JPH0148316B2 - - Google Patents

Info

Publication number
JPH0148316B2
JPH0148316B2 JP56085112A JP8511281A JPH0148316B2 JP H0148316 B2 JPH0148316 B2 JP H0148316B2 JP 56085112 A JP56085112 A JP 56085112A JP 8511281 A JP8511281 A JP 8511281A JP H0148316 B2 JPH0148316 B2 JP H0148316B2
Authority
JP
Japan
Prior art keywords
catalyst
palladium
highly unsaturated
supported
butene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56085112A
Other languages
Japanese (ja)
Other versions
JPS57200490A (en
Inventor
Masashi Araki
Yasuhiko Too
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP56085112A priority Critical patent/JPS57200490A/en
Publication of JPS57200490A publication Critical patent/JPS57200490A/en
Publication of JPH0148316B2 publication Critical patent/JPH0148316B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はジエン類、アセチレン類のモノエン類
への選択的水素添加法に関するものである。さら
に詳しくは分子内に2以上の二重結合および/ま
たは1以上の三重結合を有する炭素数4以上の不
飽和炭化水素(以下、高度不飽和炭化水素と称
す)を含む低不飽和度の炭化水素と水素を水素化
触媒の存在下に接触させ前記の高度不飽和炭化水
素のみを選択的に水素添加する方法において、オ
レフイン類の異性化を伴なわずに高度不飽和炭化
水素のみを対応する低不飽和度の炭化水素に転化
する方法に関するものである。 炭素数4以上の高度不飽和炭化水素またはこの
高度不飽和炭化水素を含む低不飽和度の炭化水素
と水素を水素化触媒の存在下に反応させ高度不飽
和炭化水素を対応する低不飽和度の炭化水素に選
択的に水素添加(以下選択水添と称す)すること
は、、広く一般に公知であり、たとえばブタジエ
ン、メチルアレンのジエン類、ジメチルアセチレ
ン、エチルアセチレン、ビニルアセチレンのアセ
チレン類および1―ブテン、2―ブテン、イソブ
テンのモノオレフイン類を含有する炭素数4の不
飽和炭化水素を水素とともにパラジウム、白金、
ニツケルなどの水素化触媒の存在下に反応させジ
エン類、アセチレン類のみを選択的に水添する方
法は工業的にも採用されている。 しかしながらこれら公知の選択的水素添加法に
おいては、2以上の二重結合および1以上の三重
結合など高度に不飽和な結合への選択的水素添加
と同時に二重結合の分子内移動が容易に起り選択
水添反応生成物の組成が大きく変つてしまう欠点
があつた。たとえばブタジエン類、ブチン類を含
む炭素数4の不飽和炭化水素を選択的に水添した
場合、ブタジエン類、ブチン類からブテンへの選
択的水素化と同時に1―ブテンから2―ブテンへ
の異性化が容易に進み、このため反応生成物中の
1―ブテン濃度が大きく減少してしまう。 1―ブテンはポリオレフイン製造用のモノマー
として重要であり、炭素数4の炭化水素混合物中
から1―ブテンを分離する方法について種種研究
が行なわれているが、炭素数4の炭化水素混合物
中の1―ブテンの有効利用をはかる上からも異性
化を起さないで高度に不飽和な炭化水素のみを選
択的に水添できる方法の出現が強く望まれてい
た。 本発明者らはこのようなオレフイン類の異性化
を伴なわない高度不飽和炭化水素の選択的水添方
法について鋭意研究を行ない本発明に到達したも
のである。 すなわち本発明者らは80m2/gより多い比表面
積(BET)を有する酸化アルミニウム担体物質
にパラジウムを担持させた後、900℃以上の温度
で焼成することにより得られる触媒を水素化触媒
として用いることによりオレフイン類の異性化を
伴なわずに高度不飽和炭化水素のみを対応する低
不飽和度の炭化水素に選択的に水添することを見
出した。 本発明方法において80m2/gより多い比表面積
(BET)を有する酸化アルミニウムを担体物質と
して用い、かつこの担体物質にパラジウムを担持
させた後900℃以上の温度で焼成することによつ
て得られる触媒を用いることが必要である。担体
物質として酸化アルミニウム以外の担体や比表面
積(BET)が80m2/g以下の酸化アルミニウム
を用いても本発明方法における効果は達成できな
かつた。またパラジウムを担持する前に担体を
900℃以上で焼成したり、パラジウムを担持後900
℃以下で焼成を行なつた触媒を用いても本発明方
法における効果は達成できなかつた。 本発明に用いられる担体は80m2/gより多い比
表面積(BET)を有する酸化アルミニウムであ
り、一般にいわゆるγ―アルミナと呼ばれている
酸化アルミニウムが好ましく用いられる。 酸化アルミニウムに対するパラジウムの担持方
法は一般に公知の方法によつて行なえばよい。例
えば塩化パラジウム等のパラジウム塩の水溶液に
酸化アルミニウム担体を浸すことにより行なわれ
る。この時必要があれば他の金属塩を共存させ、
パラジウム塩と共に他の金属塩を担体に共担持し
てもよいし、またパラジウム塩を担体に担持した
後、あらためて他の金属塩を担持してもよい。パ
ラジウムと共に担体に担持される金属の例として
はクロム、銅、亜鉛、カルシウム、ナトリウム等
がある。 酸化アルミニウム担体に対するパラジウムの担
持量は特に限定されるものではないが通常は0.01
〜2重量%であり、好ましくは0.02〜0.5重量%
である。 パラジウムを担持した酸化アルミニウムの焼成
温度は900℃以上が必要であり、好ましくは1100
℃以上で焼成されるのがよい。焼成時間は通常
0.5〜24時間である。焼成は空気雰囲気下で行な
つてもよい。また場合によつては水素雰囲気下に
焼成を行ないパラジウムの還元処理を同時に行な
つてもよい。 触媒の還元処理については水素ガスによつて還
元してもよいし、あるいはホルマリンその他の還
元剤によつて還元を行なつてもよい。 このようにして得られた触媒を水素化触媒とし
て用いることにより、オレフイン類の異性化を伴
なわずに高度不飽和炭化水素を対応する低不飽和
度の炭化水素に選択的に水添することが可能にな
つた。このような効果は単にγ―アルミナに担持
されたパラジウム触媒を用いてもあるいはγ―ア
ルミナのみを高温焼成することにより得られたα
―アルミナに担持されたパラジウム触媒を用いて
も達成することができなかつた。 本発明方法の選択的水添反応の反応条件は特に
限定されるものではないが通常は反応温度−20〜
200℃、反応圧力常圧〜50気圧の条件下において
行なわれる。また原料不飽和炭化水素はL.H.S.V
=1〜100で上昇流または下降流として反応器に
導入されるのが好ましい。原料不飽和炭化水素と
水素化触媒は通常固定床式で接触させるが、場合
によれば移動床式や流動床式の採用も可能であ
る。 水素ガスは通常高度に不飽和な炭化水素に対し
てモル比で1〜10倍の範囲で用いられる。また水
素ガス中にメタンその他のガスが含まれていても
さしつかえがない。 以下に実施例を用いて本発明方法の説明を行な
うが、本発明の範囲はこれらによつて制限を受け
るものではない。 実施例 1 塩化パラジウムの水溶液に比表面積150m2/g、
細孔容積0.7ml/gの球状(直径4mm)アルミナ
を浸し、0.1重量%のパラジウムがアルミナ上に
担持されるように触媒を調製し次いで恒温槽内で
150℃において乾燥し、その後1000℃で4時間空
気雰囲気下で焼成を行なうことにより触媒を調製
した。 C4混合物の選択的水添反応にはエチレン製造
装置から副生したC4炭化水素混合物をブタジエ
ン抽出処理にかけ大部分のブタジエンを取り除い
たいわゆるスペントB−B留分を原料として用い
た。原料の組成は第1表の原料欄に示す。 反応は前述の如く得られた触媒50mlを内径12mm
の垂直に配置した反応管内に充填し、あらかじめ
100℃で水素ガスを通じ還元処理を行なつた後、
温度50℃、圧力10気圧の条件下でスペントB−B
留分を2/hr(L.H.S.V=40)および水素を20
/hr(N.T.P換算)の供給速度で反応器に導入
し選択水添反応を行なつた。得られた生成物の組
成は第1表の生成物欄に示すとおりであつた。
The present invention relates to a method for selectively hydrogenating dienes and acetylenes to monoenes. More specifically, low degree of unsaturation containing unsaturated hydrocarbons with 4 or more carbon atoms (hereinafter referred to as highly unsaturated hydrocarbons) having 2 or more double bonds and/or 1 or more triple bonds in the molecule. In the method of selectively hydrogenating only the highly unsaturated hydrocarbons described above by bringing hydrogen into contact with hydrogen in the presence of a hydrogenation catalyst, only the highly unsaturated hydrocarbons are treated without isomerization of olefins. The present invention relates to a method for converting hydrocarbons into hydrocarbons with a low degree of unsaturation. A highly unsaturated hydrocarbon with a carbon number of 4 or more or a hydrocarbon with a low degree of unsaturation containing this highly unsaturated hydrocarbon is reacted with hydrogen in the presence of a hydrogenation catalyst to produce a highly unsaturated hydrocarbon with a corresponding low degree of unsaturation. It is widely known to selectively hydrogenate hydrocarbons (hereinafter referred to as selective hydrogenation). -C4 unsaturated hydrocarbons containing monoolefins such as butene, 2-butene, and isobutene are combined with hydrogen together with palladium, platinum,
A method of selectively hydrogenating dienes and acetylenes by reacting them in the presence of a hydrogenation catalyst such as nickel is also used industrially. However, in these known selective hydrogenation methods, intramolecular movement of double bonds easily occurs at the same time as selective hydrogenation of highly unsaturated bonds such as two or more double bonds and one or more triple bonds. The disadvantage was that the composition of the selective hydrogenation reaction product changed significantly. For example, when unsaturated hydrocarbons with 4 carbon atoms, including butadienes and butynes, are selectively hydrogenated, the isomerization from 1-butene to 2-butene occurs simultaneously with the selective hydrogenation of butadienes and butynes to butenes. 1-butene concentration in the reaction product is greatly reduced. 1-Butene is important as a monomer for producing polyolefins, and various studies have been conducted on methods for separating 1-butene from a mixture of hydrocarbons with 4 carbon atoms. - From the standpoint of making effective use of butene, there has been a strong desire for a method that can selectively hydrogenate only highly unsaturated hydrocarbons without causing isomerization. The present inventors have conducted extensive research into a method for selective hydrogenation of highly unsaturated hydrocarbons that does not involve isomerization of olefins, and have arrived at the present invention. That is, the present inventors used a catalyst obtained by supporting palladium on an aluminum oxide support material having a specific surface area (BET) of more than 80 m 2 /g and then calcining it at a temperature of 900° C. or more as a hydrogenation catalyst. We have discovered that by this method, only highly unsaturated hydrocarbons can be selectively hydrogenated to corresponding hydrocarbons with a low degree of unsaturation without isomerization of olefins. In the method of the present invention, aluminum oxide having a specific surface area (BET) of more than 80 m 2 /g is used as a carrier material, and palladium is supported on this carrier material and then calcined at a temperature of 900° C. or more. It is necessary to use a catalyst. Even when a carrier other than aluminum oxide or aluminum oxide having a specific surface area (BET) of 80 m 2 /g or less was used as a carrier material, the effects of the method of the present invention could not be achieved. Also, before loading palladium,
900℃ after firing at 900℃ or higher or supporting palladium
The effects of the method of the present invention could not be achieved even with the use of a catalyst calcined at temperatures below .degree. The support used in the present invention is aluminum oxide having a specific surface area (BET) of more than 80 m 2 /g, and aluminum oxide, generally so-called γ-alumina, is preferably used. Palladium may be supported on aluminum oxide by a generally known method. For example, this is carried out by immersing an aluminum oxide support in an aqueous solution of a palladium salt such as palladium chloride. At this time, if necessary, other metal salts may be allowed to coexist.
Other metal salts may be co-supported on the carrier together with the palladium salt, or other metal salts may be supported on the carrier after the palladium salt is supported on the carrier. Examples of metals supported on the carrier together with palladium include chromium, copper, zinc, calcium, and sodium. The amount of palladium supported on the aluminum oxide support is not particularly limited, but is usually 0.01.
-2% by weight, preferably 0.02-0.5% by weight
It is. The firing temperature of palladium-supported aluminum oxide must be 900℃ or higher, preferably 1100℃ or higher.
It is preferable to bake at a temperature of ℃ or above. Baking time is usually
0.5-24 hours. Firing may be performed in an air atmosphere. Further, depending on the case, firing may be performed in a hydrogen atmosphere to perform palladium reduction treatment at the same time. Regarding the reduction treatment of the catalyst, reduction may be carried out using hydrogen gas, or formalin or other reducing agent may be used. By using the catalyst thus obtained as a hydrogenation catalyst, highly unsaturated hydrocarbons can be selectively hydrogenated to corresponding hydrocarbons with a low degree of unsaturation without isomerization of olefins. became possible. Such an effect can be obtained simply by using a palladium catalyst supported on γ-alumina or by firing only γ-alumina at high temperature.
- This could not be achieved using a palladium catalyst supported on alumina. The reaction conditions for the selective hydrogenation reaction of the method of the present invention are not particularly limited, but the reaction temperature is usually -20 to
The reaction is carried out at a temperature of 200° C. and a reaction pressure of normal pressure to 50 atmospheres. In addition, the raw material unsaturated hydrocarbon is LHSV
=1 to 100 and is preferably introduced into the reactor as an upward or downward flow. The raw material unsaturated hydrocarbon and the hydrogenation catalyst are usually brought into contact in a fixed bed system, but depending on the case, a moving bed system or a fluidized bed system can also be employed. Hydrogen gas is usually used in a molar ratio of 1 to 10 times that of the highly unsaturated hydrocarbon. Furthermore, there is no problem even if the hydrogen gas contains methane or other gas. The method of the present invention will be explained below using Examples, but the scope of the present invention is not limited by these. Example 1 A specific surface area of 150 m 2 /g in an aqueous solution of palladium chloride,
A catalyst was prepared by soaking spherical (4 mm diameter) alumina with a pore volume of 0.7 ml/g so that 0.1% by weight of palladium was supported on the alumina, and then in a constant temperature bath.
The catalyst was prepared by drying at 150°C followed by calcination at 1000°C for 4 hours in an air atmosphere. In the selective hydrogenation reaction of the C 4 mixture, a so-called spent B-B fraction, obtained by subjecting a C 4 hydrocarbon mixture by-produced from an ethylene production plant to a butadiene extraction process to remove most of the butadiene, was used as a raw material. The composition of the raw materials is shown in the raw material column of Table 1. The reaction was carried out using 50 ml of the catalyst obtained as described above in a tube with an inner diameter of 12 mm.
Fill the vertically arranged reaction tube with
After reduction treatment through hydrogen gas at 100℃,
Spent B-B under the conditions of temperature 50℃ and pressure 10 atm.
fraction 2/hr (LHSV=40) and hydrogen 20
The selective hydrogenation reaction was carried out by introducing the hydrogen into the reactor at a feed rate of /hr (in terms of NTP). The composition of the obtained product was as shown in the product column of Table 1.

【表】 第1表から明らかなようにジエン、アセチレン
類はほとんど消失しているが、1―ブテンから2
―ブテンへの異性化はわずかしか生起していな
い。 比較例 1 1000℃で焼成を行なうかわりに600℃で焼成す
ること以外は実施例1と同じ操作を行ない触媒を
調製した。このようにして得られた触媒を用いて
実施例1に示した反応条件下で選択水添反応を行
ない第2表に示した結果を得た。
[Table] As is clear from Table 1, dienes and acetylenes have almost disappeared, but from 1-butene to 2
- Only a small amount of isomerization to butenes occurs. Comparative Example 1 A catalyst was prepared by carrying out the same operation as in Example 1 except that the calcination was performed at 600°C instead of 1000°C. Using the catalyst thus obtained, a selective hydrogenation reaction was carried out under the reaction conditions shown in Example 1, and the results shown in Table 2 were obtained.

【表】【table】

【表】 第2表から明らかなようにブタジエンの水添活
性は本発明方法の触媒に比べてわずかに強いが、
1―ブテンがかなり2―ブテンに異性化されてい
る。 比較例 2 塩化パラジウムの水溶液に比表面積7m2/g、
細孔容積0.4ml/g球状(直径4mm)アルミナを
浸し、0.1重量%のパラジウムがアルミナ上に担
持されるように触媒を調製し、次いで恒温器内で
150℃において乾燥したものを反応器に充填し、
水素ガスで還元処理を行なつた。 この触媒を用いて実施例1に示した条件下で水
添反応を行ない第3表に示す結果を得た。
[Table] As is clear from Table 2, the hydrogenation activity of butadiene is slightly stronger than that of the catalyst of the method of the present invention, but
1-Butene is significantly isomerized to 2-butene. Comparative Example 2 A specific surface area of 7 m 2 /g in an aqueous solution of palladium chloride,
A catalyst was prepared by soaking spherical (diameter 4 mm) alumina with a pore volume of 0.4 ml/g so that 0.1% by weight of palladium was supported on the alumina, and then in a constant temperature chamber.
Fill the reactor with the dried material at 150℃,
Reduction treatment was performed with hydrogen gas. A hydrogenation reaction was carried out using this catalyst under the conditions shown in Example 1, and the results shown in Table 3 were obtained.

【表】 比較例 3 実施例1に用いたのと同じ比表面積150m2/g、
細孔容積0.7ml/gの球状(直径4mm)アルミナ
を、1000℃で4時間空気雰囲気下で焼成を行つた
後、塩化パラジウムの水溶液に浸し、0.1重量%
のパラジウムがアルミナ上に担持されるようにパ
ラジウムの含浸を行い、次いで、恒温槽内で150
℃において乾燥を行うことにより触媒を調製し
た。 この時、1000℃で4時間焼成を行つた後のアル
ミナの比表面積は17m2/gであつた。 この触媒を用いて、実施例1に示した条件下で
水添反応を行い、第4表に示す結果を得た。
[Table] Comparative Example 3 Same specific surface area as used in Example 1, 150 m 2 /g,
Spherical alumina (diameter 4 mm) with a pore volume of 0.7 ml/g was calcined at 1000°C for 4 hours in an air atmosphere, and then immersed in an aqueous solution of palladium chloride to give a concentration of 0.1% by weight.
Palladium impregnation is carried out so that palladium is supported on alumina, and then it is heated in a constant temperature bath at
The catalyst was prepared by drying at °C. At this time, the specific surface area of the alumina after firing at 1000° C. for 4 hours was 17 m 2 /g. Using this catalyst, a hydrogenation reaction was carried out under the conditions shown in Example 1, and the results shown in Table 4 were obtained.

【表】【table】

【表】 本比較例3は、担体物質(アルミナ)にパラジ
ウムを担持させた後900℃以上の温度で焼成する
という本願発明の必須要件に反し、担体物質(ア
ルミナ)にパラジウムを担持させる前に900℃以
上の温度(1000℃)で焼成した場合の例であり、
その結果より明らかなように、1,3―ブタジエ
ン及びプロパジエンのジエン類の水添反応が不十
分であるばかりでなく、1―ブテンから2―ブテ
ンへの異性化も生起しており、本願発明の目的は
全く達成されていない。
[Table] In Comparative Example 3, contrary to the essential requirement of the present invention that palladium is supported on a support material (alumina) and then fired at a temperature of 900°C or higher, palladium was not supported on a support material (alumina). This is an example of firing at a temperature of 900℃ or higher (1000℃).
As is clear from the results, not only was the hydrogenation reaction of the dienes of 1,3-butadiene and propadiene insufficient, but also the isomerization of 1-butene to 2-butene. objective has not been achieved at all.

Claims (1)

【特許請求の範囲】[Claims] 1 炭素数4以上の高度不飽和炭化水素を含む低
不飽和度の炭化水素と水素を水素化触媒の存在下
に接触させ前記の高度不飽和炭化水素のみを選択
的に水素添加する方法において、80m2/gより多
い比表面積(BET)を有する酸化アルミニウム
担体にパラジウムを担持させた後900℃以上の温
度で焼成することにより得られる触媒を水素化触
媒として用いることを特徴とする選択的水素添加
法。
1. A method of selectively hydrogenating only the highly unsaturated hydrocarbons by contacting hydrogen with a low degree of unsaturation, including highly unsaturated hydrocarbons having 4 or more carbon atoms, in the presence of a hydrogenation catalyst, Selective hydrogen characterized in that a catalyst obtained by supporting palladium on an aluminum oxide support having a specific surface area (BET) of more than 80 m 2 /g and then calcining it at a temperature of 900°C or higher is used as a hydrogenation catalyst. Addition method.
JP56085112A 1981-06-02 1981-06-02 Selective hydrogenation Granted JPS57200490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56085112A JPS57200490A (en) 1981-06-02 1981-06-02 Selective hydrogenation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56085112A JPS57200490A (en) 1981-06-02 1981-06-02 Selective hydrogenation

Publications (2)

Publication Number Publication Date
JPS57200490A JPS57200490A (en) 1982-12-08
JPH0148316B2 true JPH0148316B2 (en) 1989-10-18

Family

ID=13849535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56085112A Granted JPS57200490A (en) 1981-06-02 1981-06-02 Selective hydrogenation

Country Status (1)

Country Link
JP (1) JPS57200490A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN164101B (en) * 1984-04-04 1989-01-14 Uop Inc
JPH0696709B2 (en) * 1987-10-23 1994-11-30 日本石油株式会社 Method for selective hydrogenation of hydrocarbons

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135711A (en) * 1978-04-05 1979-10-22 Inst Francais Du Petrole Selective hydrogenation of hydrocarbon fraction containing dioleffinic hydrocarbon and acetylenic hydrocarbon

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135711A (en) * 1978-04-05 1979-10-22 Inst Francais Du Petrole Selective hydrogenation of hydrocarbon fraction containing dioleffinic hydrocarbon and acetylenic hydrocarbon

Also Published As

Publication number Publication date
JPS57200490A (en) 1982-12-08

Similar Documents

Publication Publication Date Title
US7582805B2 (en) Supported catalyst for the selective hydrogenation of alkynes and dienes
US7745370B2 (en) Selective hydrogenation catalyst designed for raw gas feed streams
US4762956A (en) Novel catalyst and process for hydrogenation of unsaturated hydrocarbons
KR100367685B1 (en) Catalytic Hydrogenation Method and Catalyst for Use in the Method
RU2333796C2 (en) Nickel catalysts of hydration, method for obtaining same and use thereof
US5356851A (en) Catalyst containing a group VIII metal and a group IIIA metal deposited on a support
US6127310A (en) Palladium containing hydrogenation catalysts
US5364998A (en) Process for the selective hydrogenation of hydrocarbons
US4056576A (en) Chemical process over gallium catalyst converting saturated hydrocarbons to olefins
US4831200A (en) Process for the selective hydrogenation of alkynes
EP1218322A1 (en) Catalyst composition and process for making the composition
KR20000036028A (en) Catalyst for selective hydrogenation highly unsaturated hydrocarbon compound in olefin compound
JPH09173843A (en) Selective hydrogenation catalyst and method using this catalyst
EP0183293B1 (en) Catalysts and process for the selective hydrogenation of acetylenes
JPS6120526B2 (en)
EP0559183A1 (en) Selective hydrogenation of diolefins
US5146013A (en) Process for the production of chloroform from carbon tetrachloride, catalytic compositions and process for obtaining them
US20180200698A1 (en) Catalyst and methods for the isomerisation of olefins from olefin-containing hydrocarbon mixtures having 4-20 c-atoms
US4940687A (en) Catalyst and process for hydrogenation of unsaturated hydrocarbons
US3674888A (en) Process for selectively hydrogenating unsaturated hydrocarbons
EP0245653B1 (en) Production of high (z,z) content 1,5,9-tetradecatrieneand 1,5,9-tetradecatriene
JPH0148316B2 (en)
US4221738A (en) Production of acrylonitrile
US4716256A (en) Hydrogenation of dienes
JP2594463B2 (en) Catalyst for dehydrogenation reaction and method for producing the same