JPH0148202B2 - - Google Patents

Info

Publication number
JPH0148202B2
JPH0148202B2 JP59114286A JP11428684A JPH0148202B2 JP H0148202 B2 JPH0148202 B2 JP H0148202B2 JP 59114286 A JP59114286 A JP 59114286A JP 11428684 A JP11428684 A JP 11428684A JP H0148202 B2 JPH0148202 B2 JP H0148202B2
Authority
JP
Japan
Prior art keywords
group
ions
fluorine
metal
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59114286A
Other languages
Japanese (ja)
Other versions
JPS60260403A (en
Inventor
Morio Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIMURA WATANABE CHUSHUTSU KENKYUSHO KK
Original Assignee
NISHIMURA WATANABE CHUSHUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIMURA WATANABE CHUSHUTSU KENKYUSHO KK filed Critical NISHIMURA WATANABE CHUSHUTSU KENKYUSHO KK
Priority to JP59114286A priority Critical patent/JPS60260403A/en
Publication of JPS60260403A publication Critical patent/JPS60260403A/en
Publication of JPH0148202B2 publication Critical patent/JPH0148202B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/20Methods for preparing sulfides or polysulfides, in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明はMo,W,Nb,Ta,Ti,Fe,Co,
Ni,Zn,Cd及び希土類の各金属硫化物を製造す
る方法に関する。 〔従来の技術〕 従来これらの金属(Mo,W,Nb,Ta,V,
Ro及び希土類)硫化物を製造する方法として精
製されたこれらの金属の酸化物と硫黄を混合し
て、密閉容器に入れて、加熱する方法や、モリブ
デンのように天然に存在する純度の高い鉱石(硫
化物)中の脈石類をHFで溶解して得る方法等が
あるが、一般的でない。 更に溶液に溶解しているこれらの金属イオンを
H2Sガスで還元し、硫化物を造る方法もあるが、
共存金属イオンを含有して純度が向上しないある
いは過が困難であるという欠点があつた。 〔発明の目的〕 本発明は高価な原料を使用するものではなく、
一般に天然に存在する鉱物資源から、あるいは産
業廃棄物のようなものから、一挙に金属硫化物を
造る方法に関するもので、従来法の欠点を克服す
るものである。 〔発明の概要〕 本発明の要旨とするところは、Mo,W,Nb,
Ta,Ti,Fe,Co,Ni,Zn,Cd及び希土類のフ
ツ素含有アンモニウム塩を、硫化水素気流中で加
熱分解して次式に示すように、これらの金属硫化
物を造る方法にある。 (NH42MoF8+3H2S→MoS3+2NH4F+6HF (NH42MoOF6+3H2S→MoS3+2NH4F+
H2O+4HF (NH42WF8+3H2S→WS3+2NH4F+6HF NH4WOF5+3H2S→WS3+NH4F+H2O+
4HF (NH42NbF7+2.5H2S→NbS2.5+2NH4F+
5HF (NH42NbOF5+2.5H2S→NbS2.5+2NH4F+
H2O+3HF (NH42TaF7+2.5H2S→TaS2.5+2NH4F+
5HF (NH42TiF6+2H2S→TiS2+2NH4F+4HF (NH43FeF6+1.5H2S→FeS1.5+3NH4F+
3HF (NH42CoF4+H2S→CoS+2NH4F+2HF (NH42NiF4+H2S→NiS+2NH4F+2HF (NH42ZnF4+H2S→ZnS+2NH4F+2HF (NH42CdF4+H2S→CdS+2NH4F+2HF (NH42LaF5+1.5H2S→LaS1.5+2NH4F+
3HF (NH43CeF6+1.5H2S→CeS1.5+3NH4F+
3HF (NH42NdF5+1.5H2S→NdS1.5+2NH4F+
3HF (NH43EuF6+1.5H2S→EuS1.5+3NH4F+
3HF (NH43SmF6+1.5H2S→SmS1.5+3NH4F+
3HF (NH43GdF6+1.5H2S→GdS1.5+3NH4F+
3HF (NH42TbF6+2H2S→TbS2+2NH4F+4HF (NH42TmF5+1.5H2S→TmS1.5+2NH4F+
3HF (NH43LuF6+1.5H2S→LuS1.5+3NH4F+
3HF (NH42YF5+1.5H2S→YS1.5+2NH4F+3HF (NH42ScF5+1.5H2S→ScS1.5+2NH4F+
3HF これらのフツ素含有アンモニウム塩は、上記に
示す以外の化合物も存在するし、工業的には純粋
な結晶でなく混合物であることが多い。あるいは
原子価の異る塩が混入する場合もあり得る。 また生成する硫化物も原子価が異る事もあり得
る。 これはフツ素含有アンモニウム塩が生成する水
溶液の条件により異るので一定でない事が多く、
更に供給するH2Sの過剰割合、あるいは反応温度
によつて生成側の原子価も変化する為である。 従つて本発明は、上記に示す反応式に限定され
るものではない。本発明で使用する各金属のフツ
素含有アンモニウム塩は、例えば下記のようにし
て造られる。 アルキル燐酸の群、ケトンの群、カルボン酸の
群、中性燐酸エステルの群、オキシムの群、及び
第1級〜第4級アミンの各群からなる群から選択
された抽出剤の1種又は2種以上を石油系炭化水
素にて希釈して成る有機溶媒に抽出含有されてい
る、Mo,W,Nb,Ta,Ti,Fe,Co,Ni,Zn,
Cd及び希土類の金属イオン又はこれらの金属錯
イオンをF-イオンとNH4 +イオンを含有する水溶
液と接触させて、次式に示すように有機溶媒中よ
り水相に移行させフルオロ金属アンモニウムの結
晶を得ると共に、有機溶媒を再生させる。 R6Mo+6NH4HF2(NH42MoF8+6R・H
+4NH4F H2MoO4・2TBP+3NH4HF2
(NH42MoOF6+2TBP+NH4OH+2H2O R6・W+6NH4HF2(NH42WF8+6R・H
+4NH4F (R3NH)2WO3+2NH4HF2NH4WOF5
2R3N+2H2O H2NbF7・2TBP+4NH4OH
(NH42NbOF5+2NH4F+3H2O+2TBP H2TaF7・2TBP+2NH4F(NH42TaF7
2TBP・HF R4Ti+3NH4HF2(NH42TiF6+3RH+
R・NH4 R3Ti+3NH4HF2(NH43TiF6+3RH R3Fe+3NH4HF2(NH43FeF6+3RH R2Co+2NH4HF2(NH42CoF4+2RH R2Ni+2NH4HF2(NH42NiF4+2RH R2Zn+2NH4HF2(NH42ZnF4+2RH R2Cd+2NH4HF2(NH42CdF4+2RH 上式中R・HはH型抽出剤を示すものである。 水相に移行した各種金属イオン及び各種金属錯
イオンは、フツ素含有化合物となり、これらは水
溶液に対して、フツ化物に比較して溶解度も小さ
く、しかも結晶成長速度が極めて大きいという特
徴があり、過分離することで、容易にフツ素含
有アンモニウム塩の結晶が得られる。得られたこ
れらのフツ素含有アンモニウム塩を硫化水素含有
気流中で150℃〜800℃の間で各種金属硫化物が得
られる。 本発明に使用する、アルキル燐酸は次の群より
選択される。 又は
[Field of application of the invention] The present invention applies to Mo, W, Nb, Ta, Ti, Fe, Co,
This article relates to a method for producing Ni, Zn, Cd, and rare earth metal sulfides. [Prior art] Conventionally, these metals (Mo, W, Nb, Ta, V,
(Ro and rare earths) sulfides can be produced by mixing refined oxides of these metals with sulfur, placing the mixture in a sealed container, and heating it, or using naturally occurring ores of high purity such as molybdenum. There are methods such as dissolving gangue in (sulfide) with HF, but this is not common. Furthermore, these metal ions dissolved in the solution
There is also a method of reducing with H 2 S gas and creating sulfide,
It has the disadvantage that it contains coexisting metal ions, so the purity cannot be improved or it is difficult to pass. [Object of the invention] The present invention does not use expensive raw materials;
It generally relates to a method for producing metal sulfides all at once from naturally occurring mineral resources or industrial waste, and overcomes the shortcomings of conventional methods. [Summary of the invention] The gist of the present invention is that Mo, W, Nb,
The method involves thermally decomposing fluorine-containing ammonium salts of Ta, Ti, Fe, Co, Ni, Zn, Cd, and rare earth metals in a hydrogen sulfide stream to produce these metal sulfides as shown in the following formula. (NH 4 ) 2 MoF 8 +3H 2 S→MoS 3 +2NH 4 F+6HF (NH 4 ) 2 MoOF 6 +3H 2 S→MoS 3 +2NH 4 F+
H 2 O+4HF (NH 4 ) 2 WF 8 +3H 2 S→WS 3 +2NH 4 F+6HF NH 4 WOF 5 +3H 2 S→WS 3 +NH 4 F+H 2 O+
4HF (NH 4 ) 2 NbF 7 +2.5H 2 S→NbS 2.5 +2NH 4 F +
5HF (NH 4 ) 2 NbOF 5 +2.5H 2 S→NbS 2.5 +2NH 4 F +
H 2 O+3HF (NH 4 ) 2 TaF 7 +2.5H 2 S →TaS 2.5 +2NH 4 F+
5HF (NH 4 ) 2 TiF 6 +2H 2 S→TiS 2 +2NH 4 F+4HF (NH 4 ) 3 FeF 6 +1.5H 2 S→FeS 1.5 +3NH 4 F+
3HF (NH 4 ) 2 CoF 4 +H 2 S→CoS+2NH 4 F+2HF (NH 4 ) 2 NiF 4 +H 2 S→NiS+2NH 4 F+2HF (NH 4 ) 2 ZnF 4 +H 2 S→ZnS+2NH 4 F+2HF (NH 4 ) 2 CdF 4 +H 2 S→CdS+2NH 4 F+2HF (NH 4 ) 2 LaF 5 +1.5H 2 S→LaS 1.5 +2NH 4 F+
3HF (NH 4 ) 3 CeF 6 +1.5H 2 S→CeS 1.5 +3NH 4 F+
3HF (NH 4 ) 2 NdF 5 +1.5H 2 S→NdS 1.5 +2NH 4 F+
3HF (NH 4 ) 3 EuF 6 +1.5H 2 S→EuS 1.5 +3NH 4 F+
3HF (NH 4 ) 3 SmF 6 +1.5H 2 S→SmS 1.5 +3NH 4 F+
3HF (NH 4 ) 3 GdF 6 +1.5H 2 S→GdS 1.5 +3NH 4 F+
3HF (NH 4 ) 2 TbF 6 +2H 2 S→TbS 2 +2NH 4 F+4HF (NH 4 ) 2 TmF 5 +1.5H 2 S→TmS 1.5 +2NH 4 F+
3HF (NH 4 ) 3 LuF 6 +1.5H 2 S→LuS 1.5 +3NH 4 F+
3HF (NH 4 ) 2 YF 5 +1.5H 2 S→YS 1.5 +2NH 4 F+3HF (NH 4 ) 2 ScF 5 +1.5H 2 S→ScS 1.5 +2NH 4 F+
3HF These fluorine-containing ammonium salts include compounds other than those shown above, and industrially they are often not pure crystals but mixtures. Alternatively, salts with different valences may be mixed. Furthermore, the sulfides produced may also have different valences. This varies depending on the conditions of the aqueous solution in which the fluorine-containing ammonium salt is produced, so it is often not constant.
Furthermore, the valence of the produced atoms changes depending on the excess proportion of H 2 S supplied or the reaction temperature. Therefore, the present invention is not limited to the reaction formula shown above. The fluorine-containing ammonium salt of each metal used in the present invention is produced, for example, as follows. one or more extractants selected from the group consisting of alkyl phosphoric acids, ketones, carboxylic acids, neutral phosphoric esters, oximes, and primary to quaternary amines; or Mo, W, Nb, Ta, Ti, Fe, Co, Ni, Zn, which are extracted and contained in an organic solvent made by diluting two or more of them with petroleum hydrocarbons.
Cd and rare earth metal ions or their metal complex ions are brought into contact with an aqueous solution containing F - ions and NH 4 + ions, and transferred from the organic solvent to the aqueous phase as shown in the following formula to form fluorometallic ammonium crystals. and regenerate the organic solvent. R 6 Mo+6NH 4 HF 2 (NH 4 ) 2 MoF 8 +6R・H
+4NH 4 F H 2 MoO 4・2TBP+3NH 4 HF 2
(NH 4 ) 2 MoOF 6 +2TBP+NH 4 OH+2H 2 O R 6・W+6NH 4 HF 2 (NH 4 ) 2 WF 8 +6R・H
+4NH 4 F (R 3 NH) 2 WO 3 +2NH 4 HF 2 NH 4 WOF 5 +
2R 3 N+2H 2 O H 2 NbF 7・2TBP+4NH 4 OH
(NH 4 ) 2 NbOF 5 +2NH 4 F+3H 2 O+2TBP H 2 TaF 7・2TBP+2NH 4 F(NH 4 ) 2 TaF 7 +
2TBP・HF R 4 Ti+3NH 4 HF 2 (NH 4 ) 2 TiF 6 +3RH+
R・NH 4 R 3 Ti+3NH 4 HF 2 (NH 4 ) 3 TiF 6 +3RH R 3 Fe+3NH 4 HF 2 (NH 4 ) 3 FeF 6 +3RH R 2 Co+2NH 4 HF 2 (NH 4 ) 2 CoF 4 +2RH R 2 Ni+2NH 4 HF 2 (NH 4 ) 2 NiF 4 +2RH R 2 Zn+2NH 4 HF 2 (NH 4 ) 2 ZnF 4 +2RH R 2 Cd+2NH 4 HF 2 (NH 4 ) 2 CdF 4 +2RH In the above formula, R and H are H-type extractants. It shows. The various metal ions and various metal complex ions that have migrated to the aqueous phase become fluorine-containing compounds, which are characterized by having lower solubility in aqueous solutions than fluorides, and an extremely high crystal growth rate. By over-separating, crystals of fluorine-containing ammonium salt can be easily obtained. Various metal sulfides are obtained by heating these obtained fluorine-containing ammonium salts in a hydrogen sulfide-containing gas stream between 150°C and 800°C. The alkyl phosphoric acids used in the present invention are selected from the following group: or

【式】 (式中Rはアルキル基を示し、一般に炭素数が
4〜22のものが使用される) 以下に示す実施例中に記載するD2EHPA(ジ−
2−エチルヘキラル燐酸)は(イ)の群に属し、アル
キル基はC8H17のものである。 本発明で抽出剤として使用されるオキシムの一
例を次に示す。 (式中RはH,C6H5,CH3
[Formula] (In the formula, R represents an alkyl group, and those having 4 to 22 carbon atoms are generally used.) D 2 EHPA (di-
2-Ethylhexylphosphoric acid) belongs to group (a), and the alkyl group is C8H17 . An example of an oxime used as an extractant in the present invention is shown below. (In the formula, R is H, C 6 H 5 , CH 3 ,

【式】また は[Formula] Also teeth

【式】でXはCl又はHである) また、これらと類似のオキシムは当然使用でき
るし、Lix64(ヘンケル化学の商品名)の如き、
2種類以上のヒドロキシオキシムを混合したもの
も使用できる。 以下に示す実施例中に記載するSME−529はシ
エル化学の商品名でRがCH3でXがHのものであ
る。 本発明で使用するケトンは次の群より選択され
る。 (式中R,R′はアルキル基又はアリール基を
示し、それぞれの炭素数3〜15のものがよく使用
される) 以下に示す実施例中に記載されているケトンの
一例を次に示す。 本発明で抽出剤として使用するカルボン酸は次
の群より選択される。
[Formula], X is Cl or H) Also, oximes similar to these can of course be used, such as Lix64 (trade name of Henkel Chemical),
A mixture of two or more types of hydroxyoximes can also be used. SME-529, which is described in the examples below, is a trade name of Shell Chemical, where R is CH 3 and X is H. The ketones used in the present invention are selected from the following group: (In the formula, R and R' represent an alkyl group or an aryl group, and those each having 3 to 15 carbon atoms are often used.) Examples of ketones described in the examples below are shown below. The carboxylic acids used as extractants in the present invention are selected from the following group:

【式】【formula】

【式】 (式中Rはアルキル基を示し、一般に炭素数が
4〜22のものが使用される)実施例に記載されて
いるV−10(バーサテイツク−10はシエル化学の
商品名)は(イ)の群に属し、アルキル基の炭素数が
9〜15の範囲のものである。 本発明で使用する中性燐酸エステルは次の群よ
り選択される。 (上式中Rは炭素数が4〜22のアルキル基であ
る)実施例で使用したTBPは(トリブチルホス
フエート)は上記の(イ)の群に属し、RはC4H9
ものを云う。 次に本発明で使用する第1級〜第4級アミンは
次の群より選択される。 第1級アミンRNH2で表わされる (式中Rは炭素数が4〜25のアルキル基が使用
される) 第2級アミンR2N又はR2NHで表わされる。 (式中Rは炭素数が4〜25のアルキル基のもの
が使用される) 第3級アミンR3NまたはR3NH-で表わされる。 (式中Rは炭素数が4〜22のアルキル基のもの
が使用される) 以下に示す実施例で記載するTOA(トリオクチ
ルアミン)は次に示すものである。 (但し、Clを他のアニオンで置換することがで
きる) 第4級アミン
[Formula] (In the formula, R represents an alkyl group, and those having 4 to 22 carbon atoms are generally used.) It belongs to the group a), and the alkyl group has carbon atoms in the range of 9 to 15. The neutral phosphoric esters used in the present invention are selected from the following group: (In the above formula, R is an alkyl group having 4 to 22 carbon atoms.) The TBP used in the examples (tributyl phosphate) belongs to the group (a) above, and R is a C 4 H 9 one. say. Next, the primary to quaternary amines used in the present invention are selected from the following group. The primary amine is represented by RNH 2 (wherein R is an alkyl group having 4 to 25 carbon atoms).The secondary amine is represented by R 2 N or R 2 NH. (In the formula, R is an alkyl group having 4 to 25 carbon atoms.) A tertiary amine represented by R 3 N or R 3 NH - . (In the formula, R is an alkyl group having 4 to 22 carbon atoms.) TOA (trioctylamine) described in the following examples is as shown below. (However, Cl can be replaced with other anions) Quaternary amine

【式】で表わさ れる。 (式中Rは、炭素数が4〜25のアルキル基を示
す) Cl-を他のアニオンで置換することが出来る。 本発明で使用される希釈剤は石油系炭化水素で
芳香族のものも、脂肪族のものも使用される。勿
論これらの混合品も使用することが出来る。また
ケロシンの如き雑多な炭化水素の混合品も使用す
ることが出来る。抽出剤は各群より選択され、1
種の場合もまたは2種以上の場合もあるが、これ
らは対象とする水溶液の性状や不純物の種類とそ
の共存割合によつても、抽出剤の種類や抽出剤の
混合方法が決定される。また抽出剤濃度も同様に
決定されるが、一般に2%〜100%(容積)に調
節して使用される。 本発明で使用するFイオン含有液とは
NH4HF2,NH4FおよびHFの混合液でNH4
HFのモル比が0.1〜1.0のものをいう。 本発明で硫化水素ガスとは、100%H2Sガスの
みを云うものでなく、不活性ガス、NH3ガスあ
るいは水素等の還元ガスとの混合物をも云う。 本発明で云う希土類とはLa,Ce,Pr,Nd,
Sm,Eu,Gd,Tb,Tm,Y,Scを含む。 以下に、本発明を図面に基き、その詳細を説明
するが、本発明はこれに限定されるものでない。 第1図のフロシートは、Mo,W,Nb,Ta,
Ti,Fe,Co,Ni,Zn,Cd及び希土類の群より
選択された1種のフルオロ金属アンモニウムAを
加熱分解工程(B)にて、H2S含有気流(C)の雰囲気に
て加熱することにより、これらの金属(Mo,
W,Nb,Ta,Ti,Fe,Co,Ni,Zn,Cd及び希
土類)の硫化物(D)を造る基本型である。 加熱分解工程(B)にて生成したガス中にはNH3
HF,NH4F,及びNH4HF2を含有しているので、
水を循環する吸収塔に導き回収される。吸収液は
フルオロ金属アンモニウムを造る工程にくり返え
される。 第2図のフロシートはフルオロ金属アンモニウ
ム塩を造る基本型である。Mo,W,Nb,Ta,
Ti,Fe,Co,Ni,Zn,Cd及び希土類の群より
選択された1種の金属イオン及び金属錯イオンを
抽出含有する有機溶媒(F)を、NH4 +とF-イオンを
含有する水溶液(G)と剥離工程(H)で接触させること
により金属イオン及び金属錯イオンを水相に移行
せしめ有機溶媒は再生され再び金属イオン及び金
属錯イオン抽出工程へ循環される。 一方水相に移つたこれらの金属(Mo,W,
Nb,Ta,Ti,Fe,Co,Ni,Zn,Cd及び希土
類)イオン及び金属錯イオンは、フルオロ金属ア
ンモニウムを主体とする結晶として抽出するの
で、晶析工程(J)で過分離されて、フルオロ金属
アンモニウムの結晶(K)が得られる。 以下に実施例を掲げてこの発明を説明する。 実施例 1 次に示すように、各金属のフツ素含有アンモニ
ウム塩を、環状電気炉に投入して、H2Sガス30
c.c./minの割合で送りながら加熱を行つた。
It is represented by [Formula]. (In the formula, R represents an alkyl group having 4 to 25 carbon atoms.) Cl - can be substituted with another anion. The diluent used in the present invention is a petroleum-based hydrocarbon, and both aromatic and aliphatic diluents are used. Of course, mixtures of these can also be used. Mixtures of miscellaneous hydrocarbons such as kerosene can also be used. Extractants are selected from each group, 1
Although it may be a species or two or more types, the type of extractant and the method of mixing the extractants are determined depending on the properties of the target aqueous solution, the type of impurities, and their coexistence ratio. The extractant concentration is determined in the same manner, but is generally adjusted to 2% to 100% (by volume). What is the F ion-containing liquid used in the present invention?
A mixture of NH 4 HF 2 , NH 4 F and HF produces NH 4 /
The molar ratio of HF is 0.1 to 1.0. In the present invention, hydrogen sulfide gas refers not only to 100% H 2 S gas, but also to a mixture with an inert gas, NH 3 gas, or a reducing gas such as hydrogen. The rare earths referred to in the present invention include La, Ce, Pr, Nd,
Contains Sm, Eu, Gd, Tb, Tm, Y, Sc. The present invention will be described in detail below based on the drawings, but the present invention is not limited thereto. The flow sheets in Figure 1 include Mo, W, Nb, Ta,
One type of fluorometallic ammonium A selected from the group of Ti, Fe, Co, Ni, Zn, Cd, and rare earths is heated in an atmosphere of H 2 S-containing air flow (C) in the thermal decomposition step (B). By this, these metals (Mo,
This is the basic type for making sulfides (D) of W, Nb, Ta, Ti, Fe, Co, Ni, Zn, Cd and rare earths. The gas generated in the thermal decomposition step (B) contains NH 3 ,
Since it contains HF, NH 4 F, and NH 4 HF 2 ,
The water is led to an absorption tower that circulates and is recovered. The absorbent liquid is subjected to repeated steps to produce fluorometallic ammonium. The flowsheet shown in Figure 2 is the basic model for making fluorometallic ammonium salts. Mo, W, Nb, Ta,
One kind of metal ion and metal complex ion selected from the group of Ti, Fe, Co, Ni, Zn, Cd and rare earths are extracted. An organic solvent (F) containing an organic solvent (F) is added to an aqueous solution containing NH 4 + and F - ions. By contacting (G) with the stripping step (H), the metal ions and metal complex ions are transferred to the aqueous phase, and the organic solvent is regenerated and recycled to the metal ion and metal complex ion extraction step. On the other hand, these metals (Mo, W,
Nb, Ta, Ti, Fe, Co, Ni, Zn, Cd and rare earth) ions and metal complex ions are extracted as crystals mainly composed of fluorometallic ammonium, so they are over-separated in the crystallization step (J). Fluorometallic ammonium crystals (K) are obtained. This invention will be explained below with reference to Examples. Example 1 As shown below, fluorine-containing ammonium salts of each metal were charged into a circular electric furnace and heated with H 2 S gas for 30 minutes.
Heating was carried out while feeding at a rate of cc/min.

【表】 残留物の形態は、環状電気炉内の生成物を化学
分析を行い、その結果から代表的な化学種を示し
たもので、一部に原子価の変化したものが混入し
ている。 テストは硫化水素ガスを過剰に加熱時間内は流
し続けていたもので目的温度に達した後、維持し
た時間を加熱時間として表示した。 参考例 次に各金属のフルオロ金属アンモニウム塩を造
る実験を行つた。
[Table] The form of the residue is shown by the chemical analysis of the products in the circular electric furnace, and the results show the representative chemical species.Some of the residues contain substances with changed valences. . In the test, an excessive amount of hydrogen sulfide gas was continued to flow during the heating time, and after the target temperature was reached, the time maintained was displayed as the heating time. Reference Example Next, experiments were conducted to produce fluorometallic ammonium salts of various metals.

〔発明の効果〕〔Effect of the invention〕

以上の記載から理解されるように本発明におい
ては、各種金属のフツ素含有アンモニウム塩を硫
化水素気流中で処理するために一挙に硫化物が得
られ、またフツ素含有アンモニウム塩を得る方法
として有機溶媒を使用しているので、天然の鉱物
資源や産業廃棄物中の含有金属を有利に回収する
ことができる。
As can be understood from the above description, in the present invention, sulfides can be obtained all at once by treating fluorine-containing ammonium salts of various metals in a hydrogen sulfide gas stream, and also as a method for obtaining fluorine-containing ammonium salts. Since an organic solvent is used, metals contained in natural mineral resources and industrial waste can be advantageously recovered.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本的プロセスを示す工程図
である。第2図は有機溶媒を使用してフツ素含有
アンモニウム塩を生成するプロセスを示す工程図
である。
FIG. 1 is a process diagram showing the basic process of the present invention. FIG. 2 is a process diagram showing a process for producing a fluorine-containing ammonium salt using an organic solvent.

Claims (1)

【特許請求の範囲】 1 Mo,W,Nb,Ta,Ti,Fe,Co,Ni,Zn,
Cd及び希土類のフツ素含有アンモニウム塩を硫
化水素気流中で加熱分解する事より、これらの金
属硫化物を造ることを特徴とする金属硫化物の製
造方法。 2 アルキル燐酸の群、カルボン酸の群、オキシ
ムの群、ケトンの群、中性燐酸エステルの群及び
第1級〜第4級アミンの群より成る各群から選択
された1種又は2種以上の抽出剤を石油系炭化水
素にて希釈してなる有機溶媒に抽出含有されてい
る、Mo,W,Nb,Ta,Ti,Fe,Co,Ni,Zn,
Cd及び希土類金属イオン又はこれらの金属錯イ
オンを、FイオンとNH4イオンを含有する水溶
液と接触させることにより、該イオン又は錯イオ
ンを水相に移行せしめ、この結果得られたMo,
W,Nb,Ta,Ti,Fe,Co,Ni,Zn,Cd及び希
土類のフツ素含有アンモニウムの塩を使用するこ
とを特徴とする特許請求の範囲第1項記載の製造
方法。
[Claims] 1 Mo, W, Nb, Ta, Ti, Fe, Co, Ni, Zn,
A method for producing metal sulfides, which comprises producing these metal sulfides by thermally decomposing Cd and fluorine-containing ammonium salts of rare earths in a hydrogen sulfide stream. 2 One or more selected from each group consisting of the alkyl phosphoric acid group, the carboxylic acid group, the oxime group, the ketone group, the neutral phosphoric acid ester group, and the primary to quaternary amine group. Mo, W, Nb, Ta, Ti, Fe, Co, Ni, Zn,
By contacting Cd and rare earth metal ions or their metal complex ions with an aqueous solution containing F ions and NH 4 ions, the ions or complex ions are transferred to the aqueous phase, and the resulting Mo,
2. The manufacturing method according to claim 1, characterized in that W, Nb, Ta, Ti, Fe, Co, Ni, Zn, Cd and rare earth fluorine-containing ammonium salts are used.
JP59114286A 1984-06-04 1984-06-04 Manufacture of metallic sulfide Granted JPS60260403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59114286A JPS60260403A (en) 1984-06-04 1984-06-04 Manufacture of metallic sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59114286A JPS60260403A (en) 1984-06-04 1984-06-04 Manufacture of metallic sulfide

Publications (2)

Publication Number Publication Date
JPS60260403A JPS60260403A (en) 1985-12-23
JPH0148202B2 true JPH0148202B2 (en) 1989-10-18

Family

ID=14634040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59114286A Granted JPS60260403A (en) 1984-06-04 1984-06-04 Manufacture of metallic sulfide

Country Status (1)

Country Link
JP (1) JPS60260403A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2627477B1 (en) * 1988-02-19 1990-07-06 Rhone Poulenc Chimie PROCESS FOR THE TREATMENT OF RESIDUES CONTAINING RARE EARTH AND COBALT
FR2627478B1 (en) * 1988-02-19 1991-02-15 Rhone Poulenc Chimie PROCESS FOR THE TREATMENT OF RESIDUES CONTAINING RARE EARTH AND COBALT
FR2732005B1 (en) * 1995-03-22 1997-06-13 Rhone Poulenc Chimie PROCESS FOR THE PREPARATION OF RARE EARTH SULPHIDES FROM HALIDES
CN1073969C (en) * 1999-07-15 2001-10-31 北京矿冶研究总院 Synthesis method of high-purity nickel disulfide powder
JP4843568B2 (en) * 2007-06-28 2011-12-21 株式会社クラレ Method for producing iridium sulfide
JPWO2018025866A1 (en) * 2016-08-04 2019-06-06 国立大学法人名古屋大学 Method for producing samarium monosulfide, volume change material, volume control member, negative thermal expansion material, and compound material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884122A (en) * 1981-10-30 1983-05-20 ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク Extraction or separation of uranium, thorium and rare earth elements by treating chloride solution thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884122A (en) * 1981-10-30 1983-05-20 ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク Extraction or separation of uranium, thorium and rare earth elements by treating chloride solution thereof

Also Published As

Publication number Publication date
JPS60260403A (en) 1985-12-23

Similar Documents

Publication Publication Date Title
Seaborg et al. The Chemistry of the Actinide Elements: Volume 2
US5338520A (en) Recovery of neodymium/didymium values from bastnaesite ores
US4927609A (en) Recovery of gallium/rare earth values from oxide mixtures thereof
US4741893A (en) Process for producing fluorides of metals
US5011665A (en) Nonpolluting recovery of rare earth values from rare earth minerals/ores
CA1185097A (en) Process for preparing metals from their fluorine- containing compounds
JPS62256723A (en) Purification of barium salt
US4898719A (en) Liquid extraction procedure for the recovery of scandium
US2564241A (en) Extraction process for cerium
JPH0148202B2 (en)
Peng et al. Preparation of ultra-high pure scandium oxide with crude product from titanium white waste acid
Lo et al. Preconcentration of trace metals in seawater matrix for inductively coupled plasma atomic emission spectrometry
Shlewit Treatment of phosphate rocks with hydrochloric acid
US3131993A (en) Solvent extraction process for the recovery of vanadium from solutions
US3244475A (en) Solvent extraction process for separating rhenium from molybdenum
Bautista Separation chemistry
US3077378A (en) Separation of europium from other lanthanide rare earths by solvent extraction
JPS5930649B2 (en) Uranium recovery method from wet phosphoric acid
JPS6037059B2 (en) Method for purifying gallium solutions by liquid-liquid extraction with quaternary ammonium salts
EP0046973B1 (en) Process for the production of high-purity iron oxide
RU2211871C1 (en) Method of processing loparite concentrate
KR940000109B1 (en) Process for separating yttrium
JPH0225841B2 (en)
CN107810283A (en) From the method for organic phase separation iron containing uranium and from the method containing the aqueous solution of uranium and the mineral acid of iron extraction uranium
US2833800A (en) Process for purifying plutonium