JPH0148928B2 - - Google Patents

Info

Publication number
JPH0148928B2
JPH0148928B2 JP56194884A JP19488481A JPH0148928B2 JP H0148928 B2 JPH0148928 B2 JP H0148928B2 JP 56194884 A JP56194884 A JP 56194884A JP 19488481 A JP19488481 A JP 19488481A JP H0148928 B2 JPH0148928 B2 JP H0148928B2
Authority
JP
Japan
Prior art keywords
epoxy
compound
group
reaction
urethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56194884A
Other languages
Japanese (ja)
Other versions
JPS5896622A (en
Inventor
Hiroshi Suzuki
Yutaka Asakawa
Akira Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Denka Kogyo KK filed Critical Asahi Denka Kogyo KK
Priority to JP56194884A priority Critical patent/JPS5896622A/en
Publication of JPS5896622A publication Critical patent/JPS5896622A/en
Publication of JPH0148928B2 publication Critical patent/JPH0148928B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規内部可撓性を有するウレタン変性
エポキシ樹脂硬化性組成物に関するものである。 従来、エポキシ樹脂に可撓性を付与するため側
鎖型のエポキシ樹脂、脂肪酸、重合脂肪酸変性エ
ポキシ樹脂、長鎖アルキルフエノール変性エポキ
シ樹脂、内部可塑化エポキシ樹脂等が開発、市販
されているが、性能面でそれぞれ一長一短があり
必ずしもすべての特性を満足するものは出現して
いない。例えば側鎖型エポキシ樹脂は一般に硬化
速度が遅く耐水性、熱衝撃性が不充分であり、又
重合性脂肪酸のグリシジルエステル系は一般に耐
アルカリ性に難点があり、コンクリート、モルタ
ル、セメント類の如く常時アルカリ水に浸漬され
る土木建築用途への使用はかなり限定される。
又、現在市販されている他の可撓性付与剤も性能
を満足させた場合、作業性が著しく劣るなどいず
れも改良を必要としている。 しかるに本発明は可撓性付与剤としてかかる性
能面での欠点を改良し、作業性の面でもすぐれる
新規内部可撓性を有するウレタン変性エポキシ樹
脂硬化性組成物を提供するものである。 本発明の硬化性組成物は必須の構成成分とし
て、平均1分子内に1個より多くのエポキシ基を
含有するエポキシ化合物(A)と、ポリエーテルポリ
オール、ポリエステルポリオール、ポリエステル
ポリエーテルポリオール、ヒマシ油及びヒマシ油
のアルキレンオキサイド付加物からなる群から選
ばれる少なくとも一種の化合物(B)とをエポキシ基
の残る割合で反応させて得られるエポキシ基と水
酸基を含む化合物()にイソシアネート基含有
化合物(C)をイソシアネート基が残存しない割合で
反応させて得られるエポキシ基含有樹脂(イ)、又は
化合物(B)とイソシアネート基、含有化合物(C)を水
酸基の残る割合で反応させた水酸基含有化合物
()にエポキシ化合物(A)をエポキシ基の残る割
合で反応させて得られるエポキシ基含有樹脂(ロ)
(所望により更にイソシアネート基含有化合物(C)
と反応させてもよい)と、エポキシ樹脂用硬化剤
(ハ)とを含有するものである。 本発明の組成物を得る為に用いられる平均1分
子内に1個より多くのエポキシ基を有するエポキ
シ化合物(A)としては特に限定されないが、たとえ
ばポリフエノールのポリグリシジルエーテル、ビ
スフエノールAのポリグリシジルエーテル、エポ
キシノボラツク、多価アルコールのポリグリシジ
ルエーテル、ポリカルボン酸のポリグリシジルエ
ステル等を用いることが出来、なるべくは分子量
が300〜2000、エポキシ当量が150〜1000程度のも
のがよい。 本発明の組成物を得るのに用いられる(B)成分と
しては、たとえば以下のものを用いることができ
る。 ポリエステル(ポリエーテル)ポリオール: 分子量は一般に100〜5000好ましくは500〜3000
で、ジオール成分としては例えばエチレングリコ
ール、プロピレングリコール、ブチレングリコー
ル、ネオペンチルグリコール等のアルキレングリ
コール或はシクロヘキサンジメタノールやポリエ
ーテルポリオールを用いることが出来、ジカルボ
ン酸成分としては炭素原子数2〜18のカルボン酸
やその無水物例えばフタル酸、イソフタル酸、テ
レフタル酸、テトラヒドロフタール酸、ヘキサヒ
ドロフタール酸、アジピン酸、アゼライン酸、セ
バシン酸、マレイン酸、グルタール酸、クロレン
ドン酸、テトラクロロフタル酸あるいはこれらの
無水物を用いることが出来る。またポリエステル
構成成分中にカプロラクトンの如きラクトンを含
めてもよい。 ポリエーテルポリオール;分子量は一般に500
〜3000程度であるのがよく、上述のアルキレング
リコールやアミン、カルボン酸等の活性水素を2
個以上有する化合物にエチレンオキサイド、プロ
ピレンオキサイド、テトラヒドロフラン等を付加
して得られる化合物を用いることができる。 ヒマシ油類;ヒマシ油及びそのアルキレンオキサ
イド付加物。 本発明に用いられるイソシアネート基含有化合
物(C)としては、トルエンジイソシアネート、4,
4′―ジフエニルメタンジイソシアネート、4,
4′―ビスシクロヘキシルメタンジイソシアネー
ト、クルードMDI、イソホロンジイソシアネー
ト、ヘキサメチレンジイソシアネート、キシリレ
ンジイソシアネート、或はこれらと活性水素化合
物から得られる末端イソシアネート基含有プレポ
リマー等が用い得る。 エポキシ基と水酸基の反応、即ち上述の(A)と(B)
又は(A)と()との反応時には3級アミン等の
0.2〜1.0重量%を触媒とし、100〜200℃、好まし
くは120〜180℃で数時間反応させればよく、この
反応によりエポキシ基は水酸基と反応し、更にエ
ポキシ基間の重合反応が一部起り、エーテル結合
と2級水酸基を含む化合物が得られるのである。 触媒としてはベンジルジメチルアミン、ジメチ
ルシクロヘキシルアミン、ジメチルエタノールア
ミン、トリエチルアミン、トリブチルアミン、ト
リメチルアミン等の他、BF3錯体(BF3―モノメ
チルアミン、BF3―ベンジルアミン、BF3―ピペ
ラジン、BF3―アニリン、BF3―メチルアニリン
等)、アルミニウムイソプロポキシド等も用い得
る。 イソシアネート基と水酸基の反応即ち(C)と
()又は(C)と(B)との反応は60〜150℃、好ましく
は70〜120℃で数時間行なえばよい。 本発明の組成物に用いられるエポキシ樹脂用硬
化剤(ハ)としては通常用いられるものでよく、たと
えばエチレンジアミン、ジエチレントリアミン、
トリエチレンテトラミン、ペンタエチレンテトラ
ミン、ヘキサメチレンペンタミン、m―キシリレ
ンジアミン等の脂肪族アミン、4,4′―ジアミノ
ビスシクロヘキシルメタン、イソホロンジアミ
ン、水添キシリレンジアミン等の脂環族アミン、
ポリアミド、アミド―アミン、アミンアダクト
類、或はジアミノジフエニルメタンやメタフエニ
レンジアミンの如き芳香族アミン、アニリンホル
マリン樹脂、変性芳香族アミン類、或はフタル酸
無水物、ヘキサヒドロフタル酸、テトラヒドロフ
タル酸の如きカルボン酸やその無水物、或は前述
のBF3錯化合物、ジシアンジアミド、イミダゾー
ル類等が用い得る。 本発明の特徴はエポキシ樹脂分子間での可撓性
付与とウレタン化にあり、エポキシ分子内での可
撓性付与化は通常のエポキシ樹脂との相溶性を高
めると共に硬化速度を著しく遅らせることなく可
撓性を付与することができ、又架橋率も向上する
ため硬化物の耐水性も良好である。 一方本発明のウレタン化により基材への密着性
が向上し特に本発明の内部可撓性付与剤としてポ
リエステルポリオール類、ヒマシ油類を使用した
ことにより耐アルカリ、耐水性が低下するため、
かかる点を改善する意味でもウレタン化は極めて
重要といえる。 さらに本発明の特徴は、高い衝撃強度と温度変
化に対しすぐれた抵抗性を有し、また低温での可
撓性も良好である。 本発明の内部可撓性ウレタン変性エポキシ樹脂
はそれ自体単独で樹脂成分として使用できるが、
他の従来公知のエポキシ樹脂と併用で使用しても
よい。 又、本発明の組成物はその他用途により必要に
応じて無機充填剤(炭酸カルシウム、シリカ、二
酸化チタン、カーボン、アルミナ、タルク、クレ
ー等)を用いてもよく、或は溶剤(トルエン、キ
シレン、アルコール類)及び可塑剤(DBP,
DOP等のフタール酸エステル類、フルフリルア
ルコール、ベンジルアルコール、コールタール
類)を含有することもできる。 又、硬化促進剤として、フエノール、クレゾー
ル、ノニルフエノール、スチレン化フエノール、
レゾルシノール、キシレノール、サリチル酸等の
フエノール類、DMP―10,DMP―30等の第3級
アミン類、トリスジメチルアミノメチルフエノー
ル等のアミノフエノール類を配合することもでき
る。 以下、実施例により本発明を更に詳述する。
尚、例中の部は重量基準である。 実施例 1 ヒマシ油200g、ビスフエノール型エポキシ樹
脂(エポキシ当量191、粘度(25℃)100PSのア
デカレジンEP4100(旭電化製))250g及び重合付
加触媒としてBF3―モノエチルアミン錯塩1.5g
を加えN2ガス気流中で130〜140℃で3時間反応
させた。反応終了後、活性白土4gを加え、触媒
の活性を除去後、100℃で過しエポキシ当量
503、粘度(25℃)280PSの反応生成物()を
得た。さらに得られた反応生成物()300gを
取り、15gのTDIを加え、N2気流中で90〜100℃
で3時間ウレタン化反応を行い内部可撓性を有す
るウレタン変性エポキシ樹脂(A)を得た。 表1に示す組成の硬化性組成物を調製し、物性
を評価した。結果を表1に示す。
The present invention relates to a urethane-modified epoxy resin curable composition having novel internal flexibility. Conventionally, side-chain type epoxy resins, fatty acids, polymerized fatty acid-modified epoxy resins, long-chain alkylphenol-modified epoxy resins, internally plasticized epoxy resins, etc. have been developed and commercially available in order to impart flexibility to epoxy resins. Each has advantages and disadvantages in terms of performance, and no one has emerged that necessarily satisfies all characteristics. For example, side-chain type epoxy resins generally have slow curing speeds and insufficient water resistance and thermal shock resistance, and glycidyl ester-based polymerizable fatty acids generally have difficulty in alkali resistance, and are often used in materials such as concrete, mortar, and cement. Its use in civil engineering and construction applications where it is immersed in alkaline water is quite limited.
Furthermore, even when other flexibility imparting agents currently on the market satisfy the performance requirements, they are all in need of improvement, as their workability is significantly inferior. However, the present invention provides a urethane-modified epoxy resin curable composition which has a novel internal flexibility that improves the performance of the composition as a flexibility-imparting agent and has excellent workability. The curable composition of the present invention contains, as essential components, an epoxy compound (A) containing on average more than one epoxy group per molecule, a polyether polyol, a polyester polyol, a polyester polyether polyol, and castor oil. and at least one compound (B) selected from the group consisting of alkylene oxide adducts of castor oil in a proportion in which epoxy groups remain. Epoxy group-containing resin (A) obtained by reacting ) with a proportion in which no isocyanate groups remain, or a hydroxyl group-containing compound () obtained by reacting compound (B) with an isocyanate group and a compound (C) containing an isocyanate group in a proportion in which hydroxyl groups remain. An epoxy group-containing resin (2) obtained by reacting an epoxy compound (A) with a proportion of epoxy groups remaining.
(If desired, an isocyanate group-containing compound (C)
) and a curing agent for epoxy resin.
It contains (c). The epoxy compound (A) having more than one epoxy group in an average molecule used to obtain the composition of the present invention is not particularly limited, but for example, polyglycidyl ether of polyphenol, polyglycidyl ether of bisphenol A, etc. Glycidyl ethers, epoxy novolaks, polyglycidyl ethers of polyhydric alcohols, polyglycidyl esters of polycarboxylic acids, etc. can be used, preferably those having a molecular weight of about 300 to 2000 and an epoxy equivalent of about 150 to 1000. As the component (B) used to obtain the composition of the present invention, for example, the following can be used. Polyester (polyether) polyol: Molecular weight generally 100-5000 preferably 500-3000
As the diol component, for example, alkylene glycol such as ethylene glycol, propylene glycol, butylene glycol, or neopentyl glycol, cyclohexanedimethanol, or polyether polyol can be used, and as the dicarboxylic acid component, a dicarboxylic acid having 2 to 18 carbon atoms can be used. Carboxylic acids and their anhydrides such as phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, adipic acid, azelaic acid, sebacic acid, maleic acid, glutaric acid, chlorendonic acid, tetrachlorophthalic acid or Any of these anhydrides can be used. Lactones such as caprolactone may also be included in the polyester components. Polyether polyol; molecular weight generally 500
The active hydrogen content of the above-mentioned alkylene glycols, amines, carboxylic acids, etc. is preferably about 3000.
It is possible to use a compound obtained by adding ethylene oxide, propylene oxide, tetrahydrofuran, etc. to a compound having at least one of these. Castor oils: Castor oil and its alkylene oxide adducts. The isocyanate group-containing compound (C) used in the present invention includes toluene diisocyanate, 4,
4'-diphenylmethane diisocyanate, 4,
4'-biscyclohexylmethane diisocyanate, crude MDI, isophorone diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, or a terminal isocyanate group-containing prepolymer obtained from these and an active hydrogen compound can be used. Reaction between epoxy group and hydroxyl group, i.e. (A) and (B) above
Or when reacting (A) with (), tertiary amine etc.
It is sufficient to use 0.2 to 1.0% by weight as a catalyst and react at 100 to 200°C, preferably 120 to 180°C for several hours. Through this reaction, the epoxy group reacts with the hydroxyl group, and further a polymerization reaction between the epoxy groups occurs partially. As a result, a compound containing an ether bond and a secondary hydroxyl group is obtained. Catalysts include benzyldimethylamine, dimethylcyclohexylamine, dimethylethanolamine, triethylamine, tributylamine, trimethylamine, etc., as well as BF 3 complexes (BF 3 -monomethylamine, BF 3 -benzylamine, BF 3 -piperazine, BF 3 -aniline). , BF 3 -methylaniline, etc.), aluminum isopropoxide, etc. can also be used. The reaction between isocyanate groups and hydroxyl groups, that is, the reaction between (C) and () or (C) and (B), may be carried out at 60 to 150°C, preferably 70 to 120°C, for several hours. The curing agent (c) for epoxy resins used in the composition of the present invention may be those commonly used, such as ethylenediamine, diethylenetriamine,
Aliphatic amines such as triethylenetetramine, pentaethylenetetramine, hexamethylenepentamine, m-xylylenediamine, alicyclic amines such as 4,4'-diaminobiscyclohexylmethane, isophoronediamine, hydrogenated xylylenediamine,
Polyamides, amido-amines, amine adducts, aromatic amines such as diaminodiphenylmethane and metaphenylenediamine, aniline-formalin resins, modified aromatic amines, or phthalic anhydride, hexahydrophthalic acid, tetrahydro- Carboxylic acids such as phthalic acid and their anhydrides, the aforementioned BF 3 complex compounds, dicyandiamide, imidazoles, etc. can be used. The feature of the present invention is that flexibility is imparted between the epoxy resin molecules and urethanization is imparted.The flexibility imparted within the epoxy molecules increases the compatibility with ordinary epoxy resins and does not significantly slow down the curing speed. Flexibility can be imparted, and since the crosslinking rate is also improved, the water resistance of the cured product is also good. On the other hand, the urethanization of the present invention improves adhesion to the base material, and the use of polyester polyols and castor oil as the internal flexibility imparting agent of the present invention reduces alkali resistance and water resistance.
Urethane conversion can be said to be extremely important in terms of improving this point. Further features of the present invention include high impact strength, excellent resistance to temperature changes, and good flexibility at low temperatures. Although the internally flexible urethane-modified epoxy resin of the present invention can be used alone as a resin component,
It may be used in combination with other conventionally known epoxy resins. In addition, the composition of the present invention may also contain other inorganic fillers (calcium carbonate, silica, titanium dioxide, carbon, alumina, talc, clay, etc.) or solvents (toluene, xylene, alcohols) and plasticizers (DBP,
It can also contain phthalate esters such as DOP, furfuryl alcohol, benzyl alcohol, coal tar). In addition, as a curing accelerator, phenol, cresol, nonylphenol, styrenated phenol,
Phenols such as resorcinol, xylenol, and salicylic acid, tertiary amines such as DMP-10 and DMP-30, and aminophenols such as trisdimethylaminomethylphenol can also be blended. Hereinafter, the present invention will be explained in further detail with reference to Examples.
Note that parts in the examples are based on weight. Example 1 200 g of castor oil, 250 g of bisphenol-type epoxy resin (Adeka Resin EP4100 (manufactured by Asahi Denka) with an epoxy equivalent of 191 and a viscosity (25°C) of 100 PS), and 1.5 g of BF 3 -monoethylamine complex salt as a polymerization addition catalyst.
was added and reacted for 3 hours at 130 to 140°C in a N 2 gas stream. After the reaction, 4g of activated clay was added to remove the catalyst activity, and the epoxy equivalent was filtered at 100℃.
503, a reaction product () with a viscosity (25°C) of 280 PS was obtained. Furthermore, take 300 g of the obtained reaction product (), add 15 g of TDI, and heat at 90-100 °C in a N2 stream.
A urethane-forming reaction was carried out for 3 hours to obtain a urethane-modified epoxy resin (A) having internal flexibility. Curable compositions having the compositions shown in Table 1 were prepared and their physical properties were evaluated. The results are shown in Table 1.

【表】 実施例 2 アデカレジンEP―4100 250g、ポリオキシプ
ロピレングリコール(分子量400,P―400(旭電
化製))200g、触媒としてベンジルジメチルアミ
ン1.5gを加え、N2気流中に140℃にて2時間反
応を行つた。反応後ポリオキシプロピレングリコ
ールで内部可撓性付与化した反応生成物()を
得た(エポキシ当量406)。さらに上記反応生成物
()200gを取り、MDI10gを加え、90〜100
℃、N2気流中で約3時間反応を行い、ポリオキ
シプロピレングリコールで内部可撓性付与化した
ウレタン変性エポキシ樹脂(B)を得た。 表2に示す組成の硬化性組成物を調製し、室温
7日硬化後の物性を評価した。結果を表2に示
す。
[Table] Example 2 250 g of Adekalezin EP-4100, 200 g of polyoxypropylene glycol (molecular weight 400, P-400 (manufactured by Asahi Denka)), and 1.5 g of benzyldimethylamine as a catalyst were added, and the mixture was heated at 140°C in a N 2 stream. The reaction was carried out for 2 hours. After the reaction, a reaction product (2) was obtained which was endowed with internal flexibility using polyoxypropylene glycol (epoxy equivalent: 406). Furthermore, take 200g of the above reaction product (), add 10g of MDI,
The reaction was carried out at ℃ for about 3 hours in a N 2 stream to obtain a urethane-modified epoxy resin (B) imparted with internal flexibility using polyoxypropylene glycol. A curable composition having the composition shown in Table 2 was prepared, and its physical properties after curing at room temperature for 7 days were evaluated. The results are shown in Table 2.

【表】 実施例 3 ヒマシ油1000g、分子量400のポリエーテルポ
リオール(P―400旭電化製)400g,TDI174g
を加えN2気流中で90〜100℃、3時間反応を行い
末端水酸基を有するウレタンプレポリマーを得
た。 上記末端水酸基を有するウレタンプレポリマー
200gにアデカレジンEP―4100 250g、ヘキサン
ジオールのジグリシジルエーテル20g、BF3モノ
エチルアミン1.5gを加え、N2気流中140℃で4
時間反応を行いエポキシ当量430の分子中にウレ
タン結合を有する内部可撓性付与ウレタン変性エ
ポキシ樹脂(C)を得た。 表3に示す組成の硬化性組成物を調製し、室温
7日硬化後の物性を評価した。結果を表3に示
す。
[Table] Example 3 1000 g of castor oil, 400 g of polyether polyol with a molecular weight of 400 (P-400 manufactured by Asahi Denka), 174 g of TDI
was added, and the reaction was carried out at 90 to 100°C for 3 hours in a N 2 stream to obtain a urethane prepolymer having terminal hydroxyl groups. Urethane prepolymer having the above terminal hydroxyl group
Add 250 g of Adekalezin EP-4100, 20 g of diglycidyl ether of hexanediol, and 1.5 g of BF 3 monoethylamine to 200 g, and heat at 140 °C in a stream of N2 .
A time reaction was carried out to obtain a urethane-modified epoxy resin (C) having an epoxy equivalent of 430 and having a urethane bond in the molecule and imparting internal flexibility. Curable compositions having the compositions shown in Table 3 were prepared, and the physical properties after curing for 7 days at room temperature were evaluated. The results are shown in Table 3.

【表】【table】

【表】 実施例 4 アデカレジンEP―4100 200g、ポリエステル
ポリオール〔アデカニユーエースF―7―67(水
酸基価55〜59、粘度(25℃)12000cPS、旭電化
製)〕300g、重合触媒としてアルミニウムイソプ
ロポキサイド触媒20%ベンゼン溶液12gを加え、
N2気流中180℃で3時間反応を行つた。 反応終了後、エポキシ当量705の室温で粘稠な
液体である内部可撓性付与化反応生成物()を
得た。 さらに得られた上記反応生成物()300gを
取り、イソホロンジイソシアネートとアデカニユ
ーエースF―7―67とをN2気流中で公知の方法
により反応し得られたNCO含有量4.2%の末端イ
ソシアネートプレポリマー50gを加え、90℃で4
時間N2気流中で反応を行い内部可撓性を有する
ウレタン変性エポキシ樹脂(D)を得た。 表4に示す組成の硬化性組成物を調製し、室温
7日硬化後の物性を評価した。結果を表4に示
す。
[Table] Example 4 200 g of Adeka Resin EP-4100, 300 g of polyester polyol [Adekanyu Ace F-7-67 (hydroxyl value 55-59, viscosity (25°C) 12000 cPS, manufactured by Asahi Denka)], aluminum isopropoxy as a polymerization catalyst Add 12g of side catalyst 20% benzene solution,
The reaction was carried out at 180° C. for 3 hours in a N 2 stream. After completion of the reaction, an internally flexible reaction product (2) was obtained which was a viscous liquid at room temperature and had an epoxy equivalent of 705. Furthermore, 300 g of the above-obtained reaction product () was taken and reacted with isophorone diisocyanate and Adecanyu Ace F-7-67 in a N2 stream by a known method to obtain a terminal isocyanate precipitate with an NCO content of 4.2%. Add 50g of polymer and heat at 90℃ for 4 hours.
The reaction was carried out in a N 2 stream for a period of time to obtain a urethane-modified epoxy resin (D) having internal flexibility. Curable compositions having the compositions shown in Table 4 were prepared, and their physical properties after curing at room temperature for 7 days were evaluated. The results are shown in Table 4.

〔比較例〕[Comparative example]

平均分子量2000のポリプロピレングリコール
(旭電化工業製P―2000)60gと、TDI21gを85
℃で3時間反応させ、ポリウレタンプレポリマー
81gを得た。このポリウレタンプレポリマー81g
を、2,2―ビス―(4―ヒドロキシフエニル)
プロパンジグリシジルエーテル(エポキシ当量
190、OH価14)500gに加え1時間反応させる。 得られたウレタン変性エポキシ樹脂(F)は、エポ
キシ当量230であつた。 表5に示す組成の硬化性組成物を調製し、室温
7日間硬化後の物性を評価した。結果を表5に示
す。 表5において、比較例の組成物13は、硬さ、引
張り強度、伸び率、衝撃性などのデータが示す通
り、内部可撓性が非常に少ないことがわかる。
60g of polypropylene glycol (Asahi Denka P-2000) with an average molecular weight of 2000 and 21g of TDI at 85%
The polyurethane prepolymer was reacted for 3 hours at °C.
Obtained 81g. 81g of this polyurethane prepolymer
, 2,2-bis-(4-hydroxyphenyl)
Propane diglycidyl ether (epoxy equivalent)
190, OH value 14) Add to 500g and react for 1 hour. The obtained urethane-modified epoxy resin (F) had an epoxy equivalent of 230. Curable compositions having the compositions shown in Table 5 were prepared, and the physical properties after curing for 7 days at room temperature were evaluated. The results are shown in Table 5. In Table 5, it can be seen that Comparative Example Composition 13 has very little internal flexibility, as shown by data such as hardness, tensile strength, elongation, and impact resistance.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 平均1分子内に1個より多くのエポキシ基を
有するエポキシ化合物(A)と、ポリエーテルポリオ
ール、ポリエステルポリオール、ポリエステルポ
リエーテルポリオール、ヒマシ油及びヒマシ油の
アルキレンオキサイド付加物からなる群から選ば
れる少なくとも1種の化合物(B)とをエポキシ基が
残存する割合で反応させて得られるエポキシ基と
水酸基を含む化合物()に、イソシアネート基
含有化合物(C)をイソシアネート基が残存しない割
合で反応させて得られるエポキシ基含有樹脂と、
エポキシ樹脂用硬化剤とを含有することを特徴と
する、内部可撓性を有するウレタン変性エポキシ
樹脂硬化性組成物。
1 Selected from the group consisting of an epoxy compound (A) having an average of more than one epoxy group in one molecule, polyether polyol, polyester polyol, polyester polyether polyol, castor oil, and alkylene oxide adducts of castor oil An isocyanate group-containing compound (C) is reacted with a compound containing an epoxy group and a hydroxyl group () obtained by reacting at least one compound (B) in a proportion in which epoxy groups remain. an epoxy group-containing resin obtained by
A urethane-modified epoxy resin curable composition having internal flexibility, characterized by containing a curing agent for epoxy resin.
JP56194884A 1981-12-03 1981-12-03 Curable composition Granted JPS5896622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56194884A JPS5896622A (en) 1981-12-03 1981-12-03 Curable composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56194884A JPS5896622A (en) 1981-12-03 1981-12-03 Curable composition

Publications (2)

Publication Number Publication Date
JPS5896622A JPS5896622A (en) 1983-06-08
JPH0148928B2 true JPH0148928B2 (en) 1989-10-23

Family

ID=16331918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56194884A Granted JPS5896622A (en) 1981-12-03 1981-12-03 Curable composition

Country Status (1)

Country Link
JP (1) JPS5896622A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018160217A1 (en) 2017-03-02 2018-09-07 Stepan Company Isocyanate-modified polyester-epoxide polymer compositions
US10882946B2 (en) 2016-08-25 2021-01-05 Stepan Company Polyester-epoxide polymer compositions
US11066550B2 (en) 2017-03-31 2021-07-20 Stepan Company Polyether-epoxide polymer compositions
US11667821B2 (en) 2018-12-19 2023-06-06 Stepan Company One-component adhesive compositions

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157521A (en) * 1984-12-28 1986-07-17 Asahi Denka Kogyo Kk Curable epoxy resin composition
JPH01146051A (en) * 1987-12-03 1989-06-08 Lonseal Corp Method of sheet waterproof construction
CN108840984B (en) * 2018-07-09 2021-08-13 广州茵诺威化工有限公司 Special ink for polyurethane modified epoxy resin and solvent-free PET (polyethylene terephthalate) film and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932998A (en) * 1972-07-26 1974-03-26
JPS506698A (en) * 1973-05-21 1975-01-23

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932998A (en) * 1972-07-26 1974-03-26
JPS506698A (en) * 1973-05-21 1975-01-23

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10882946B2 (en) 2016-08-25 2021-01-05 Stepan Company Polyester-epoxide polymer compositions
WO2018160217A1 (en) 2017-03-02 2018-09-07 Stepan Company Isocyanate-modified polyester-epoxide polymer compositions
US11059933B2 (en) 2017-03-02 2021-07-13 Stepan Company Isocyanate-modified polyester-epoxide polymer compositions
US11066550B2 (en) 2017-03-31 2021-07-20 Stepan Company Polyether-epoxide polymer compositions
US11667821B2 (en) 2018-12-19 2023-06-06 Stepan Company One-component adhesive compositions

Also Published As

Publication number Publication date
JPS5896622A (en) 1983-06-08

Similar Documents

Publication Publication Date Title
CN107001567B (en) Polyester prepolymers as impact modifiers in epoxy formulations
JP6806488B2 (en) A curable resin composition and an adhesive for joining structural materials using the composition.
KR102626996B1 (en) Blocked polyurethane toughener for epoxy adhesives
KR100582155B1 (en) Reactive Compositions Containing Blocked Polyisocyanates and Amine-Functional Resins
JP2014077074A (en) Polyurethane-modified epoxy resin and method for producing the same, and cured product
JP2016505078A (en) Reactive liquid rubber composed of isocyanate-terminated prepolymers blocked with glycol scavengers
US4632970A (en) Epoxy resin composition
JP2017002130A (en) Polyurethane modified epoxy resin and adhesive
US20190270880A1 (en) Curable epoxide/polyurethane hybrid resin system for smcs
JP2020500239A (en) Impact resistant epoxy adhesive with improved low temperature impact resistance
US4861832A (en) Flexible epoxy film from an epoxy resin reacted with a ketimine/amine terminated butadiene/acrylonitrile copolymer blend
JPWO2020095995A1 (en) Curable resin composition
JPH0148928B2 (en)
JPWO2019163577A1 (en) Curable composition and fiber reinforced composite material
EP3601406B1 (en) Polyether-epoxide polymer compositions
EP3504258B1 (en) Polyester-epoxide polymer compositions
CN110446730B (en) Isocyanate-modified polyester-epoxy polymer compositions
KR102578045B1 (en) Novel glycidyl acid anhydride-based polyol compound, modified polyurethane copolymer prepared therefrom and adhesive composition containing the copolymer, and cured product prepared therefrom
JPS62195013A (en) Curable composition
KR102594971B1 (en) Epoxy resin composition containing urethane toughening agent and method for preparing the same
JPH0725982A (en) Epoxy resin composition
JPH049167B2 (en)
JPS5951943A (en) Urethane elastomer composition
JPH07103355B2 (en) Urethane adhesive composition
WO2022071346A1 (en) Polyurethane-modified epoxy resin, epoxy resin composition, and cured product