JPH0148204B2 - - Google Patents

Info

Publication number
JPH0148204B2
JPH0148204B2 JP59130032A JP13003284A JPH0148204B2 JP H0148204 B2 JPH0148204 B2 JP H0148204B2 JP 59130032 A JP59130032 A JP 59130032A JP 13003284 A JP13003284 A JP 13003284A JP H0148204 B2 JPH0148204 B2 JP H0148204B2
Authority
JP
Japan
Prior art keywords
firing
film
carbon
fired
conjugated polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59130032A
Other languages
Japanese (ja)
Other versions
JPS6110016A (en
Inventor
Kazumoto Murase
Toshihiro Oonishi
Masanobu Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59130032A priority Critical patent/JPS6110016A/en
Priority to US06/747,221 priority patent/US4626588A/en
Priority to DE19853522720 priority patent/DE3522720A1/en
Publication of JPS6110016A publication Critical patent/JPS6110016A/en
Priority to US06/911,216 priority patent/US4791177A/en
Publication of JPH0148204B2 publication Critical patent/JPH0148204B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高い電気伝導度を有する炭素材料及び
その組成物の製造方法に関する。さらに詳しくは
二軸延伸した共役系高分子成形体を焼成すること
を特徴とする高導電性炭素材料及びその組成物の
製造方法に関する。 近年、天然もしくは人工の高純度のグラフアイ
トと電子受容体もしくは電子供与体(以下ドーパ
ントと称する)との錯化合物が金属を越える高い
電導度を示すことが発見され、高導電性材料とし
て注目されるようになつてきた。この種の高導電
性炭素材料として、炭化水素化合物を高温で気相
熱分解し、熱分解炭素とし、さらに超高温で熱処
理して得られる熱分解グラフアイトが知られてい
る。この炭素材料はグラフアイト構造が高度に発
達したものであり、ドーパントとの錯化合物の形
成により、さらに高導電性を発現するものであつ
た。 一方、高分子の焼成により炭素化、さらにグラ
フアイト化した炭素材料を得ようとする試みもな
されている。例えばポリアクリロニトリル、レー
ヨン等の有機物繊維を焼成し、炭素繊維とする方
法がある。しかしながら得られる炭素繊維の電導
度は低く、3000℃で焼成を行なつた後でも108S/
cm以下であり、またドーパントの錯化合物形成に
よる電導度の向上効果はわずかにしか見られない
など充分にグラフアイト化した材料は得られな
い。またポリアクリロニトリル繊維系の炭素繊維
では強度を向上させる目的でポリアクリロニトリ
ル繊維を一軸延伸し、焼成することが提案されて
いるが、そのグラフアイト化は充分ではなかつ
た。このように高分子の焼成により得た炭素材料
は高温焼成することにより、また焼成前に延伸処
理を行なつた場合でも必らずしもグラフアイト構
造になるとは限らないのである。焼成処理により
グラフアイト化する数少ない例としてはピツチの
メソフエーズを配向し、酸化架橋により不溶化し
たのち焼成する方法がある。しかしこの方法では
繊維状の成形体に限定されることや、高導電性の
点では充分ではなかつた。 本発明者らは共役系高分子の焼成を広く検討し
た結果、新らしい事実を発明し、本発明に到つ
た。すなわち、二軸延伸処理したポリ−p−フエ
ニレンビニレンのフイルムを不活性雰囲気で400
℃を越える温度で焼成したところ、溶融すること
なく形状を保持したまま炭素化できるだけでな
く、高温ではグラフアイト化し、同様に焼成した
未延伸物よりさらに高導電性材料となり、しかも
ドーピングによつてさらに高導電性を示すことを
見い出した。また二軸延伸処理を加えることによ
り、安定して高導電炭素材料が得られることも見
い出した。 このように、二軸延伸処理されたポリ−p−フ
エニレンビニレンを焼成することにより、溶融、
軟化することなく炭素系の成形品とすることがで
き、しかも未延伸の場合より高導電性の炭素材料
となることは予想できないことであつた。また二
軸延伸により導電性を高められた高導電性炭素材
料はポリ−p−フエニレンビニレンの焼成に限ら
ず、広くビニレン基とそれに共役する芳香族炭化
水素基を繰り返えし単位とする共役系高分子を二
軸延伸処理後焼成することによつても得られるこ
とを見い出し、本発明を完成した。 すなわち、本発明は (1) 二軸延伸処理を施した一般式() (−R−CH=CH)−o (R:ビニレン基と連続した炭素−炭素共役
系を形成する芳香族炭化水素基、 n:2以上の整数、) を有する共役系高分子成形体を不活性雰囲気
下、400℃を越える温度で焼成することを特徴
とする高導電性炭素材料の製造方法及び (2) 二軸延伸処理を施した一般式()を有する
共役系高分子成形体を不活性雰囲気下、400℃
を越える温度で焼成して得られる炭素材料とド
ーパントを作用させることを特徴とする高導電
性組成物の製造方法を提供することにある。 本発明に用いられる共役系高分子()の合成
法に特に制限はなく、フイルム状の共役系高分子
()が製造できる種々の方法が使用できる。 例えばJ.Polymer Sci.,A−1,,1058
(1968)記載のスルホニウム塩分解法が例示され、
特にスルホニウム塩分解法により得られる共役系
高分子は均質なフイルム状成形物とすることがで
き本発明の目的には好適に用いることができる。 本発明に用いられる共役系高分子()のR基
はビニレン基と共役になる構造を持つた芳香族炭
化水素基またはその誘導体基であり、特に炭素数
6−20の芳香族炭化水素基またはその誘導体が好
ましい。 これらの基としてはo−フエニレン基、p−フ
エニレン基、4,4′−ビフエニレン基、2,5−
ジメチル−p−フエニレン基、2−5ジメトキシ
−p−フエニレン基、3,4−ジメチル−o−フ
エニレン基、3,4−ジメトキシ−o−フエニレ
ン基などがあげられる。なかでも対称性の良いp
−フエニレン基、2,5−ジメチル−p−フエニ
レン基、4,4′−ビフエニレン基、2,5−ジメ
トキシ−p−フエニレン基は焼成過程の形状保持
が良好であるためにより好ましい。なかでもp−
フエニレン基が特に好ましい。 本発明に用いられる共役系高分子は分子量が充
分大きいことが好ましく、nが2以上好ましくは
5以上50000で、たとえば分子量分画3500の透析
膜による透析処理で透析されない分子量を有する
ようなものが効果的に用いられる。 本発明において、共役系高分子成形体の二軸延
伸処理とは、一方向と該方向とは平行でない方向
に延伸処理を行なうことをさす。このとき二方向
のなす角は0゜を越えて90゜までの範囲では特に制
限はないが、45゜以上90゜以内が好ましく、より好
ましくは90゜である。 本発明に用いられる延伸方法に特に制限はない
が、一方向に延伸後、該方向とは平行でない方向
に延伸を行なう方法、平行でない二方向に同時に
延伸を行なう方法、ロール圧延方法やスルホニウ
ム塩分解法により得られる共役系高分子成形体で
はスルホニウム塩分解時の自己収縮による延伸方
法が例示されるが、特に平行でない2方向に同時
に延伸を行なう方法、自己収縮による延伸方法が
好ましい。 この延伸処理は共役系高分子成形体に行なつて
もよいが、スルホニウム塩分解法におけるように
前駆体高分子ないしは前駆体から共役系高分子に
変性過程で行なつてもよい。本発明の目的には、
前駆体から共役系高分子に変性過程で延伸処理す
るのが効果的であり好ましい。 本発明においては延伸時の雰囲気に制限はない
が、共役系高分子や前駆体と反応しない不活性雰
囲気下が好ましい。特に窒素ガス、アルゴンガス
中が好ましい。 本発明における延伸処理温度は用いる共役系高
分子により異なるが、一般的には30℃〜400℃、
好ましくは50℃〜300℃、さらに好ましくは80℃
〜200℃である。 本発明では焼成温度は400℃を越える温度が好
ましく、温度上限は炭素の蒸発温度で制限され
る。加圧系で焼成することによりさらに高温とす
ることができるが、経済的でない。高導電性材料
とするには高温で焼成されるほど良い。実際的に
は好ましくは400℃を越え3500℃以下であり、さ
らに好ましくは800℃以上3300℃以下である。 また1000℃以上での高温での焼成は1000℃以下
で仮焼成を行ない続いて1000℃以上で焼成しても
よい。 本発明では不活性雰囲気は窒素ガス、アルゴン
ガス及び真空中などが効果的であり、2000℃以上
ではアルゴンガスがより好ましい。 焼成時の加熱方法には特に制限はないが、焼成
温度によつて、発熱方法が異なる。すなわち、
1500℃以下では抵抗線炉やシリコニツト炉など
1500℃以上では黒鉛発熱体タンマン炉や高周波誘
導加熱炉が効果的に用いられる。 この様にして得られる共役系高分子()の焼
成物は多くの場合1×102〜2×104S/cmの電導
度を示す。 さらに重要なことは、この焼成物の電子受容体
もしくは電子供与体によるドーピング処理によ
り、電導度がさらに向上し、103〜105S/cmまた
はそれ以上に達することである。ドーパントにつ
いては特に限定しないが、従来グラフアイトある
いはポリアセチレンなどの共役系高分子において
高導電性が見出されている化合物を効果的に用い
ることができる。 そのドーピングの方法は、公知の方法すなわ
ち、ドーパントと直接気相もしくは液相で接触さ
せる方法、電気化学的な方法、イオンインプラン
テーシヨン等により実施することができる。 具体的には電子受容体としてはハロゲン化合物
類:臭素等、ルイス酸類:三塩化鉄、五フツ化砒
素、五フツ化アンチモン、三フツ化ホウ素、三酸
化硫黄、三塩化アルミ、五塩化アンチモン等、プ
ロトン酸類:硝酸、硫酸、クロルスルホン酸等、
電子供与体としては、アルカリ金属類:リチウ
ム、カリウム、ルビジウム、セシウム等、アルカ
リ土類金属類:カルシウム、ストロンチウム、バ
リウム等、その他希土類金属:(Sm,Eu,Yb)、
金属アミド類:カリウムアミド、カルシウムアミ
ド等が例示される。ドーピング量は特に制限はな
いが、好ましい含有量は熱処理物の重量当り0.1
%〜150%、特には10%〜〜100%である。 本発明の特徴は二軸延伸処理を施した共役系高
分子()成形体の焼成物は、未延伸ないしは一
方向のみ延伸した共役系高分子()成形体焼成
物より炭素化、グラフアイト化が進み、より高導
電性炭素材料を提供できることである。この理由
は定かではないが、二方向に延伸されることによ
つて分子中の芳香族環面がフイルム面に平行に面
配向した構造をとりやすいために、焼成時分子間
の縮合が容易になりグラフアイト構造が生じやす
くなつたと考えられる。 以下に実施例によつて本発明をさらに詳しく述
べるが本発明はこれに限定されるものではない。 実施例 1 p−キシリレンビス(ジエチルスルホニウムブ
ロミド)と苛性ソーダの水溶液を作用させ、スル
ホニウム塩を側鎖に有する高分子スルホニウム塩
水溶液を得た。続いて透析後、キヤストし、フイ
ルムに成形した。 得られた高分子スルホニウム塩フイルムを50×
50mmに切り取り、窒素雰囲気下で直交する方向に
同時に延伸することが可能な延伸機により100℃
から120℃で2方向とも延伸前のフイルム寸法の
2.5倍まで延伸した。さらに弱く延伸張力を加え
たままで250℃まで昇温し、250℃で30分間熱処理
を行なつた。得られたフイルムのIRスペクトル
は文献(J.Polymer Sci.,A−1,,1058
(1968))のものに一致しており、ポリ−p−フエ
ニレンビニレン構造を確認した。このフイルムの
電気伝導度は10-10S/cm以下であつた。 抵抗線加熱式横型管状電気炉(450mmL)に石
英ガラス製炉芯管(30mmφ×700mmL)を挿入し、
不活性ガスが導入できるように装置を組立てた。
電気炉中央の炉芯管内に上記の2軸延伸フイルム
を20×30mmに切り取つたものを入れ、窒素ガスを
毎分100ml流通させ電気炉内を950℃に昇温した。
2時間、950℃で焼成したのち、室温まで冷却し
焼成物を取り出した。焼成物はフイルム形状を保
つていた。 このフイルムは室温で100S/cmの電導度を示
した。さらにこのフイルムに電子受容体化合物と
して無水硫酸を使用し、常法により室温で気相か
らのドーピングをおこなつたところ、24時間で
140S/cmの電導度を示した。得られた950℃焼成
フイルムをさらに3000℃で焼成した。焼成は黒鉛
管発熱体を用い、アルゴン気流中で20分間行なつ
た。焼成物はフイルム形状を保つていた。このフ
イルムは室温で1.7×104S/cmの電導度を示した。
さらに無水硫酸でドーピングしたところ、1.2×
105S/cmの電導度を示した。 電導度の測定は4端子法または2端子法で行な
つた。 実施例 2 実施例1で得た高分子スルホニウム塩フイルム
を50×50mm切り取り、フイルム四辺を型枠に固定
した後300℃で30分間熱処理を行なつた。このフ
イルムは自己収縮により延伸が加わつていた。 得られたフイルムを950℃で2時間予備焼成し
た後、3000℃で焼成した。 焼成物はフイルム状を保持した、得られた焼成
フイルムは1.4×104S/cmの電導度を示した。又、
無水硫酸のドーピングで1.1×105S/cmの電導度
を示した。 比較例 実施例1で得た高分子スルホニウム塩フイルム
を50×50mm切り取り、フイルムを固定することな
く300℃で30分間熱処理を行なつた。 得られたフイルムを950℃で2時間予備焼成し
た後、3000℃で焼成した。焼成物フイルムは2.1
×103S/cmの電導度を示した。又無水硫酸のドー
ピングで1.1×104の電導度を示した。 実施例 3 実施例1,2で得られた3000℃焼成延伸フイル
ムと、比較例で得られた3000℃焼成未延伸フイル
ムの電導度を室温と液体窒素温度で測定した。結
果を表1に示す。
The present invention relates to a carbon material having high electrical conductivity and a method for producing a composition thereof. More specifically, the present invention relates to a method for producing a highly conductive carbon material and a composition thereof, which comprises firing a biaxially stretched conjugated polymer molded body. In recent years, it has been discovered that complex compounds of natural or artificial high-purity graphite and electron acceptors or electron donors (hereinafter referred to as dopants) exhibit high electrical conductivity exceeding that of metals, and have attracted attention as highly conductive materials. It's starting to feel like this. As this type of highly conductive carbon material, pyrolytic graphite is known, which is obtained by subjecting a hydrocarbon compound to gas phase pyrolysis at high temperature to produce pyrolytic carbon, which is then heat-treated at an ultra-high temperature. This carbon material had a highly developed graphite structure, and exhibited even higher conductivity through the formation of a complex compound with a dopant. On the other hand, attempts have also been made to obtain carbonized and even graphitized carbon materials by firing polymers. For example, there is a method of firing organic fibers such as polyacrylonitrile or rayon to make carbon fibers. However, the electrical conductivity of the obtained carbon fibers is low, and even after firing at 3000°C, the electrical conductivity is 10 8 S/
cm or less, and the effect of improving conductivity due to the formation of a dopant complex compound is only slight, making it impossible to obtain a material that is sufficiently graphitized. Furthermore, for the purpose of improving the strength of polyacrylonitrile-based carbon fibers, it has been proposed to uniaxially stretch the polyacrylonitrile fibers and then sinter them, but the graphite formation has not been sufficient. In this way, the carbon material obtained by firing a polymer does not necessarily have a graphite structure even if it is fired at a high temperature or subjected to stretching treatment before firing. One of the few examples of graphite formation by firing is a method in which pitch mesophase is oriented, made insolubilized by oxidative crosslinking, and then fired. However, this method is limited to fibrous molded bodies and is not sufficient in terms of high conductivity. The present inventors extensively studied the firing of conjugated polymers, and as a result, discovered a new fact and arrived at the present invention. That is, a biaxially stretched poly-p-phenylene vinylene film was heated at 400° C. in an inert atmosphere.
When fired at a temperature exceeding °C, it not only becomes carbonized while retaining its shape without melting, but also turns into graphite at high temperatures, becoming a material with even higher conductivity than a similarly fired undrawn material. Furthermore, it was discovered that it exhibits high electrical conductivity. It has also been found that by adding biaxial stretching treatment, a highly conductive carbon material can be stably obtained. In this way, by firing the biaxially stretched poly-p-phenylene vinylene, melting,
It was unexpected that a carbon-based molded article could be made without softening, and that the carbon material would have higher conductivity than an unstretched carbon material. In addition, highly conductive carbon materials whose conductivity has been increased by biaxial stretching are not limited to firing poly-p-phenylene vinylene, but are broadly based on repeating units of vinylene groups and aromatic hydrocarbon groups conjugated to them. The present invention was completed based on the discovery that the present invention can also be obtained by biaxially stretching a conjugated polymer and then firing it. That is, the present invention provides (1) a compound having the general formula (-R-CH=CH) -o (R: an aromatic hydrocarbon group forming a continuous carbon-carbon conjugated system with a vinylene group) that has been subjected to a biaxial stretching process; , n: an integer of 2 or more,) A method for producing a highly conductive carbon material, characterized by firing a conjugated polymer molded body having the following properties in an inert atmosphere at a temperature exceeding 400°C, and (2) biaxial carbon material. A conjugated polymer molded product having the general formula () that has been subjected to stretching treatment is heated at 400°C under an inert atmosphere.
It is an object of the present invention to provide a method for producing a highly conductive composition, characterized in that a dopant is made to interact with a carbon material obtained by firing at a temperature exceeding . There are no particular limitations on the method for synthesizing the conjugated polymer () used in the present invention, and various methods that can produce a film-like conjugated polymer () can be used. For example, J. Polymer Sci., A-1, 6 , 1058
(1968) is exemplified by the sulfonium salt decomposition method described by
In particular, the conjugated polymer obtained by the sulfonium salt decomposition method can be formed into a homogeneous film-like molded product and can be suitably used for the purpose of the present invention. The R group of the conjugated polymer () used in the present invention is an aromatic hydrocarbon group having a structure conjugated with a vinylene group or a derivative group thereof, particularly an aromatic hydrocarbon group having 6 to 20 carbon atoms or Derivatives thereof are preferred. These groups include o-phenylene group, p-phenylene group, 4,4'-biphenylene group, 2,5-
Examples include dimethyl-p-phenylene group, 2-5 dimethoxy-p-phenylene group, 3,4-dimethyl-o-phenylene group, and 3,4-dimethoxy-o-phenylene group. Among them, p with good symmetry
-phenylene group, 2,5-dimethyl-p-phenylene group, 4,4'-biphenylene group, and 2,5-dimethoxy-p-phenylene group are more preferable because they have good shape retention during the firing process. Especially p-
Particularly preferred is a phenylene group. The conjugated polymer used in the present invention preferably has a sufficiently large molecular weight, with n being 2 or more, preferably 5 or more and 50,000. used effectively. In the present invention, the biaxial stretching treatment of a conjugated polymer molded article refers to stretching treatment in one direction and in a direction that is not parallel to the said direction. At this time, the angle formed by the two directions is not particularly limited as long as it exceeds 0° and extends to 90°, but it is preferably 45° or more and 90° or less, and more preferably 90°. There are no particular restrictions on the stretching method used in the present invention, but methods include stretching in one direction and then stretching in a direction that is not parallel to that direction, a method that stretches in two directions that are not parallel at the same time, a roll rolling method, a sulfonium salt salt method, etc. For the conjugated polymer molded product obtained by the solution method, stretching methods using self-shrinkage during decomposition of the sulfonium salt are exemplified, but methods in which stretching is performed simultaneously in two non-parallel directions and stretching methods using self-shrinkage are particularly preferred. This stretching treatment may be performed on the conjugated polymer molded article, but it may also be performed during the process of modifying the precursor polymer or precursor into the conjugated polymer as in the sulfonium salt decomposition method. For the purpose of the invention:
It is effective and preferable to stretch the precursor into a conjugated polymer during the modification process. In the present invention, there are no restrictions on the atmosphere during stretching, but an inert atmosphere that does not react with the conjugated polymer or precursor is preferred. Particularly preferred is nitrogen gas or argon gas. The stretching temperature in the present invention varies depending on the conjugated polymer used, but is generally 30°C to 400°C,
Preferably 50°C to 300°C, more preferably 80°C
~200℃. In the present invention, the firing temperature is preferably higher than 400°C, and the upper temperature limit is limited by the evaporation temperature of carbon. Although it is possible to achieve a higher temperature by firing in a pressurized system, it is not economical. In order to obtain a highly conductive material, the higher the firing temperature, the better. Practically speaking, the temperature is preferably higher than 400°C and lower than 3500°C, and more preferably higher than 800°C and lower than 3300°C. Furthermore, when firing at a high temperature of 1000°C or higher, temporary firing may be performed at 1000°C or lower, followed by firing at 1000°C or higher. In the present invention, effective inert atmospheres are nitrogen gas, argon gas, vacuum, etc., and argon gas is more preferable at 2000° C. or higher. There are no particular restrictions on the heating method during firing, but the heating method differs depending on the firing temperature. That is,
At temperatures below 1500℃, use resistance wire furnaces, siliconite furnaces, etc.
At temperatures above 1500℃, graphite heating element Tammann furnaces and high-frequency induction heating furnaces are effectively used. The fired product of the conjugated polymer () obtained in this manner often exhibits an electrical conductivity of 1×10 2 to 2×10 4 S/cm. More importantly, by doping the fired product with an electron acceptor or electron donor, the electrical conductivity is further improved, reaching 10 3 to 10 5 S/cm or more. The dopant is not particularly limited, but compounds that have been found to have high conductivity in conjugated polymers such as graphite or polyacetylene can be effectively used. The doping method can be carried out by a known method, ie, a method of direct contact with a dopant in a gas phase or liquid phase, an electrochemical method, an ion implantation method, or the like. Specifically, electron acceptors include halogen compounds: bromine, etc., Lewis acids: iron trichloride, arsenic pentafluoride, antimony pentafluoride, boron trifluoride, sulfur trioxide, aluminum trichloride, antimony pentachloride, etc. , protonic acids: nitric acid, sulfuric acid, chlorosulfonic acid, etc.
Examples of electron donors include alkali metals: lithium, potassium, rubidium, cesium, etc., alkaline earth metals: calcium, strontium, barium, etc., and other rare earth metals: (Sm, Eu, Yb),
Metal amides: potassium amide, calcium amide, etc. are exemplified. There is no particular restriction on the amount of doping, but the preferred content is 0.1 per weight of the heat-treated product.
% to 150%, especially 10% to 100%. The feature of the present invention is that the fired product of a conjugated polymer () molded product subjected to biaxial stretching treatment is carbonized and graphitized than the fired product of a conjugated polymer () molded product that is unstretched or stretched in only one direction. As a result, carbon materials with higher conductivity can be provided. The reason for this is not clear, but by stretching in two directions, the aromatic ring planes in the molecules tend to take on a structure in which the planes are oriented parallel to the film surface, which makes it easier for intermolecular condensation to occur during firing. It is thought that this makes it easier for graphite structures to occur. The present invention will be described in more detail with reference to Examples below, but the present invention is not limited thereto. Example 1 An aqueous solution of a polymeric sulfonium salt having a sulfonium salt in its side chain was obtained by allowing p-xylylene bis(diethylsulfonium bromide) to react with an aqueous solution of caustic soda. Subsequently, after dialysis, it was cast and formed into a film. The obtained polymeric sulfonium salt film was blown 50x.
Cut to 50mm and stretch at 100℃ in a nitrogen atmosphere using a stretching machine that can simultaneously stretch in orthogonal directions.
The film dimensions before stretching in both directions at 120℃ from
Stretched to 2.5 times. Further, the temperature was raised to 250°C while still applying a weak stretching tension, and heat treatment was performed at 250°C for 30 minutes. The IR spectrum of the obtained film is given in the literature (J. Polymer Sci., A-1, 6 , 1058
(1968)), confirming the poly-p-phenylene vinylene structure. The electrical conductivity of this film was 10 -10 S/cm or less. Insert a quartz glass furnace core tube (30 mmφ x 700 mm L) into a resistance wire heating type horizontal tubular electric furnace (450 mm L),
The apparatus was assembled so that inert gas could be introduced.
A 20 x 30 mm cut piece of the above biaxially stretched film was placed in the furnace core tube at the center of the electric furnace, and nitrogen gas was passed through at 100 ml per minute to raise the temperature in the electric furnace to 950°C.
After firing at 950°C for 2 hours, the fired product was cooled to room temperature and taken out. The fired product maintained its film shape. This film exhibited an electrical conductivity of 100 S/cm at room temperature. Furthermore, when this film was doped from the gas phase at room temperature using an ordinary method using sulfuric anhydride as an electron acceptor compound, it was found that 24 hours
It showed an electrical conductivity of 140S/cm. The obtained film fired at 950°C was further fired at 3000°C. Firing was performed for 20 minutes in an argon stream using a graphite tube heating element. The fired product maintained its film shape. This film exhibited an electrical conductivity of 1.7×10 4 S/cm at room temperature.
Further doping with sulfuric anhydride resulted in 1.2×
It showed an electrical conductivity of 10 5 S/cm. The electrical conductivity was measured using a four-terminal method or a two-terminal method. Example 2 The polymer sulfonium salt film obtained in Example 1 was cut to a size of 50 x 50 mm, the four sides of the film were fixed to a mold, and then heat treated at 300°C for 30 minutes. This film had been stretched due to self-shrinkage. The obtained film was preliminarily fired at 950°C for 2 hours and then fired at 3000°C. The fired product maintained a film shape, and the obtained fired film showed an electrical conductivity of 1.4×10 4 S/cm. or,
Doping with sulfuric anhydride showed an electrical conductivity of 1.1×10 5 S/cm. Comparative Example The polymer sulfonium salt film obtained in Example 1 was cut out to a size of 50 x 50 mm, and heat treated at 300° C. for 30 minutes without fixing the film. The obtained film was preliminarily fired at 950°C for 2 hours and then fired at 3000°C. 2.1 for fired film
It showed an electrical conductivity of ×10 3 S/cm. Furthermore, it showed an electrical conductivity of 1.1×10 4 when doped with sulfuric anhydride. Example 3 The electrical conductivity of the stretched films fired at 3000°C obtained in Examples 1 and 2 and the unstretched films fired at 3000°C obtained in Comparative Example were measured at room temperature and liquid nitrogen temperature. The results are shown in Table 1.

【表】 実施例1,2で得られた焼成フイルムでは室温
と液体窒素温度での電導度の比が1前後であり、
グラフアイト化がかなり進んでいるが、比較例で
は1よりかなり小さく、あまりグラフアイト化が
進んでいないことが示された。 実施例 4 2,5−ジメチル−p−キシリレンビス(ジエ
チルスルホニウムプロミド)を用いたほかは実施
例1と同様に重合、フイルム成形した。ついで直
交する2方向に同時に1.1倍延伸、300℃でのポリ
−2,5−ジメチル−p−フエニレンビニレン化
を行なつた後、950℃での予備焼成、3000℃焼成
を行なつた。 得られた焼成フイルムは室温で7.3×103S/cm、
硝酸ドーピングで9.6×103S/cmの電導度を示し
た。2方向に延伸しない場合では電導度は5.2×
103S/cm、硝酸ドーピング時8.6×103S/cmであ
つた。 実施例 5 2,5−ジメトキシ−p−キシリレンビス(ジ
エチルスルホニウムブロミド)を用いたほかは実
施例1と同様に重合、フイルム成形、直交する2
方向に同時に1.05倍延伸、200℃でポリ−2,5
−ジメトキシ−p−フエニレンビニレン化を行な
つた後、950℃での予備焼成、3000℃焼成を行な
つた。 得られた焼成フイルムは室温で6.4×108S/cm、
硝酸ドーピングで7.9×108S/cmの電導度を示し
た。2方向に延伸しない場合では電導度は5.5×
108S/cm、硝酸ドーピング時7.2×108S/cmであ
つた。
[Table] In the fired films obtained in Examples 1 and 2, the ratio of electrical conductivity at room temperature and liquid nitrogen temperature was around 1,
Graphitization has progressed considerably, but in the comparative example, it was considerably smaller than 1, indicating that graphitization has not progressed very much. Example 4 Polymerization and film molding were carried out in the same manner as in Example 1 except that 2,5-dimethyl-p-xylylene bis(diethylsulfonium bromide) was used. The film was then simultaneously stretched 1.1 times in two orthogonal directions and converted into poly-2,5-dimethyl-p-phenylene vinylene at 300°C, followed by preliminary firing at 950°C and firing at 3000°C. The obtained fired film had a temperature of 7.3×10 3 S/cm at room temperature,
When doped with nitric acid, the conductivity was 9.6×10 3 S/cm. When not stretched in two directions, the conductivity is 5.2×
10 3 S/cm, and 8.6×10 3 S/cm when doped with nitric acid. Example 5 Polymerization, film forming, and orthogonal 2
Stretch 1.05 times simultaneously in the direction, poly-2,5 at 200℃
-Dimethoxy-p-phenylene vinylene was formed, followed by preliminary firing at 950°C and firing at 3000°C. The obtained fired film has a temperature of 6.4×10 8 S/cm at room temperature,
When doped with nitric acid, the conductivity was 7.9×10 8 S/cm. When not stretched in two directions, the conductivity is 5.5×
10 8 S/cm, and 7.2×10 8 S/cm when doped with nitric acid.

Claims (1)

【特許請求の範囲】 1 二軸延伸処理を施した一般式 (−R−CH=CH)−o (R:ビニレン基と連続した炭素−炭素共役系
を形成する芳香族炭化水素基、 n:2以上の整数、) を有する共役系高分子成形体を不活性雰囲気下、
400℃を越える温度で焼成することを特徴とする
高導電性炭素材料の製造方法。 2 二軸延伸処理を施した一般式 (−R−CH=CH)−o (R:ビニレン基と連続した炭素−炭素共役系
を形成する芳香族炭化水素基、 n:2以上の整数、) を有する共役系高分子成形体を不活性雰囲気下、
400℃を越える温度で焼成して得られる炭素材料
とドーパントを作用することを特徴とする高導電
性組成物の製造方法。
[Claims] 1 Biaxially stretched general formula (-R-CH=CH) -o (R: aromatic hydrocarbon group forming a continuous carbon-carbon conjugated system with a vinylene group, n: A conjugated polymer molded body having an integer of 2 or more) under an inert atmosphere,
A method for producing a highly conductive carbon material characterized by firing at a temperature exceeding 400°C. 2 General formula subjected to biaxial stretching treatment (-R-CH=CH)- o (R: aromatic hydrocarbon group forming a continuous carbon-carbon conjugated system with a vinylene group, n: an integer of 2 or more) Under an inert atmosphere, a conjugated polymer molded body having
A method for producing a highly conductive composition, which comprises interacting a dopant with a carbon material obtained by firing at a temperature exceeding 400°C.
JP59130032A 1984-06-26 1984-06-26 Production of highly electrically conductive carbon material and its composition Granted JPS6110016A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59130032A JPS6110016A (en) 1984-06-26 1984-06-26 Production of highly electrically conductive carbon material and its composition
US06/747,221 US4626588A (en) 1984-06-26 1985-06-21 Conjugated polymer film and pyrolyzed product thereof
DE19853522720 DE3522720A1 (en) 1984-06-26 1985-06-25 CONJUGATED POLYMERISAT FILM OF HIGH STRENGTH AND HIGH MODULES, METHOD FOR THE PRODUCTION THEREOF AND PYROLYSIS PRODUCTS MADE THEREOF
US06/911,216 US4791177A (en) 1984-06-26 1986-09-24 Conjugated polymer film and pyrolyzed product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59130032A JPS6110016A (en) 1984-06-26 1984-06-26 Production of highly electrically conductive carbon material and its composition

Publications (2)

Publication Number Publication Date
JPS6110016A JPS6110016A (en) 1986-01-17
JPH0148204B2 true JPH0148204B2 (en) 1989-10-18

Family

ID=15024457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59130032A Granted JPS6110016A (en) 1984-06-26 1984-06-26 Production of highly electrically conductive carbon material and its composition

Country Status (1)

Country Link
JP (1) JPS6110016A (en)

Also Published As

Publication number Publication date
JPS6110016A (en) 1986-01-17

Similar Documents

Publication Publication Date Title
MacDiarmid et al. The concept of secondary doping as applied to polyaniline
Nowak et al. Polarons and bipolarons on a conducting polymer in solution
MacDiarmid et al. Polyanilines: a novel class of conducting polymers
Moulton et al. Electrical and mechanical properties of oriented poly (3-alkylthiophenes): 2. Effect of side-chain length
Andreatta et al. Processing of high-performance conducting polymers
Ohnishi et al. Highly conductive graphite film prepared from pyrolysis of poly (p-phenylene vinylene)
US4599193A (en) Highly electroconductive pyrolyzed product retaining its original shape and composition formed therefrom
Moulton et al. Electrical and mechanical properties of oriented poly (3-alkylthiophenes) I. Doping-enhanced stiffness of poly (3-octylthiophene)
US4362680A (en) Process for production of molded articles of acetylene polymer
US6602567B2 (en) Micrometer-sized carbon tubes
Tokito et al. Highly conductive and stiff fibres of poly (2, 5-dimethoxy-p-phenylenevinylene) prepared from soluble precursor polymer
Gin et al. Synthesis and processing of poly (p-phenylene) via the phosphoric acid-catalyzed pyrolysis of a stereoregular precursor polymer: a characterization study
US4791177A (en) Conjugated polymer film and pyrolyzed product thereof
JPS60181129A (en) Production of heat-treated polyimide having high electrical conductivity, and its composition
JPH0148204B2 (en)
JPH0315943B2 (en)
Yang et al. Polypyrrole—polypropylene composite films: preparation and properties
JP2021500488A (en) Carbon fiber formed from chlorinated polyvinyl chloride and its manufacturing method
US3903248A (en) Process for the production of large denier carbon fibers
US5112529A (en) Conductive material and process for producing the same
JP2720550B2 (en) Highly conductive carbon and its composition
JP3764485B2 (en) Conductive fiber
JPH06172028A (en) Highly electrically conductive carbonaceous burnt compact and its composition
JPH03153512A (en) Production of high-conductivity graphite
JPH0790179A (en) Composite molding and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term