) 一般式 〔式中のRは一般式 −O−(CH2CH2O)nH …() (ただしnは1〜45の整数) −O−(CH2CH2O)n′R′ …() (ただしR′は長鎖アルキル基、n′は1〜10の整
数) −NH−(CH2CH2NH)nH …() (ただしnは前記と同じ意味をもつ) 又は (ただしmは8〜16の整数、nは前記と同じ意
味をもつ) で表わされる残基である〕 で表わされる構成単位、及び (c) ジビニルベンゼン単位 から成る橋かけポリスチレン系高分子化合物で処
理することを特徴とする細菌除去方法を提供する
ものである。 本発明方法で用いるポリスチレン単位、一般式
()の構成単位及びジビニルベンゼン単位から
成る橋かけポリスチレン系高分子化合物は、ジビ
ニルベンゼン橋かけポリスチレンをクロロメチル
化し、これにポリエチレングリコラートやポリエ
チレンイミンを反応させることによつて製造する
ことができる。また、前記一般式()の四級化
された残基をもつ高分子化合物は、一般式()
の残基をもつ高分子化合物をヨウ化アルキルで四
級化することによつて得ることができる。 この際、原料として用いるジビニルベンゼン橋
かけポリスチレンのクロロメチル化物(以下
CMPSと略記する)は市販品として簡単に入手す
ることができ、また公知の方法によりジビニルベ
ンゼン橋かけクロロメチル基を所要の割合で導入
することによつて容易に製造することができる。 このCMPSにポリエチレングリコール又はその
モノアルキルエーテルを導入するには、乾燥した
ポリエチレングリコール又はそのモノアルキルエ
ーテルの金属ナトリウムを加え、約100℃におい
て1〜3日間かきまぜることによつてナトリウム
を完全に反応させ、ナトリウムポリエチレングリ
コラート又はそのモノアルキルエーテルを製造
し、これにジオキサンを加えて加温しかきまぜて
溶解させたのち、これにCMPSを加え、95〜97℃
において1〜3日間かきまぜて反応させる。この
際、ベンゼンを溶媒として使用することもできる
が、ジオキサンを用いた方がポリエチレングリコ
ール又はそのモノアルキルエーテルの導入率を高
くすることができる。 また、CMPSエチレンジアミン、ポリエチレン
ポリアミン又はポリエチレンイミンを導入するに
は、ジメチルホルムアミド中にCMPSを入れ、こ
れにエチレンジアミン、ポリエチレンアミン又は
ポリエチレンイミンを加え、約100℃において5
〜10日間かきまぜる。このようにしてエチレンジ
アミン、ポリエチレンアミン又はポリエチレンイ
ミンを導入したCMPSが得られらるが、これに理
論量のヨウ化アルキルを反応させると四級化され
た残基をもつ高分子化合物を得ることができる。 本発明方法において、このようにして得た高分
子化合物を、細菌含有水に加え、かきまぜること
によつてこの高分子化合物と細菌とを十分に接触
させる。このように処理すると水中の生菌数は漸
次減少するが、接触初期(2〜3時間)では時間
経過に伴う生菌数の対数と接触時間との間にはほ
ぼ直接関係が成立する。したがつて、各高分子化
合物の生菌数減少効果は生菌数減少係数(D)を
次式 D=(V/Wt)log(Np/Nt) から求めることによつて比較することができる。
ここでVは接触液の体積(ml)、Wは高分子の質
量(g)、Npは初生菌数、Ntはt時間(hr)後の
生菌数である。一般式()又は()の残基を
含有する高分子化合物と接触させた場合、接触4
時間後の接触液の600nmの吸光度(od660)は接
触前よりも減少していることから、これらの高分
子化合物は水中の菌を補捉することが分かつた。
一般式()又は()の残基を含有する高分子
化合物との接触の場合、4時間接触後のod660
接触前よりもやや大きかつた。したがつて、この
高分子化合物は菌を補捉しない。しかし、この高
分子化合物は接触によつて生菌数を減少させたの
で、抗菌性を有するといえる。 また、カラム方式で使用する場合、カラムに前
記高分子化合物を充填し、一方の口から菌含有水
を通過させることにより、もう一方の口から殺菌
され、あるいは除菌された水を得ることができ
る。 菌を補捉し、飽和した高分子化合物は1N程度
の水酸化ナトリウム液に浸漬するか、又は同液を
同高分子化合物充填カラムを通過させることによ
つて、その補捉能を再生することができる。 実施例 次に、参考例と実施例により本発明をさらに詳
細に説明する。 参考例 1 分子量約600のポリエチレングリコール(以下
PEG600と略記する)0.016モルと金属ナトリウム
0.016モルとを混合し、窒素ガスを通しながら、
約100℃で24時間かきまぜ、金属ナトリウムを完
全に反応させた。これに200〜400メツシユの
CMPSビーズ(クロロメルスチレン単位31.54モ
ル%、スチレン単位66.46モル%及びジビニルベ
ンゼン単位2.00モル%から成り、塩素含量9.32重
量%、クロロメチル基含量0.0079モル)3.00gと
ジオキサン20mlを加え、約95℃で30時間かきまぜ
た。反応終了後適当量の沸騰水を加えてかきまぜ
た後反応生成物を濾別し、沸騰水200mlで洗つた。
さらに、これに水50mlを加えて約95℃でかきまぜ
を24時間続けた。反応物を濾別後、再び加熱かき
まぜ及び濾過の操作を5回繰り返した。この生成
物をエチルアルコールで72時間抽出後、80℃で減
圧乾燥した。 このようにして、PEG600で置換されたベンジ
ル基をもつCMPSが得られた。このものの収量及
び元素分析値を表1に示す。 また、PEG600の代りに、そのラウリルエーテ
ル(以下PEGLEと略記する)を同様に反応させ
たときの反応条件及び結果を表1に示す。 参考例 2 参考例1と同じCMPS3.00gとエチレンジアミ
ン2.37g(0.0394モル)とをジメチルホルムアミ
ド20ml中において、約98℃で192時間かきまぜ、
反応させた。反応終了後熱水を加えて反応生成物
を濾別し、熱水、1N−塩酸、1N水酸化ナトリウ
ム水溶液及び水で洗浄した。次いで、この反応生
成物に水50mlを加えて約95℃で24時間かきまぜた
のち濾別する操作を7回繰返し、さらにエチルア
ルコールで72時間抽出し、80℃で減圧乾燥した。 このようにして、エチレンジアミン置換の
CMPS(以下CMPS−EDと略記する)を得た。こ
のものの収量及び元素分析値を表1に示す。 同様にしてトラエチレンペンタミン置換の
CMPS(以下CMPS−TEPと略記する)及びポリ
エチレンイミン置換のCMPS(以下CMPS−PEI
と略記する)を製造した。このときの反応条件及
び結果を表1に示す。 なお、PEI300及びPEI1200はそれぞれ分子量約
300のPEI及び分子量1200のPEIを示す。 参考例 3 参考例2で得たCMPS−ED3.00gとジオキサ
ン15mlの混合物に、ヨウ化オクタン5.70g
(0.0237モル)を加え、約95℃で96時間かきまぜ
た。反応生成物を濾別し、メチルアルコール及び
沸騰水で洗つたのち、水50mlを加え、約95℃で24
時間かきまぜ濾別する操作を7回繰り返した。次
いでエチルアルコールで72時間抽出し、80℃で減
圧乾燥した。このようにしてヨウ化オクタンで四
級化されたCMPS−ED(以下CMPS−ED−IOと
略記する)を得ることができた。このものの収量
及び元素分析値を表1に示す。 同様にして、CMPS−TEPとヨウ化ドデカン
とを反応させ、ヨウ化ドデカンで四級化された
CMPS−TEP(以下CMPS−TEP−IDDと略記す
る)を得た。この際の反応条件及び結果を表1に
示す。
Industrial Application Field The present invention provides a novel method for removing bacteria, more specifically, a method for removing bacteria present in water, such as Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Pseudomonas aeruginosa, using a specific polymer compound. It is related to methods for removing bacteria. Conventional Technology For environmental pollution prevention and health reasons, wastewater from pools, bathhouses, and hospitals must be sterilized before being discharged, and when river water, groundwater, well water, etc. Sterilization is required. Up until now, methods have been used to disinfect such water by adding disinfectants such as chlorine gas, chlorate, and ozone, but these methods leave residual chemicals, which can lead to secondary contamination. It has the disadvantage of causing On the other hand, as a method for purifying water, there is a known method of using an appropriate scavenger to capture and remove microorganisms in the water. can be avoided. Strongly basic anion exchange resins are known as scavengers for these microorganisms, but their scavenging performance cannot be said to be sufficient. In addition, divinylbenzene-crosslinked poly-N-benzyl-4-vinylpyridinium bromide also has the effect of capturing microorganisms in water, but its scavenging performance is low [“Kobunshi Processing”, No. 34
vol., p. 583 (1985)]. Problems to be Solved by the Invention The purpose of the present invention is to provide a treatment method that can efficiently remove bacteria in water, has no residual toxicity, and has simple post-treatment. Means for Solving the Problems As a result of various studies on methods for removing bacteria in water, the inventor of the present invention has discovered that certain polymer compounds exhibit strong bactericidal and sterilizing effects against bacteria in water. The present invention was developed based on this finding. That is, the present invention provides water containing bacteria with (a) styrene units, (b) general formula [R in the formula is the general formula -O-( CH2CH2O )nH...() (where n is an integer from 1 to 45) -O-(CH2CH2O ) n'R '...() ( (where R' is a long-chain alkyl group, n' is an integer from 1 to 10) -NH-(CH 2 CH 2 NH) nH ... () (However, n has the same meaning as above) or (where m is an integer of 8 to 16, and n has the same meaning as above) A cross-linked polystyrene-based polymer compound consisting of a structural unit represented by The present invention provides a method for removing bacteria characterized by a treatment. The cross-linked polystyrene polymer compound composed of polystyrene units, structural units of the general formula (), and divinylbenzene units used in the method of the present invention is produced by chloromethylating divinylbenzene-crosslinked polystyrene, and then reacting polyethylene glycolate or polyethyleneimine with this. It can be manufactured by In addition, the polymer compound having a quaternized residue of the general formula () is a polymer compound having a quaternized residue of the general formula ().
It can be obtained by quaternizing a polymer compound having a residue of with an alkyl iodide. At this time, chloromethylated divinylbenzene-crosslinked polystyrene (hereinafter referred to as
CMPS (abbreviated as CMPS) can be easily obtained as a commercial product, and can also be easily produced by introducing divinylbenzene-linked chloromethyl groups in the required ratio by a known method. In order to introduce polyethylene glycol or its monoalkyl ether into this CMPS, dry metallic sodium of polyethylene glycol or its monoalkyl ether is added, and the sodium is completely reacted by stirring at about 100°C for 1 to 3 days. , sodium polyethylene glycolate or its monoalkyl ether is produced, dioxane is added thereto, heated and stirred to dissolve it, then CMPS is added thereto and heated to 95-97°C.
Stir and react for 1 to 3 days. At this time, benzene can be used as a solvent, but the introduction rate of polyethylene glycol or its monoalkyl ether can be increased by using dioxane. In addition, to introduce CMPS ethylene diamine, polyethylene polyamine or polyethylene imine, put CMPS in dimethylformamide, add ethylene diamine, polyethylene amine or polyethylene imine to it, and heat it at about 100°C for 50 minutes.
Stir for ~10 days. In this way, CMPS containing ethylenediamine, polyethyleneamine, or polyethyleneimine can be obtained, but when this is reacted with a stoichiometric amount of alkyl iodide, a polymer compound with quaternized residues can be obtained. can. In the method of the present invention, the polymer compound thus obtained is added to bacteria-containing water and stirred to bring the polymer compound into sufficient contact with the bacteria. When treated in this way, the number of viable bacteria in the water gradually decreases, but at the initial stage of contact (2 to 3 hours), there is an almost direct relationship between the logarithm of the number of viable bacteria over time and the contact time. Therefore, the effectiveness of each polymer compound in reducing the number of viable bacteria can be compared by calculating the coefficient of decrease in the number of viable bacteria (D) from the following formula: D = (V/Wt) log (N p /N t ). Can be done.
Here, V is the volume of the contact liquid (ml), W is the mass of the polymer (g), N p is the number of primary bacteria, and N t is the number of viable bacteria after t time (hr). When contacted with a polymer compound containing a residue of general formula () or (), contact 4
The absorbance at 600 nm (od 660 ) of the contact solution after a period of time was lower than that before contact, indicating that these polymer compounds captured bacteria in the water.
In the case of contact with a polymer compound containing a residue of general formula () or (), the od 660 after 4 hours of contact was slightly higher than before contact. Therefore, this polymer compound does not trap bacteria. However, since this polymer compound reduced the number of viable bacteria upon contact, it can be said to have antibacterial properties. In addition, when using a column method, by filling the column with the polymer compound and passing bacteria-containing water through one port, sterilized or sterilized water can be obtained from the other port. can. The scavenging ability of the saturated polymer compound that traps bacteria is regenerated by immersing it in a 1N sodium hydroxide solution, or by passing the same solution through a column packed with the same polymer compound. Can be done. EXAMPLES Next, the present invention will be explained in more detail using reference examples and examples. Reference example 1 Polyethylene glycol with a molecular weight of approximately 600 (hereinafter
(abbreviated as PEG600) 0.016 mol and metallic sodium
Mix with 0.016 mol and pass nitrogen gas,
The mixture was stirred at approximately 100°C for 24 hours to completely react the metallic sodium. This will cost 200 to 400 meters.
Add 3.00 g of CMPS beads (consisting of 31.54 mol% chloromerstyrene units, 66.46 mol% styrene units, and 2.00 mol% divinylbenzene units, chlorine content 9.32% by weight, chloromethyl group content 0.0079 mol) and 20 ml dioxane, and heat at approximately 95°C. I stirred it for 30 hours. After the reaction was completed, an appropriate amount of boiled water was added and stirred, and the reaction product was filtered and washed with 200 ml of boiled water.
Furthermore, 50 ml of water was added to this, and stirring was continued for 24 hours at approximately 95°C. After the reaction product was filtered off, the heating, stirring and filtration operations were repeated five times. This product was extracted with ethyl alcohol for 72 hours and then dried under reduced pressure at 80°C. In this way, CMPS with benzyl groups substituted with PEG600 was obtained. The yield and elemental analysis values of this product are shown in Table 1. Table 1 also shows the reaction conditions and results when lauryl ether (hereinafter abbreviated as PEGLE) was reacted in the same manner instead of PEG600. Reference Example 2 The same 3.00 g of CMPS as in Reference Example 1 and 2.37 g (0.0394 mol) of ethylenediamine were stirred in 20 ml of dimethylformamide at about 98°C for 192 hours.
Made it react. After the reaction was completed, hot water was added and the reaction product was filtered and washed with hot water, 1N hydrochloric acid, 1N aqueous sodium hydroxide solution, and water. Next, 50 ml of water was added to this reaction product, the mixture was stirred at about 95°C for 24 hours and then filtered, which was repeated 7 times, extracted with ethyl alcohol for 72 hours, and dried under reduced pressure at 80°C. In this way, ethylenediamine substitution
CMPS (hereinafter abbreviated as CMPS-ED) was obtained. The yield and elemental analysis values of this product are shown in Table 1. Similarly, for traethylenepentamine substitution,
CMPS (hereinafter abbreviated as CMPS-TEP) and polyethyleneimine-substituted CMPS (hereinafter CMPS-PEI)
) was manufactured. Table 1 shows the reaction conditions and results at this time. In addition, PEI300 and PEI1200 each have a molecular weight of approximately
It shows a PEI of 300 and a PEI of molecular weight 1200. Reference Example 3 Add 5.70 g of octane iodide to a mixture of 3.00 g of CMPS-ED obtained in Reference Example 2 and 15 ml of dioxane.
(0.0237 mol) was added and stirred at approximately 95°C for 96 hours. After the reaction product was filtered and washed with methyl alcohol and boiling water, 50 ml of water was added and the mixture was heated at about 95°C for 24 hours.
The operation of stirring and filtering was repeated 7 times. The mixture was then extracted with ethyl alcohol for 72 hours and dried under reduced pressure at 80°C. In this way, CMPS-ED quaternized with octane iodide (hereinafter abbreviated as CMPS-ED-IO) could be obtained. The yield and elemental analysis values of this product are shown in Table 1. Similarly, CMPS-TEP was reacted with iodized dodecane, and quaternized with iodized dodecane.
CMPS-TEP (hereinafter abbreviated as CMPS-TEP-IDD) was obtained. The reaction conditions and results at this time are shown in Table 1.

【表】 * 反応したヨウ化オクタンのモル%
** 反応したヨウ化ドデカンのモル%
実施例 各参考例で得た高分子化合物と、大腸菌
(Escherichia coli、E.coliと略記)との接触は次
のように行つた。すなわち、培養したE.coliを遠
心分離により集菌、これを減菌蒸留脱イオン水で
2回洗浄し、遠心分離後、再び減菌蒸留脱イオン
水に再懸濁する。高分子化合物0.100〜0.250gを
ナス型フラスコに入れ、減菌蒸留脱イオン水18〜
19ml入れて高分子化合物を水によく濡らす。これ
を37℃に保ち、適当に希釈した菌懸濁液を2〜1
ml加えて全容20mlとし、かきまぜて接触させる。
一定時間毎に接触液を0.1ml彩取し、適当に希釈
して0.1〜0.2mlを寒天培地に植えつけて培養し、
生成したコロニー数から接触液中の生菌数を求め
た。 表2に用いた高分子化合物ごとの接触液中の初
生菌数、使用量、2時間接触後の生菌生存率、D
(生菌数減少係数)、接触前及び4時間接触後の
od660を示した。同一高分子化合物のDは初生菌
数及び使用量が異なつてもほぼ等しい値となつて
いる。 高分子化合物を多く使用することにより菌数を
さらに減少させることができる。例えばCMPS−
PEI6000.250gは初生菌数4.9×107個/mlを含む
20mlの液の菌数を1時間で103個/ml程度に減少
させた。
[Table] * Mol% of reacted octane iodide
** Mol% of reacted iodized dodecane
Examples Contact between the polymer compounds obtained in each reference example and Escherichia coli (abbreviated as E.coli) was performed as follows. That is, cultured E. coli is collected by centrifugation, washed twice with sterile distilled deionized water, centrifuged, and resuspended again in sterile distilled deionized water. Add 0.100 to 0.250 g of a polymer compound to an eggplant-shaped flask, and add 18 to 18 g of sterile distilled deionized water.
Pour 19 ml of water and thoroughly wet the polymer compound with water. Keep this at 37℃ and add 2 to 1 liters of the appropriately diluted bacterial suspension.
ml to make a total volume of 20 ml and stir to make contact.
Collect 0.1 ml of the contact solution at regular intervals, dilute it appropriately, and inoculate 0.1 to 0.2 ml onto an agar medium for culturing.
The number of viable bacteria in the contact solution was determined from the number of colonies generated. Table 2 shows the number of primary bacteria in the contact solution for each polymer compound used, the amount used, the survival rate of viable bacteria after 2 hours of contact, and D
(viable bacteria count reduction coefficient), before contact and after 4 hours of contact
Showed od 660 . The D of the same polymeric compound has approximately the same value even if the number of primary bacteria and the amount used differ. By using a large amount of polymeric compounds, the number of bacteria can be further reduced. For example, CMPS−
PEI6000.250g contains primary bacteria number 4.9× 107 /ml
The number of bacteria in 20 ml of liquid was reduced to about 10 3 cells/ml in 1 hour.

【表】 での接触で得た値。
[Table] Values obtained from contact.

Claims (1)

【特許請求の範囲】 1 細菌を含む水を、 (a) スチレン単位、 (b) 一般式 〔式中のRは一般式 −O−(CH2CH2O)nH (ただしnは1〜45の整数) −O−(CH2CH2O)n′R′ (ただしR′は長鎖アルキル基、n′は1〜10の整
数) −NH−(CH2CH2NH)nH (ただしnは前記と同じ意味をもつ) 又は (ただしmは8〜16の整数、nは前記と同じ意
味をもつ) で表わされる残基である〕 で表わされる構成単位、及び (c) ジビニルベンゼン単位 から成る橋かけポリスチレン系高分子化合物で処
理することを特徴とする細菌除去方法。
[Claims] 1. Water containing bacteria is defined by (a) a styrene unit, (b) a general formula [R in the formula has the general formula -O-(CH 2 CH 2 O)nH (where n is an integer from 1 to 45) -O-(CH 2 CH 2 O)n'R' (where R' is a long chain alkyl group, n' is an integer from 1 to 10) -NH-(CH 2 CH 2 NH) nH (however, n has the same meaning as above) or (where m is an integer of 8 to 16, and n has the same meaning as above) A cross-linked polystyrene-based polymer compound consisting of a structural unit represented by A method for removing bacteria, characterized by treating the bacteria.
JP19774687A 1987-08-07 1987-08-07 Antimicrobial and microorganism removing high polymer Granted JPS6440506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19774687A JPS6440506A (en) 1987-08-07 1987-08-07 Antimicrobial and microorganism removing high polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19774687A JPS6440506A (en) 1987-08-07 1987-08-07 Antimicrobial and microorganism removing high polymer

Publications (2)

Publication Number Publication Date
JPS6440506A JPS6440506A (en) 1989-02-10
JPH0149725B2 true JPH0149725B2 (en) 1989-10-25

Family

ID=16379654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19774687A Granted JPS6440506A (en) 1987-08-07 1987-08-07 Antimicrobial and microorganism removing high polymer

Country Status (1)

Country Link
JP (1) JPS6440506A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039879A1 (en) * 1999-12-02 2001-06-07 Kaneka Corporation Adsorbent for peptidoglycan and method and apparatus for adsorptively removing peptidoglycan

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003207181A1 (en) * 2002-02-07 2003-09-02 Asahi Kasei Kabushiki Kaisha Microorganism-trapping agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039879A1 (en) * 1999-12-02 2001-06-07 Kaneka Corporation Adsorbent for peptidoglycan and method and apparatus for adsorptively removing peptidoglycan

Also Published As

Publication number Publication date
JPS6440506A (en) 1989-02-10

Similar Documents

Publication Publication Date Title
US3923665A (en) Demand bactericide for disinfecting water and process of preparation
US3817860A (en) Method of disinfecting water and demand bactericide for use therein
Kawabata et al. Removal of bacteria from water by adhesion to cross-linked poly (vinylpyridinium halide)
KR101143338B1 (en) Antimicrobial quaternary ammonium organosilane coatings
Taylor et al. New water disinfectant: an insoluble quaternary ammonium resin-triiodide combination that releases bactericide on demand
JP2021520443A (en) Multifunctional resin and its manufacturing method and application
Chen et al. Biocidal polystyrene beads. III. Comparison of N‐halamine and quat functional groups
US6165485A (en) Biocidal organoclay
CN101747460B (en) Flocculation-sterilization double-effect macromolecule and preparation method thereof
CN107129582B (en) Arborization sterilization microsphere and preparation method and application thereof
CN105111367A (en) Macroporous crosslinked antibacterial macromolecular resin containing halamine functional group, as well as preparation and application thereof
JPH0149725B2 (en)
CN103193903A (en) Sterilization polymer containing quaternary ammonium salt and halamine or halamine precursor functional group as well as preparation method and application of sterilization polymer
Walfish et al. A new approach to water disinfection: I. N, N-dimethylalkylbenzyl-polystyrene anion exchange resins as contact disinfectants
JPH0236211A (en) Bactericidal and bacteriostatic polymer
Punyani et al. Synthesis, characterization, and antimicrobial properties of novel quaternary amine methacrylate copolymers
CN107022077B (en) Chlorine ball is grafted the method and its application of dendrimer preparation immobilization fungicide
US4446103A (en) Method of disinfecting water with insoluble disinfectant compositions
JP3949295B2 (en) A series of water-insoluble polymeric quaternary phosphonium salts used in fungicides
JPS6241641B2 (en)
RU2213063C1 (en) Method for preparing bactericidal preparation
CN114436386B (en) Composite water treatment agent
CN102924723A (en) Insoluble polymeric quaternary ammonium salt bactericide, preparation method thereof and sterilization packed bed
CN1150816C (en) Polymer-type disinfectant and its preparing process
JPH05285469A (en) Bacteria removing method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term